Applied Differential Equations and Modeling

Homework 5

Due in class Thursday, March 22, 2018

1. Find the (single) eigenvalue, eigenvector \boldsymbol{v}, and generalized eigenvector \boldsymbol{w} for each of the following matrices.
(a) $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$
(b) $A=\left(\begin{array}{cc}-\frac{3}{2} & 1 \\ -\frac{1}{4} & -\frac{1}{2}\end{array}\right)$
2. For the matrices from Problem 1, write out the general solution ot the system $\dot{\boldsymbol{x}}=A \boldsymbol{x}$. Describe how the solutions behave as $t \rightarrow \infty$.
3. For the matrices from Problem 1, find the solution to $\dot{\boldsymbol{x}}=A \boldsymbol{x}$ which corresponds to the initial condition $x(0)=(1,1)$.
4. Consider linear equations of the form

$$
\dot{\boldsymbol{x}}=A \boldsymbol{x}
$$

where A is a 2×2 matrix with real coefficient. Is the following true or false? If a short argument for each case.
(a) A can have repeated complex eigenvalues (i.e., eigenvalues with a non-zero imaginary part).
(b) If none of the eigenvalues of A has a strictly positive real part, then there is no solution which grows in time (i.e., then the trivial solution $\boldsymbol{x}(t)=\mathbf{0}$ is stable).

