Analysis II

Homework 7

Due in class Monday, April 1, 2019

1. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and satisfies

$$f(x+y) = f(x) + f(y)$$

for all $x, y \in \mathbb{R}^n$. Show that f is linear, i.e., that

$$f(\lambda x) = \lambda f(x)$$

for all $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$.

2. Let V be a finite-dimensional normed vector space. Recall from class the general linear group d

 $GL(V) = \{A \in L(V) : A \text{ is invertible}\}\$

Show that the map inv: $GL(V) \to L(V)$ defined by

$$inv(A) = A^{-1}$$

is differentiable with

$$\operatorname{inv}'(A)B = -A^{-1}BA^{-1}$$

- 3. Let $E \subset \mathbb{R}^n$ be open and $f: E \to \mathbb{R}$ possesses partial derivatives $\partial_1 f, \ldots, \partial_n f$ that are bounded on E. Show that f is continuous on E.
- 4. Disconcerting Example 1. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{when } (x,y) \neq (0,0), \\ 0 & \text{when } (x,y) = (0,0). \end{cases}$$

- (a) Compute the directional derivative $D_{\boldsymbol{v}}f(0,0)$ for every $\boldsymbol{v} = (a,b) \in \mathbb{R}^2$. Is $\boldsymbol{v} \mapsto D_{\boldsymbol{v}}f(0,0)$ linear?
- (b) Show that f is not differentiable at the origin.

5. Disconcerting Example 2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^6 + y^2} & \text{when } (x,y) \neq (0,0), \\ 0 & \text{when } (x,y) = (0,0). \end{cases}$$

- (a) Compute the directional derivative $D_{\boldsymbol{v}}f(0,0)$ for every $\boldsymbol{v} = (a,b) \in \mathbb{R}^2$. Is $\boldsymbol{v} \mapsto D_{\boldsymbol{v}}f(0,0)$ linear?
- (b) Show that f is not continuous at the origin.
- 6. Disconcerting Example 3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} \sqrt{x^2 + y^2} & \text{when } (x,y) \neq (0,0) \,, \\ 0 & \text{when } (x,y) = (0,0) \,. \end{cases}$$

- (a) Compute the directional derivative $D_{\boldsymbol{v}}f(0,0)$ for every $\boldsymbol{v} = (a,b) \in \mathbb{R}^2$. Is $\boldsymbol{v} \mapsto D_{\boldsymbol{v}}f(0,0)$ linear?
- (b) Show that f is not differentiable at the origin.