Applied Differential Equations and Modeling

Homework 9

Due in class Tuesday, April 23, 2019

1. Find the solution to the following initial value problems.
(a) $y^{\prime \prime}+4 y=t^{2}+3 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=2$
(b) $y^{\prime \prime}-2 y^{\prime}-3 y=3 t e^{2 t}, \quad y(0)=1, \quad y^{\prime}(0)=0$
2. Find the general solution to the initial value problem

$$
u^{\prime \prime}+\omega_{0}^{2} u=\cos \omega t
$$

for
(a) $\omega \neq \omega_{0}$,
(b) $\omega=\omega_{0}$.
3. Consider the equation of a damped-driven oscillator,

$$
y^{\prime \prime}+0.25 y^{\prime}+2 y=2 \cos \omega t
$$

(a) Find the gain function $|G(\mathrm{i} \omega)|$ for this problem.
(b) For which value of ω is the the gain maximal? Is this value smaller or larger than the frequency ω_{0} of the free, undamped equation?
(c) Solve the equation with initial values $y(0)=0$ and $y^{\prime}(0)=2$.
4. Consider a constant coefficient second order equation with inhomogeneous right hand side, i.e.

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{}
\end{equation*}
$$

Show that if the characteristic equation

$$
a \lambda^{2}+b \lambda+c=0
$$

has two roots with negative real part, then all solutions to the differential equation coincide asymptotically. In other words, if y_{1} and y_{2} are two solutions of $\left(^{*}\right)$, then

$$
\lim _{t \rightarrow \infty}\left(y_{1}(t)-y_{2}(t)\right)=0
$$

