Applied Differential Equations and Modeling

Final Exam

May 20, 2019

1. Find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{10}\\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

2. Solve the initial value problem

$$
\begin{gather*}
y^{\prime}-y \sin t=\sin t, \\
y(0)=\mathrm{e}^{-1} . \tag{10}
\end{gather*}
$$

3. Consider the differential equation

$$
y^{\prime}=\mathrm{e}^{y} .
$$

(a) Solve the equation with initial condition $y(0)=a$.
(b) Determine how the interval of existence depends on the initial value a.
4. Consider the system of linear differential equations

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right) \boldsymbol{x}
$$

(a) Write out the general solution.
(b) Find the solution with

$$
\begin{equation*}
\boldsymbol{x}(0)=\binom{0}{1} . \tag{5+5}
\end{equation*}
$$

5. Consider the forced harmonic oscillator described by the differential equation

$$
y^{\prime \prime}+y=g .
$$

For $t<0$, let $g(t)=0$, so that $y(0)=0$ and $y^{\prime}(0)=0$. At $t=0$, the forcing is instantaneously increased to $g(t)=\frac{1}{2}$ and maintained at this level until, at the later time $t=c$, the forcing is instantaneously increased to its final value $g(t)=1$.
(a) Use the Laplace transform to find the solution $y(t)$ assuming $c>0$.
(b) How should you choose c so that the system is in a steady state (i.e., does not oscillate) for all $t>c$?
6. (a) Compute, without consulting the table of Laplace transforms, the Laplace transforms of the unit step function $u(t-c)$ and the delta-function $\delta(t-c)$ assuming $c>0$.
(b) In which sense can you say that $u^{\prime}=\delta$?
7. Consider a differential equation of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=g .
$$

Show that the initial condition $y^{\prime}(0)=1$ can be replaced by adding the unit impulse function $\delta(t)$ to the forcing function g and setting $y^{\prime}(0)=0$.
8. Consider the system of nonlinear differential equations

$$
\begin{gathered}
x^{\prime}=-y(1-x), \\
y^{\prime}=x-y^{2} .
\end{gathered}
$$

(a) Find all equilibrium points,
(b) for each equilibrium point, write out the linear system describing the evolution of small perturbations about the equilibrium points, compute its eigenvalues and, if real-valued, eigenvectors, and
(c) determine the stability of each equilibrium point and sketch the phase portrait to the extent possible.

