Analysis II

Homework 12

Due in class Monday, May 13, 2019

1. (Kantorovitz, Exercise 4.2 .15 .1) Let D be the domain bounded by the parabola $x=y^{2}$ and the line $x=y$. Calculate the integral

$$
\int_{D} \sin \frac{\pi x}{y} \mathrm{~d} S
$$

2. (Kantorovitz, Exercise 4.2.15.2) Let D be the annulus bounded by circles centered at the origin with radii $0<a<b$. Compute

$$
\int_{D} \arctan \frac{y}{x} \mathrm{~d} S
$$

3. (Kantorovitz, Exercise 4.2.15.6) Find the area of the closed domain bounded by the two parabolas $y^{2}=a x$ and $y^{2}=b x(0<a<b)$, and the two hyperbolas $x y=\alpha$ and $x y=\beta(0<\alpha<\beta)$.
Hint: Use the map

$$
(x, y) \mapsto(u, v) \equiv\left(y^{2} / x, x y\right)
$$

4. Let D be a domain in \mathbb{R}^{n}. A function $f \in C^{2}(D)$ is called harmonic if $\Delta f=0$, where Δ is the Laplace operator defined via

$$
\Delta f=\nabla \cdot \nabla f=\partial_{1}^{2} f+\cdots+\partial_{n}^{2} f
$$

Show that a harmonic function has the mean value property

$$
f(x)=\frac{1}{S(\partial B(x, r))} \int_{\partial B(x, r)} f \mathrm{~d} S
$$

for every $x \in D$ and every $r>0$ sufficiently small such that $\partial B(x, r) \subset D$, where $B(x, r)$ denotes the ball centered at x with radius r and

$$
S(\partial B(x, r))=\int_{\partial B(x, r)} \mathrm{d} S
$$

is the $(n-1)$-dimensional content of $\partial B(x, r)$.
Hint: Proceed in the following steps:
(a) Define

$$
\phi(r)=\frac{\int_{\partial B(x, r)} f \mathrm{~d} S}{\int_{\partial B(x, r)} \mathrm{d} S}
$$

Now use a change of variables in numerator and denominator which takes $B(x, r)$ to $B(0,1)$.
(b) Differentiate with respect to r, move the differentiation under the integral, and apply the chain rule.
(c) Apply the divergence theorem and use that f is harmonic to conclude that $\phi^{\prime}(r)=$ 0.
(d) Finish the proof by considering the limit $r \rightarrow 0$.

