Differential Equations

Homework 4

Due in class Tuesday, March 13, 2018

1. (From Verhulst, Exercise 4.8.) Consider the system

$$
\begin{aligned}
\dot{x} & =\frac{\partial E}{\partial y}+\lambda E \frac{\partial E}{\partial x} \\
\dot{y} & =-\frac{\partial E}{\partial x}+\lambda E \frac{\partial E}{\partial y}
\end{aligned}
$$

with $\lambda \in \mathbb{R}$ and

$$
E(x, y)=y^{2}-2 x^{2}+x^{4}
$$

(a) Put $\lambda=0$. Determine the critical points and their character by linear analysis. What happens in the nonlinear system? Sketch the phase plane.
(b) What happens to the critical points when $\lambda \neq 0$?
(c) Choose $\lambda<0$. Determine the ω-limit sets of the orbits starting at $\left(\frac{1}{2}, 0\right),\left(-\frac{1}{2}, 0\right)$, and $(1,2)$.
2. (From Verhulst, Exercise 6.4.) For the equation

$$
\dot{x}=A x+B(t) x,
$$

where A is a constant $n \times n$ matrix with all eigenvalues having strictly negative real part, and $B(t)$ is $n \times n$ matrix depending continuously on t. Show that there exists $\delta>0$ such that if $\|B(t)\| \leq \delta$ for $t \geq 0$, then 0 is asymptotically stable.
3. Let $J=\lambda I+N$ be a Jordan block matrix of dimension k and eigenvalue λ. (Thus, N is the nilpotent matrix with 1 on the superdiagonal and 0 everywhere else.)
Show that if f is an analytic function, $f(J)$ is well defined and

$$
f(J)=\sum_{i=0}^{k} \frac{f^{(i)}(\lambda)}{i!} N^{i} .
$$

4. Consider the differential equation

$$
\dot{x}=A(t) x
$$

with

$$
A(t)=S(t)^{-1} B S(t)
$$

where

$$
B=\left(\begin{array}{cc}
-1 & 0 \\
4 & -1
\end{array}\right) \quad \text { and } \quad S(t)=\left(\begin{array}{cc}
\cos (a t) & -\sin (a t) \\
\sin (a t) & \cos (a t)
\end{array}\right)
$$

(a) Show that, for any t, all eigenvalues of $A(t)$ have negative real part.
(b) Show, that for suitable choice of a, the differential equation has solutions with $\|x(t)\| \rightarrow \infty$ as $t \rightarrow \infty$.

