Differential Equations

Homework 6

Due in class Tuesday, April 17, 2018

1. (Verhulst, Exercise 10.2.) Consider the mathematical pendulum

$$
\ddot{x}+\sin x=0
$$

with initial conditions $x(0)=a, \dot{x}(0)=0$.
(a) Setting $x=a y$, show that the system is equivalent to

$$
\ddot{y}+y=\frac{a^{2}}{6} y^{3}+O\left(a^{4}\right) .
$$

Thus, argue that the period of oscillations T is slowly changing with a.
(b) Use the Poincaré-Lindstedt method to show find

$$
T(a)=2 \pi\left(1+\frac{a^{2}}{16}+O\left(a^{4}\right)\right)
$$

Note: This problem is degenerate, i.e., the perturbation does not select a specific periodic orbit. Yet, you can write out the periodicity conditions, expand in powers of a, and solve them.
2. (Verhulst, Exercise 11.4.) A satellite moves in the outer atmosphere of a spherically symmetric, homogeneous planet. The (nondimensionalized) equations of motion read

$$
\ddot{\boldsymbol{r}}=-\frac{\boldsymbol{r}}{r^{3}}-\varepsilon \dot{\boldsymbol{r}}
$$

where $\boldsymbol{r}=(x, y, z)$ and $r=\|\boldsymbol{r}\|$.
(a) Show that for given initial conditions, the motion takes place in a plane through the origin (in physical space, not phase space!). Thus, in the following, you can take $z=0$ without loss of generality.
(b) Introduce polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ to find

$$
\begin{gathered}
\ddot{r}-r \dot{\theta}^{2}=-\frac{1}{r^{2}}-\varepsilon \dot{r}, \\
2 \dot{r} \dot{\theta}+r \ddot{\theta}=-\varepsilon r \dot{\theta} .
\end{gathered}
$$

(c) Integrate the second equation to find

$$
r^{2} \dot{\theta}=c \mathrm{e}^{-\varepsilon t}
$$

(The constant c is the initial angular momentum of the satellite.)
(d) Set $\rho=1 / r$ and use θ as a time-like variable. Show that this results in

$$
\begin{aligned}
& \frac{\mathrm{d}^{2} \rho}{\mathrm{~d} \theta^{2}}+\rho=u, \\
& \frac{\mathrm{~d} u}{\mathrm{~d} \theta}=2 \varepsilon \frac{u^{3 / 2}}{\rho^{2}}
\end{aligned}
$$

with

$$
u=\frac{1}{c^{2}} \mathrm{e}^{2 \varepsilon t}
$$

(e) Obtain a Lagrange standard form by writing

$$
\begin{aligned}
& \rho=u+a(\theta) \cos \theta+b(\theta) \sin \theta, \\
& \frac{\mathrm{d} \rho}{\mathrm{~d} \theta}=-a(\theta) \sin \theta+b(\theta) \cos \theta .
\end{aligned}
$$

(f) Apply averaging and give the approximations for $\rho(\theta)$ and $r(t)$ with an initially circular orbit where $\theta(0)=0, r(0)=c^{2}$, and $\dot{r}(0)=0$. Discuss the asymptotic validity of the approximation.

