# Applied Differential Equations and Modeling 

## Homework 8

Due in class Tuesday, May 15

1. Find the solution of the given initial value problem and draw its graph.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi)$ with $y(0)=1, y^{\prime}(0)=0$
(b) $y^{\prime \prime}+y=\delta(t-2 \pi) \cos t$ with $y(0)=0, y^{\prime}(0)=1$
2. Find the Laplace transform of the given function.
(a) $\int_{0}^{t}(t-\tau)^{2} \cos 2 \tau \mathrm{~d} \tau$
(b) $\int_{0}^{t} \mathrm{e}^{-(t-\tau)} \sin \tau \mathrm{d} \tau$
3. Find the inverse Laplace transform using the convolution theorem.
(a) $F(s)=\frac{1}{s^{4}\left(s^{2}+1\right)}$
(b) $F(s)=\frac{G(s)}{s^{2}+1}$
4. In each of the following problems, express the total response in terms of the forced response (using a convolution integral) and the free response.
(a) $y^{\prime \prime}+\omega^{2} y=g(t)$ with $y(0)=0, y^{\prime}(0)=1$
(b) $y^{\prime \prime}+3 y^{\prime}+2 y=\cos (\alpha t)$ with $y(0)=1, y^{\prime}(0)=0$
5. Which of the following transfer functions corresponds to a BIBO-stable system?
(a) $H(s)=\frac{1}{(s+1)^{2}\left(s^{2}+1\right)}$
(b) $H(s)=\frac{1}{s^{2}-1}$
(c) $H(s)=\frac{1}{6+11 s+6 s^{2}+s^{3}}$
