Applied Differential Equations and Modeling

Homework 7

Due in class Tuesday, March 26, 2019

1. For each of the following systems of nonlinear differential equations,

- find all equilibrium points,
- for each equilibrium point, write out the linear system describing the evolution of small perturbations about the equilibrium points, compute its eigenvalues and, if applicable, eigenvectors, and
- sketch the phase portrait to the extent possible.
(a) $x^{\prime}=x-x y$
$y^{\prime}=y+2 x y$
(b) $x^{\prime}=2-x$
$y^{\prime}=y-x^{2}$
(c) $x^{\prime}=-(x-y)(1-x-y)$
$y^{\prime}=x(2+y)$

2. Consider a general homogeneous constant-coefficient second-order linear differential equation, i.e.,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

(a) Convert this equation into a system of linear first-order equations with matrix A.
(b) Show that

- when $b^{2}-4 a c>0$, the eigenvalues of A are real and distinct,
- when $b^{2}-4 a c=0, A$ has one eigenvalue of multiplicity 2 ,
- when $b^{2}-4 a c<0, A$ has a pair of complex conjugate eigenvalues.
(c) Find the general solution to the equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0
$$

in terms of real-valued functions.

