Analysis II

Final Exam

May 31, 2019

1. Are the following statements true or false? If true, give a brief justification (in case the result is a named theorem or otherwise known from class or from the homework, you may simply state this). If false, present a counter-example.
(a) An arbitrary union of closed sets is closed.
(b) An arbitrary union of open sets is open.
(c) A subset of a compact set is compact.
(d) A subset of \mathbb{R}^{n} is compact if it is bounded and closed.
(e) A convex set is connected.
(2 pts. each)
2. Are the following statements true or false? If true, give a brief justification (in case the result is a named theorem or otherwise known from class or from the homework, you may simply state this). If false, present a counter-example.
(a) Let f_{n} be a uniformly convergent sequence of continuous functions on $I=[a, b]$. Then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) \mathrm{d} x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) \mathrm{d} x
$$

(b) The statement from (a) with $I=[0, \infty)$.
(c) Here and in the following, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Suppose all partial derivatives of f exist at some point $x \in \mathbb{R}^{n}$. Then all directional derivatives exist at x.
(d) Suppose all directional derivatives exist at $x \in \mathbb{R}^{n}$. Then f is differentiable at x.
(e) Suppose f is twice continuously differentiable. Then the Hessian of f is symmetric.
3. Let X be the vector space of all bounded sequences $x=\left(x_{1}, x_{2}, \ldots\right)$ endowed with the norm

$$
\|x\|=\sup _{i \in \mathbb{N}}\left|x_{i}\right|
$$

(a) Show that $\|\cdot\|$ is indeed a norm.
(b) Show that the set

$$
B=\{x \in X:\|x\| \leq 1\}
$$

is bounded and closed.
(c) Show that B is not compact.
4. Find the power series expansion centered at 0 for the function

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}+4} \tag{5}
\end{equation*}
$$

and determine its radius of convergence.
5. Compute the derivative of the following maps.
(a) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
f(\boldsymbol{v})=\boldsymbol{v}^{T} A \boldsymbol{v}
$$

where A is a fixed $n \times n$ matrix, not necessarily symmetric.
(b) $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ defined by

$$
f(A)=\boldsymbol{v}^{T} A \boldsymbol{v}
$$

where $\boldsymbol{v} \in \mathbb{R}^{n}$ is fixed.
In each case, state the mapping properties (domain and range) of the derivative explicitly.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuously differentiable. Show that f cannot be injective.

Hint: Implicit function theorem.
7. Maximize

$$
f(x, y, z)=x y z
$$

subject to the constraint

$$
\begin{equation*}
g(x, y, z)=x y+x z+y z=1 . \tag{10}
\end{equation*}
$$

8. Let

$$
D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

denote the unit disk in \mathbb{R}^{2}. Compute the integral

$$
\begin{equation*}
\int_{D} \cos \left(x^{2}+y^{2}\right) \mathrm{d} x \tag{5}
\end{equation*}
$$

Hint: Polar coordinates.
9. Compute the flux

$$
\int_{\partial D} \boldsymbol{F} \cdot \boldsymbol{n} \mathrm{~d} S
$$

where \boldsymbol{n} is the outward unit normal and

$$
\boldsymbol{F}=\left(\begin{array}{c}
z \cos x \sin y \\
-z \cos x \sin y \\
\frac{1}{2} z^{2}
\end{array}\right)
$$

through the surface of the unit ball in \mathbb{R}^{3}.
Hint: Divergence theorem.

