Applied Differential Equations and Modeling

Homework 4
Due in class Tuesday, March 5, 2019

1. Given the matrices

$$
\boldsymbol{A}=\left(\begin{array}{cc}
2 & 2 \\
-1 & 3
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{ccc}
-1 & 1 & -2 \\
1 & 3 & 4
\end{array}\right), \quad \boldsymbol{x}=\binom{2}{3}, \quad \boldsymbol{y}=\left(\begin{array}{lll}
1 & 2 & -1
\end{array}\right)
$$

compute the following. Note that not all operations may be well-defined.
(a) $\boldsymbol{A}+\boldsymbol{B}$
(b) $\boldsymbol{A B}$
(c) $\boldsymbol{B} \boldsymbol{A}$
(d) $\boldsymbol{A} \boldsymbol{x}$
(e) $\boldsymbol{B} \boldsymbol{x}$
(f) $\boldsymbol{B}^{T} \boldsymbol{A}$
(g) $\boldsymbol{B}^{T} \boldsymbol{A}^{T}$
(h) $\boldsymbol{y} \boldsymbol{B}^{T}$
(i) $\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$
(j) $\boldsymbol{x} \boldsymbol{B}^{T} \boldsymbol{y}^{T}$
2. Demonstrate that

$$
\boldsymbol{A}=\left(\begin{array}{lll}
2 & 2 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad \boldsymbol{B}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
0 & -1 & 1 \\
1 & 0 & -2
\end{array}\right)
$$

are both nonsingular by showing that $\boldsymbol{A B}=\boldsymbol{I}$.
3. Prove the following:
(a) If \boldsymbol{A} is symmetric and nonsingular, then \boldsymbol{A}^{-1} is symmetric.
(b) If \boldsymbol{A} and \boldsymbol{B} are symmetric, then $\boldsymbol{A} \boldsymbol{B}$ is symmetric if and only if $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$. (We then say that " \boldsymbol{A} and \boldsymbol{B} commute".)
(c) $\boldsymbol{A} \boldsymbol{A}^{T}$ is symmetric.
(d) If \boldsymbol{A} is a square matrix, then $\boldsymbol{A}+\boldsymbol{A}^{T}$ is symmetric.
4. In each case, reduce \boldsymbol{A} to row echelon form and determine $\operatorname{rank} \boldsymbol{A}$.
(a) $\boldsymbol{A}=\left(\begin{array}{lll}1 & -3 & 4 \\ 2 & -6 & 8\end{array}\right)$
(b) $\boldsymbol{A}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
(c) $\boldsymbol{A}=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 3 \\ 1 & -5 & 3\end{array}\right)$
5. In each of the following, if there exist solutions of the homogeneous system of linear equations other than $\boldsymbol{x}=\mathbf{0}$, express the general solution as a linear combination of linearly independent column vectors.
(a) $x_{1}-x_{3}=0$

$$
3 x_{1}+x_{2}+x_{3}=0
$$

$$
-x_{1}+x_{2}+2 x_{3}=0
$$

(b) $x_{1}-2 x_{2}+x_{4}=0$
$2 x_{1}+x_{2}+x_{3}-x_{4}=0$
$x_{1}+2 x_{2}+x_{3}-2 x_{4}=0$
$3 x_{1}+3 x_{2}+2 x_{3}-3 x_{4}=0$
6. Determine whether the members of the given set of vectors are linearly independent. If they are linearly dependent, find a linear relation among them.
(a) $\boldsymbol{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
(b) $\boldsymbol{v}_{1}=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right), \quad \boldsymbol{v}_{2}=\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right), \quad \boldsymbol{v}_{3}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right), \quad \boldsymbol{v}_{4}=\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right)$

