Differential Equations

Homework 5

Due in class Thursday, March 22, 2018

1. Consider the system

$$
\begin{aligned}
& \dot{x}=1+y-x^{2}-y^{2} \\
& \dot{y}=1-x-x^{2}-y^{2}
\end{aligned}
$$

(a) Determine the critical points and their character.
(b) Show that the flow generated by this equation is symmetric with respect to the line $x+y=0$.
(c) Find an explicit periodic solution $\phi(t)$

Hint: Write the equation in polar coordinates.
(d) Derive the linearization of the equation about the periodic solution $\phi(t)$.
(e) Determine both Floquet exponents of the linearized, time-periodic, system obtained in part (d).
(f) Sketch the phase portrait of the system.

Hint: Introduce new variables $u=x-y$ and $v=x+y$ that exploit the symmetry and find a first integral for the system in u and v coordinates (introduce $w=v^{2}$ and solve the equation for $\mathrm{d} w / \mathrm{d} w$ to obtain the first integral).
(g) Show that $\phi(t)$ is stable, but not asymptotically stable.
(h) Can you find a small perburbation to the system in the form

$$
\begin{aligned}
& \dot{x}=1+y-x^{2}-y^{2}+\varepsilon g(x, y) \\
& \dot{y}=1-x-x^{2}-y^{2}+\varepsilon h(x, y)
\end{aligned}
$$

which preserves the periodic orbit $\phi(t)$ and makes it asymptotically stable. Establish the asymptotic stability by computing the perturbed Floquet exponents.
2. (Verhulst, Exercise 8.4.) Consider the system

$$
\begin{gathered}
\dot{x}=2 y(z-1), \\
\dot{y}=-x(z-1), \\
\dot{z}=x y,
\end{gathered}
$$

(a) Show that the trivial solution is stable.
(b) Is it asymptotically stable?
3. (Verhulst, Exercise 8.5.) Determine the stablity of the trivial solution of the system

$$
\begin{gathered}
\dot{x}=2 x y+x^{3}, \\
\dot{y}=x^{2}-y^{5} .
\end{gathered}
$$

