Analysis II

Homework 7

Due in class Monday, April 1, 2019

1. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous and satisfies

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}^{n}$. Show that f is linear, i.e., that

$$
f(\lambda x)=\lambda f(x)
$$

for all $x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$.
2. Let V be a finite-dimensional normed vector space. Recall from class the general linear group

$$
\mathrm{GL}(V)=\{A \in L(V): A \text { is invertible }\}
$$

Show that the map inv: $\mathrm{GL}(V) \rightarrow L(V)$ defined by

$$
\operatorname{inv}(A)=A^{-1}
$$

is differentiable with

$$
\operatorname{inv}^{\prime}(A) B=-A^{-1} B A^{-1}
$$

3. Let $E \subset \mathbb{R}^{n}$ be open and $f: E \rightarrow \mathbb{R}$ possesses partial derivatives $\partial_{1} f, \ldots, \partial_{n} f$ that are bounded on E. Show that f is continuous on E.
4. Disconcerting Example 1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $D_{\boldsymbol{v}} f(0,0)$ for every $\boldsymbol{v}=(a, b) \in \mathbb{R}^{2}$. Is $\boldsymbol{v} \mapsto$ $D_{v} f(0,0)$ linear?
(b) Show that f is not differentiable at the origin.
5. Disconcerting Example 2. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{3} y}{x^{6}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $D_{\boldsymbol{v}} f(0,0)$ for every $\boldsymbol{v}=(a, b) \in \mathbb{R}^{2}$. Is $\boldsymbol{v} \mapsto$ $D_{v} f(0,0)$ linear?
(b) Show that f is not continuous at the origin.
6. Disconcerting Example 3. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} \sqrt{x^{2}+y^{2}} & \text { when }(x, y) \neq(0,0) \\ 0 & \text { when }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $D_{\boldsymbol{v}} f(0,0)$ for every $\boldsymbol{v}=(a, b) \in \mathbb{R}^{2}$. Is $\boldsymbol{v} \mapsto$ $D_{v} f(0,0)$ linear?
(b) Show that f is not differentiable at the origin.

