Differential Equations

Homework 7

Due in class Thursday, May 3, 2018

1. Fill in the details of Verhulst, Example 13.9: Consider the augmented system

$$
\begin{gathered}
\dot{x}=\mu x-x^{3}+x y, \\
\dot{y}=-y+y^{2}-x^{2}, \\
\dot{\mu}=0
\end{gathered}
$$

Near the origin, the center manifold can be parameterized by

$$
y=h(x, \mu) .
$$

(a) Writing h as a power series in x and μ, show that

$$
\dot{u}=-x^{2}+\text { higher order terms } .
$$

(b) Show that the dynamics on the center manifold is given by

$$
\begin{gathered}
\dot{x}=\mu x-2 x^{3}+O\left(x^{3}\right), \\
\dot{\mu}=0 .
\end{gathered}
$$

(c) Determine the critical points of the reduced system and their stability as a function of μ.
2. (Verhulst, Exercise 13.3.) Find an approximation to the center manifold W_{c} near the origin for the system

$$
\begin{gathered}
\dot{x}=-y+x z-x^{4}, \\
\dot{y}=x+y z+x y z, \\
\dot{z}=-z-\left(x^{2}+y^{2}\right)+z^{2}+\sin x^{3} .
\end{gathered}
$$

Use the Center Manifold Theorem to determine whether the origin is a stable equilibrium point.
3. Consider the second order equation

$$
y^{\prime \prime}+y^{\prime}-\mu y+y^{2}=0
$$

with parameter μ.
(a) Write the equation as a first order system.
(b) Find the eigenvalues and eigenvectors of the system linearized about the origin.
(c) Explicitly transform the system into new coordinates u and v such that the linear part is diagonal.
Hint: You should find (with appropriate definitions of u and v), that

$$
\begin{gathered}
\dot{u}=\mu(u+v)-(u+v)^{2}, \\
\dot{v}=-v-\mu(u+v)+(u+v)^{2} .
\end{gathered}
$$

(d) As in Problem 1 above, augment the system by the parameter equation $\dot{\mu}$ and approximate the center manifold in the $u-v-\mu$ phase space near the origin.
(e) Show that the local dynamics on the center manifold is given by

$$
\dot{u}=\mu u-u^{2}+O\left(u^{3}\right) .
$$

(f) Find the critical points of the reduced dynamics and determine their stability; draw a bifurcation diagram in the μ - u plane.

