Introduction to Partial Differential Equations

Homework 5

due May 15, 2017

1. Evans, p. 290 problem 5.
2. Evans, p. 290 problem 8.
3. Evans, p. 290 problem 9.
4. Show that, for every $u \in L^{r}(\mathbb{T})$ with $2 \leq r<\infty$,

$$
\|u\|_{L^{2}} \leq(2 \pi)^{\frac{r-2}{2 r}}\|u\|_{L^{r}}
$$

Hint: Hölder inequality.
5. Consider the Fisher-Kolmogorov equation on \mathbb{T},

$$
\begin{gathered}
u_{t}=u_{x x}+(1-u) u^{m} \\
u(0)=u^{\text {in }}
\end{gathered}
$$

where m is an even positive integer. Use the result from the previous question to sharpen the L^{2} estimate derived in the lecture as follows: Show that

$$
\limsup _{t \rightarrow \infty}\|u(t)\|_{L^{2}} \leq C
$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data $u^{\text {in }}$.
6. In the setting of the Question 5, use the result from Question 2 to prove that

$$
\limsup _{t \rightarrow \infty}\|u(t)\|_{H^{1}} \leq C
$$

where an explicit estimate for C can be given which, in particular, shows that C does not depend on the initial data $u^{\text {in }}$. You may assume that u is sufficiently differentiable so that all your formal manipulations are justified.

