Applied Differential Equations and Modeling

Homework 9

Due in class Tuesday, April 23, 2019

- 1. Find the solution to the following initial value problems.
 - (a) $y'' + 4y = t^2 + 3e^t$, y(0) = 0, y'(0) = 2(b) $y'' - 2y' - 3y = 3te^{2t}$, y(0) = 1, y'(0) = 0
- 2. Find the general solution to the initial value problem

$$u'' + \omega_0^2 u = \cos \omega t$$

for

- (a) $\omega \neq \omega_0$,
- (b) $\omega = \omega_0$.
- 3. Consider the equation of a damped-driven oscillator,

$$y'' + 0.25 \, y' + 2 \, y = 2 \, \cos \omega t \, .$$

- (a) Find the gain function $|G(i\omega)|$ for this problem.
- (b) For which value of ω is the the gain maximal? Is this value smaller or larger than the frequency ω_0 of the free, undamped equation?
- (c) Solve the equation with initial values y(0) = 0 and y'(0) = 2.
- 4. Consider a constant coefficient second order equation with inhomogeneous right hand side, i.e.

$$a y'' + b y' + c y = g(t).$$
 (*)

Show that if the characteristic equation

$$a\,\lambda^2 + b\,\lambda + c = 0$$

has two roots with negative real part, then all solutions to the differential equation coincide asymptotically. In other words, if y_1 and y_2 are two solutions of (*), then

$$\lim_{t \to \infty} (y_1(t) - y_2(t)) = 0.$$