Analysis II

Homework 10

Due in class Tuesday, April 30, 2019

1. Recall the implicit function theorem: Let $X \subset \mathbb{R}^{n}$ and $Y \in \mathbb{R}^{m}$ be open and $f \in$ $C^{1}\left(X \times Y, \mathbb{R}^{n}\right)$. Suppose there exist $a \in X$ and $b \in Y$ such that $f(a, b)=0$ and $D_{x} f(a, b)$ is invertible. Then there exist an open neighborhood A of a, an open neighborhood B of b, and a function $g \in C^{1}(B, A)$ such that

$$
f(g(y), y)=0
$$

for every $y \in B$, and

$$
D g(y)=-D_{x} f(g(y), y)^{-1} D_{y} f(g(y), y)
$$

(a) Argue that if $f \in C^{k}\left(X \times Y, \mathbb{R}^{n}\right)$ for $k \geq 1$, then $g \in C^{k}(B, A)$.

Hint: Refer to Cramer's rule for the inverse matrix.
(b) Show that if r is a simple root of the polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

then r is a smooth, i.e. C^{∞} function of the coefficients a_{0}, \ldots, a_{n}.
2. Consider the equation

$$
\sqrt{x^{2}+y^{2}+2 z^{2}}=\cos z
$$

near $(0,1,0)$. Can you solve for x in terms of y and z ? For z in terms of x and y ?

