Analysis II

Homework 8

Due in class Monday, April 8, 2019

1. Let V and W be normed vector spaces and $f: V \rightarrow W$ be continuously differentiable and homogeneous of degree $\alpha>0$, i.e., for every $x \in V$ and $t>0$,

$$
f(t x)=t^{\alpha} f(x)
$$

Show that

$$
f^{\prime}(x) x=\alpha f(x)
$$

2. Let V be a normed vector space, $E \subset V$ open, and $f: E \rightarrow \mathbb{R}$ differentiable on E. Suppose that f has a local maximum at some point $x \in E$. Show that, for every $\boldsymbol{v} \in V$,

$$
D_{\boldsymbol{v}} f(x)=0
$$

Remark: If $V \in \mathbb{R}^{n}$, this implies that

$$
\nabla f(x) \equiv\left(\partial_{1} f(x), \ldots, \partial_{n} f(x)\right)=0
$$

3. Let X be a metric space and $A, B \subset X$. We say that A and B are separated if

$$
A \cap \bar{B}=\emptyset=\bar{A} \cap B
$$

Moreover, $C \subset X$ is said to be connected if it is not the union of two non-empty separated sets.
(a) Show that \bar{C} is connected if C is connected.
(b) Give an example that the interior of a connected set may not be connected.
4. Let X be a metric space and $a, b \in X$. We say that $\gamma:[0,1] \rightarrow X$ is a path from a to b if γ is continuous with $f(0)=a$ and $f(1)=b$.
(a) Let $E \subset X$ be open, fix $a \in E$, and define

$$
\Gamma=\{x \in E: \text { there exists a path from } a \text { to } x\}
$$

Show that Γ is open and closed in E.
Note: Here the notion of open and closed are relative to E, i.e., we consider E itself as a metric space with the metric inherited from X. E.g., if $X \in \mathbb{R}^{2}$ and E is the open unit disk centered at the origin, then

$$
F=\left\{x \in E: x_{1}, x_{2} \geq 0\right\}
$$

is closed in E, even though it is clearly not closed in X.
(b) We say that $E \subset X$ is path-connected if for every $a, b \in E$ there exists a path from a to b. Use part (a) to argue that for open sets, the notion of connectedness and path-connectedness is equivalent.
5. Let $E \subset \mathbb{R}^{n}$ be open and connecte and $f: E \rightarrow \mathbb{R}^{m}$ be differentiable. Show that if $f^{\prime}(x)=0$ for every $x \in E$, then f is constant in E.
6. Let V and W be normed vector spaces and let $A: V \rightarrow W$ and $B: W \rightarrow V$ be bounded linear operators. Furthermore, suppose that

$$
\|I-B A\|_{L(V)}<1
$$

(a) Show that $F: L(W, V) \rightarrow L(W, V)$, defined for every $X \in L(W, V)$ by

$$
F X=X+B-B A X
$$

is a contraction.
(b) Conclude that F has a fixed point X^{*}. State an upper bound for the operator norm $\left\|X^{*}\right\|_{L(W, V)}$.

