Analysis II

Homework 11

Due in class Monday, May 6, 2019

1. Recall the Lagrange multiplier theorem: Let $E \subset \mathbb{R}^{d}$ be open, $h \in C^{1}(E, \mathbb{R})$, and $f \in C^{1}\left(E, \mathbb{R}^{n}\right)$ with $n<d$. Suppose that h has a local extremum subject to the constraint $f(x)=0$ at a point $a \in E$, and suppose that $f^{\prime}(a)$ has full rank. Then there exists a unique vector $\lambda \in \mathbb{R}^{n}$, the Lagrange multipliers, such that

$$
\nabla h(a)=\lambda^{T} \nabla f(a)
$$

(Here, we think of ∇f as a row vector and λ as a column vector.)
(a) Show that, under the assumptions of the Lagrange multiplier theorem, that if h has a local extremum subject to the constraint $f(x)=0$ at a point $a \in E$, then the function $H: E \times \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
H(x, \mu)=h(x)-\mu^{T} f(x),
$$

has a critical point (a, λ), where λ is the vector of Lagrange multipliers.
(b) Give an example which shows that the critical point of H in part (a) may not correspond to a local extremum of H.
Hint: Choose simple functions for $d=2$ and $n=1$, show that Hess H is indefinite, and appeal to the second derivative test.
2. Find the minimum and maximum values of

$$
h(x, y)=x y
$$

subject to the constraint

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

3. (a) Calculate the iterated integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{x}{\left(1+x^{2}\right)(1+x y)} \mathrm{d} x \mathrm{~d} y
$$

in two different ways, and prove thereby that

$$
\int_{0}^{1} \frac{\ln (1+x)}{1+x^{2}} \mathrm{~d} x=\frac{\pi \ln 2}{8}
$$

(b) Conclude that

$$
\int_{0}^{1} \frac{\arctan x}{1+x} \mathrm{~d} x=\frac{\pi \ln 2}{8}
$$

4. Consider the function

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

on the rectangle $I=[0,1] \times[\alpha, 1]$ for $\alpha \in(0,1)$.
(a) Show that

$$
\int_{0}^{1} f(x, y) \mathrm{d} x=-\frac{1}{1+y^{2}}
$$

for every fixed $y \in[\alpha, 1]$.
Hint: Note that

$$
\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{1}{x^{2}+y^{2}}+y \frac{\partial}{\partial y} \frac{1}{x^{2}+y^{2}} .
$$

(b) Note that the result from (a) continuously extends to the unit square $I=[0,1]^{2}$ and conclude that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} x \mathrm{~d} y=-\frac{\pi}{4}
$$

while

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) \mathrm{d} y \mathrm{~d} x=\frac{\pi}{4}
$$

(c) Does this contradict the theorem on the exchange of partial integration proved in class? Explain!

