Applied Differential Equations and Modeling

Homework 7
Due in class Thursday, May 2

1. Find the Laplace transform of the given function.
(a) $f(t)=t^{10}$
(b) $f(t)=\mathrm{e}^{2 t} \cos 3 t$
(c) $f(t)= \begin{cases}t & \text { for } 0 \leq t \leq 1 \\ 1 & \text { for } t>1\end{cases}$
(d) $f(t)=t^{n} \mathrm{e}^{a t}$
2. Show that the Laplace transform \mathcal{L} satisfies

$$
\mathcal{L} \int_{0}^{t} f(\tau) \mathrm{d} \tau=\frac{1}{s} \mathcal{L}(f)
$$

for all functions f such that the transforms on the left and on the right hand sides are well defined.
3. Compute the inverse Laplace transform of the given function.
(a) $F(s)=\frac{2}{s^{2}+3 s-4}$
(b) $F(s)=\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}$
(c) $F(s)=\frac{s^{3}-2 s^{2}-6 s-6}{\left(s^{2}+2 s+2\right) s^{2}}$
4. Use the Laplace transform to solve the given initial value problem.
(a) $y^{\prime \prime}-y^{\prime}-6 y=0$
with $y(0)=1, y^{\prime}(0)=-1$
(b) $y^{\prime \prime}+\omega^{2} y=\cos 2 t$
for $\omega^{2} \neq 4$ with $y(0)=1, y^{\prime}(0)=0$
(c) $y^{\prime \prime \prime \prime}-4 y=0$
with $y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-2, y^{\prime \prime \prime}(0)=0$
5. Find the Laplace transform of the given periodic function.
(a) $f(t)= \begin{cases}1 & \text { for } 0 \leq t<1 \\ -1 & \text { for } 1 \leq t<2\end{cases}$
and f has period 2 .
(b) $f(t)=t$ for $0 \leq t<1$ and f has period 1 .
6. For a function $f(t)$, write $F(s)$ to denote the Laplace transform. Prove the following.
(a) $\mathcal{L}\left(\mathrm{e}^{c t} f(t)\right)=F(s-c)$
(b) $\mathcal{L}(f(c t))=\frac{1}{c} F\left(\frac{s}{c}\right)$

