Introduction to Partial Differential Equations

Homework 3

due March 22, 2017

1. Evans, p. 87 problem 12.
2. Evans, p. 87 problem 13.
3. Let $u(x, t)$ solve the heat equation

$$
\begin{array}{cc}
u_{t}-\Delta u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\}
\end{array}
$$

with $g \in C\left(\mathbb{R}^{n}\right) \cap L^{1}\left(\mathbb{R}^{n}\right)$. Show that

$$
\|u\|_{L^{\infty}} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

while

$$
\int_{\mathbb{R}^{n}} u(x, t) d x=\text { const } .
$$

Give a physical interpretation of each of the statements.
4. Find a solution formula for the heat equation with advection,

$$
\begin{gathered}
u_{t}-\Delta u+b \cdot D u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=g \quad \text { on } \mathbb{R}^{n} \times\{t=0\} .
\end{gathered}
$$

Hint: which equation is solved by $v(x, t)=u(x+b t, t)$?
5. Evans, p. 88 Problem 17.
6. For $h \in C^{2}\left(\mathbb{R}^{3}\right)$ with compact support and define, for $t>0$,

$$
u(x, t)=f_{\partial B(x, t)} t h(y) d S(y)
$$

Show that
(a) There exists $C>0$ such that $|u(x, t)| \leq C / t$ for all $t>0$.
(b) $\lim _{t \rightarrow 0} u(x, t)=0$.
(c) $\lim _{t \rightarrow 0} u_{t}(x, t)=h(x)$.
(d) u solves the wave equation

$$
u_{t t}-\Delta u=0
$$

on $\mathbb{R}^{3} \times(0, \infty)$.

