Applied Differential Equations and Modeling

Midterm Exam

April 3, 2019

1. Solve the initial value problem

$$
\begin{gather*}
t y^{\prime}+(t+1) y=2 t \mathrm{e}^{-t}, \\
y(1)=1 \tag{10}
\end{gather*}
$$

On which interval of time does the solution exist?
2. Consider the differential equation

$$
y^{\prime}+y^{3}=0 .
$$

(a) Solve the equation with initial condition $y(0)=a$.
(b) Determine how the interval of existence depends on the initial value a.
3. Consider the Gompertz growth model

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=r y \ln \frac{K}{y}
$$

where r and K are positive constants.
(a) Find the equilibrium points and classify each as stable or unstable. Sketch a few solution curves in the $t-y$ plane.
(b) Find the general solution to the differential equation and use the formula to confirm your conclusion from part (a).
(c) Give an interpretation of the constant K when the model is used to describe population growth.
4. Find the general solution to the linear system of equations

$$
\begin{gather*}
x_{1}+x_{2}+2 x_{3}=3, \\
x_{1}+2 x_{2}+x_{3}-x_{4}=4, \\
-x_{1}-3 x_{3}-x_{4}=-2 . \tag{10}
\end{gather*}
$$

5. Consider the system of linear differential equations

$$
\boldsymbol{x}^{\prime}=\left(\begin{array}{cc}
-2 & -2 \\
2 & 1
\end{array}\right) \boldsymbol{x}
$$

(a) Write out the general solution,
(b) Find the solution with

$$
\begin{equation*}
\boldsymbol{x}(0)=\binom{0}{1} . \tag{5+5}
\end{equation*}
$$

6. Consider the system of nonlinear differential equations

$$
\begin{gathered}
x^{\prime}=5 x-x y \\
y^{\prime}=x y-y
\end{gathered}
$$

(a) Find all equilibrium points,
(b) for each equilibrium point, write out the linear system describing the evolution of small perturbations about the equilibrium points, compute its eigenvalues and, if real-valued, eigenvectors, and
(c) determine the stability of each equilibrium point and sketch the phase portrait to the extent possible.

