Ordinary Differential Equations

Final Exam

May 22, 2018

1. Consider the system

$$
\begin{gathered}
\dot{x}=\mu+x^{2}+x y+y^{2}, \\
\dot{y}=x^{2}+x y-y, \\
\dot{\mu}=0 .
\end{gathered}
$$

(a) Consider the critical point $(0,0,0)$ and compute the linearly stable, linearly unstable, and linearly neutral subspaces.
(b) Note that the system has a two-dimensional center manifold. Compute an expression for the center manifold up to terms of second order.
(c) Show that the motion on the center manifold is given by

$$
\begin{gathered}
\dot{u}=\mu+u^{2}+\text { h.o.t. } \\
\dot{\mu}=0
\end{gathered}
$$

(d) Now treat μ as a parameter and show that the system in center manifold coordinates has a bifurcation at $\mu=0$. Name that bifurcation and sketch a bifurcation diagram in center manifold coordinates. (Extra credit if you manage to sketch the bifurcation in the original $2+1$-dimensional phase space.)
2. Consider the system

$$
\begin{gathered}
\dot{x}=\mu x+y-x\left(x^{2}+y^{2}\right) \\
\dot{y}=-x+\mu y-y\left(x^{2}+y^{2}\right) .
\end{gathered}
$$

(a) Show that the origin is the only critical point and determine the linear stability of the origin as a function of the real parameter μ.
(b) Write the system in polar coordinates.
(c) Show that the system has a periodic orbit for $\mu>0$. Conclude that the system has an Andronov-Hopf-bifurcation at $\mu=0$.
(d) Sketch the bifurcation diagram.
3. Prove the following simple averaging theorem.

Consider the equation

$$
\dot{x}=\varepsilon f(x, t)+\varepsilon^{2} g(x, t ; \varepsilon),
$$

where $f: \mathbb{R}^{n} \times[0, \infty) \rightarrow \mathbb{R}^{n}$ is T-periodic for fixed $x \in \mathbb{R}^{n}$. Assume that f and g are smooth. Suppose that there exists a ball of radius $R>0$ on which f, g, and all their derivatives are bounded independent of ε.
Define

$$
\bar{f}(y)=\frac{1}{T} \int_{0}^{T} f(y, t) \mathrm{d} t
$$

and suppose that the solution of

$$
\dot{y}=\varepsilon \bar{f}(y) \quad y(0)=x(0)
$$

remains in a ball of radius $R / 2$. Then

$$
x(t)-y(t)=O(\varepsilon)
$$

on the time scale $1 / \varepsilon$.
Hint: Define

$$
u(x, t)=\int_{0}^{t}(f(x, s)-\bar{f}(x)) \mathrm{d} s
$$

set

$$
\begin{equation*}
x=z+\varepsilon u \tag{10}
\end{equation*}
$$

and derive a differential equation for z.
4. Consider Mathieu's equation

$$
\ddot{x}+(1+2 \varepsilon \cos (2 t)) x=0 .
$$

(a) Use the ansatz

$$
\begin{aligned}
& x=z_{1} \cos t+z_{2} \sin t, \\
& \dot{x}=-z_{1} \sin t+z_{2} \cos t
\end{aligned}
$$

to show that

$$
\begin{gathered}
\dot{z}_{1}=2 \varepsilon \sin t \cos (2 t)\left(z_{1} \cos t+z_{2} \sin t\right) \\
\dot{z}_{2}=-2 \varepsilon \cos t \cos (2 t)\left(z_{1} \cos t+z_{2} \sin t\right)
\end{gathered}
$$

(b) Use averaging (see attached table for useful trigonometric identities!) to conclude that

$$
x(t)=\frac{1}{2}(x(0)+\dot{x}(0)) \mathrm{e}^{-\frac{1}{2} \varepsilon t}(\cos t+\sin t)+\frac{1}{2}(x(0)-\dot{x}(0)) \mathrm{e}^{\frac{1}{\varepsilon} \varepsilon t}(\cos t-\sin t)+O(\varepsilon)
$$ on the time scale $1 / \varepsilon$. (Check the assumptions of the statement in Problem 3!)

5. Consider the system

$$
\begin{gathered}
\varepsilon \dot{y}=z+g(\phi), \\
\varepsilon \dot{z}=-y, \\
\dot{\phi}=I, \\
\dot{I}=0,
\end{gathered}
$$

where $\phi \in \mathbb{T}$, where $\mathbb{T}=[0,2 \pi]$ with identification of the endpoints.
Show that the $y-z$ dynamics can be parameterized via $z=(\phi, I)$ provided the resonance condition

$$
I \neq \frac{1}{\varepsilon k}, \quad k \in \mathbb{Z}
$$

is satisfied.
Hint: Fix I, expand $g(\phi)$ and $z(\phi, I)$ as a Fourier series, and match coefficients.

