Introduction to Partial Differential Equations

Homework 6

due April 8, 2015

1. Evans, p. 88 Problem 17.
2. For $h \in C^{2}\left(\mathbb{R}^{3}\right)$ with compact support and define, for $t>0$,

$$
u(x, t)=f_{\partial B(x, t)} t h(y) d S(y)
$$

Show that
(a) There exists $C>0$ such that $|u(x, t)| \leq C / t$ for all $t>0$.
(b) $\lim _{t \rightarrow 0} u(x, t)=0$.
(c) $\lim _{t \rightarrow 0} u_{t}(x, t)=h(x)$.
(d) u solves the wave equation

$$
u_{t t}-\Delta u=0
$$

on $\mathbb{R}^{3} \times(0, \infty)$.
3. Evans, p. 163 Problem 3.
4. (This question refers to the remark in Evans, p. 114.) Consider the scalar conservation law in one spatial dimension

$$
\begin{gathered}
u_{t}+F^{\prime}(u) u_{x}=0 \quad \text { in } \mathbb{R} \times(0, \infty) \\
u=g \quad \text { in } \mathbb{R} \times\{t=0\}
\end{gathered}
$$

(a) Show that the function u defined through the implicit equation

$$
u=g\left(x-t F^{\prime}(u)\right)
$$

is a solution provided

$$
\begin{equation*}
1+t g^{\prime}\left(x-t F^{\prime}(u)\right) F^{\prime \prime}(u) \neq 0 \tag{}
\end{equation*}
$$

(b) Suppose that $F(u)=\frac{1}{2} u^{2}$. When does solvability condition $\left(^{*}\right)$ fail? Is this only a failure of the method of characteristics, or does it also correspond to a failure of the solution to the PDE?

