
Analysis HW 11 Solutions

May 25, 2019

Problem 1

(a) Say λT = (λ1, ..., λn), ∇h(a) = (∂1h(a), ..., ∂dh(a)) and ∇f(a) = (∂jfi(a))i,j . So by Lagrange Multipliers

Theorem, ∂ih(a) =
n∑
j=1

λj∂ifj .

So, ∂H∂xi
(a, λ) = ∂ih(a)−λT∂if(a) = ∂ih(a)−

∑n
j=1 λj∂ifj = 0. Similarly, ∂H

∂µi
(a, λ) = λifi(a) = 0 as f(a) = 0.

Thus (a, λ) is critical point of H.

(b) Put h : R2 → R given by h(x, y) = x2 + y2 and f(x, y) = x. H(x, y, µ) = x2 + y2 − µx. Then the point at
which h assumes constrained extremum is (0, 0) where f ′(0, 0) = (1, 0)T which has maximal rank. And λ = 0
in this case, but

Hess H(0, 0, 0) =

 2 0 −1
0 2 0
−1 0 0

 ,

which has two positive and one negative eigenvalues (2, 1 +
√

2 > 0, 1−
√

2 < 0), so is indefinite.

(Note: For dimension greater than 2, determinant alone is note enough to conclude if a point is extremum or not.

Problem 2

Going by the notation of problem 1, h(x, y) = xy, f(x, y) = (x/a)2 + (y/a)2 − 1 and H(x, y, λ) = xy − µ(x2/a2 +
y2/a2 − 1). For simplicity I assume a > 0, b > 0. So for the constrained extremum, we set ∇H(x, y, µ) = 0 which
gives three equations in three variables:y = 2µx/a2, x = 2µy/b2 and x2/a2 + y2/b2 = 1. Solving the equations gives

x = ±a/
√

2, y = ±b/
√

2, and λ = ±ab/2.

This gives the maximum value as ab/2 when x and y have same sign and minimum value as −ab/2 when x and y
have opposite sign. To see they are really the extrema, note that the constraint is an ellipse which is compact. So,
the maxima and minima are assumed. And by the result of problem 1, the extrema have to be critical points of H
so our conclusion should be correct.

Problem 3

(a) We perform the computation in two different order. Then apply Fubini’s theorem. By partial fraction
decomposition, setting

x

(1 + xy)(1 + x2)
=
Ax+B

1 + x2
+

C

1 + xy
,

where A,B and C are independent of x (but might depend on y), we get A = 1
1+y2 , B = y

1+y2 , C = −y
1+y2 .

Then integrating with respect to x (from 0 to 1) leaves us with (each term is a standard tabulated integral)∫ 1

0

1

y2 + 1

(
πy

4
− log(y + 1) +

log 2

2

)
dy.

First and third terms can be integrated easily, which leaves us with

π

8
log 2− I +

π

8
=
π

4
log 2− I, (1)
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where I :=
1∫
0

log (1+y)
1+y2 . The standard indefinite integrals used in above computations are:

∫
2xdx

1 + x2
= log 1 + x2,

∫
1

1 + x2
dx = arctanx

and ∫
1

1 + ax
dx =

log 1 + ax

a
.

Now its turn to compute the integral in different order: first y then x. Integrating first w.r.t y leaves us with:∫ 1

0

log (1 + x)

1 + x2
= I. (2)

Note that the original integrand is bounded and continuous (so integrable) in [0, 1]× [0, 1], so Fubini theorem
applies, by which (1) = (2) which yields the required result indicated in the question.

(b) This is a straightforward application of integration by parts: note D(arctanx) = 1
1+x2 and D[log (1 + x)] =

1
1+x . So, ∫ 1

0

arctanx

1 + x
dx = arctanx log (1 + x)|1x=0 −

∫ 1

0

log (1 + x)

1 + x2
dx =

π

4
log 2− I.

Using the value of I evaluated from part a), we obtain the desired result.

Problem 4

(a)

f(x, y) =
x2 − y2

(x2 + y2)2
=

1

x2 + y2
− 2y2

(x2 + y2)2
.

So using the substitution x = y tan θ, we get:∫ 1

0

f(x, y)dx =

∫ tan−1(1/y)

0

(
1

y
− 2 cos2 θ

y

)
dθ.

Using the relation 2 cos2 θ = 1 + cos (2θ) and sin(2θ) = 2 sin θ cos θ, the integral evaluates to:

− sin

(
tan−1

(
1

y

))
cos

(
tan−1

(
1

y

))
= − 1

1 + y2
.

(b) Since 1 + y2 ≥ 1 for all y ∈ R, the integral we computed in a) extends continuously to all square I = [0, 1]2.
And from a), ∫ 1

0

∫ 1

0

f(x, y)dxdy =

∫ 1

0

− 1

1 + y2
dy = −π

4
.

On the other hand, ∫ 1

0

∫ 1

0

f(x, y)dydx = −
∫ 1

0

∫ 1

0

y2 − x2

(x2 + y2)2
dydx,

which, except for minus sign in front, is same as the integral we computed earlier with x and y swapped. So,
it will be negative of what we obtained earlier, that is:∫ 1

0

∫ 1

0

f(x, y)dydx =
π

4
.
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(c) No this does not contradict Fubini Theorem because f(x, y) is not integrable. If we switch to polar co-
ordinates, it immediately becomes apparent what the issue is: the integral becomes:∫

I

cos(2θ)

r
drdθ.

Here θ varies from 0 to π/2. Instead, if we restrict θ between 0 and π/4, the integrand is always non-negative
and the integral can be easily computed to be +∞ (restrict r between 0 and 1, then the region we obtain will
be subset of I ∩ {π/4 ≥ θ ≥ 0}). On the other hand, restricting θ between π/4 and π/2 yields integral as
−∞. Switching to polar coordinates is justified since the change of coordinates is a smooth diffeomorphism
on the interior of our domain I.

3


