# Introduction to Partial Differential Equations 

## Homework 5

due March 16, 2015

1. Evans, p. 87 problem 12.
2. Evans, p. 87 problem 13.
3. Let $u(x, t)$ solve the heat equation

$$
\begin{array}{cc}
u_{t}-\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}
$$

with $g \in C\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$. Show that

$$
\|u\|_{L^{\infty}} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

while

$$
\int_{\mathbb{R}^{n}} u(x, t) d x=\text { const } .
$$

Give a physical interpretation of each of the statements.
4. Find a solution formula for the heat equation with advection,

$$
\begin{gathered}
u_{t}-\Delta u+b \cdot D u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{gathered}
$$

Hint: which equation is solved by $v(x, t)=u(x+b t, t)$ ?

