Ordinary Differential Equations

Midterm Exam

April 5, 2018

1. Consider the system

$$
\begin{gathered}
\dot{x}=-x+y^{2} \\
\dot{y}=-y^{3}+x^{2} .
\end{gathered}
$$

(a) Find all critical points and determine their linear stability.
(b) Clearly, the origin is a critical point where linear stability analysis is inconclusive. Show that the origin is an asymptotically stable equilibrium point.
Hint: Show that $V(x, y)=x^{2}(1+y)+y^{2}$ is a Lyapunov function in some neighborhood of the origin.
You may find the following elementary inequality useful:

$$
a b \leq \frac{\delta}{2} a^{2}+\frac{1}{2 \delta} b^{2}
$$

for all $a, b \in \mathbb{R}$ and $\delta>0$.
(c) Sketch the phase portrait.
2. Consider the n-dimensional linear system

$$
\dot{x}=A(t) x
$$

where $A(t)$ is T-periodic. Recall that the Floquet theorem states that a fundamental matrix solution to this equation can be written as

$$
\Phi(t)=P(t) \mathrm{e}^{B t}
$$

where $P(t)$ is a T-periodic and B a constant $n \times n$ matrix.
(a) Consider the case $n=1$. Determine B and give necessary and sufficient conditions so that every solution $x(t)$ remains bounded as $t \rightarrow \infty$.
Hint: Introduce the average

$$
\bar{A}=\frac{1}{T} \int_{0}^{T} A(s) \mathrm{d} s
$$

(b) Consider the case $n=2$ with

$$
A(t)=g(t)\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

where $g(t)$ is a T-periodic real-valued function. Determine B and give necessary and sufficient conditions so that every solution $x(t)$ remains bounded as $t \rightarrow \infty$.
3. Consider the system

$$
\begin{gather*}
\dot{x}=y \\
\dot{y}=-x+y\left(1-x^{2}-2 y^{2}\right) . \tag{10}
\end{gather*}
$$

Show that the system has at least one periodic orbit.
4. Consider an autonomous planar differential equation.
(a) Suppose a point x is not on a periodic orbit. Show that a period orbit cannot be at the same time the ω-limit set and the α-limit set of the orbit through x.
(b) Show that the region bounded by a periodic orbit must contain an equilibrium point.
Hint: Argue by contradiction and use part (a).
5. Suppose $x(t)$ is a solution to the n-dimensional differential equation

$$
\dot{x}=f(x)+\varepsilon g(x)
$$

where $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are smooth vector fields. Further, let $y(t)$ solve the equation

$$
\dot{y}=f(y)
$$

with $y(0)=x(0)$.
(a) Show that $x(t)-y(t)=O(\varepsilon)$ on the time scale 1, assuming that both solutions exist on this time scale.
(b) Suppose you know that the solution $y(t)$ is bounded (therefore exists) on some time interval $[0, T]$. What can you say about the time interval of existence for $x(t)$ as $\varepsilon \rightarrow 0$?

