1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
f(x, y)=\left(\mathrm{e}^{x} \cos y, \mathrm{e}^{x} \sin y\right)
$$

(a) Show that $f$ is locally invertible at every point $(x, y) \in \mathbb{R}^{2}$.
(b) Show that $f$ is not globally one-to-one. Why does this not contradict the inverse function theorem?

$$
(a) \quad D f=\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y  \tag{5+5}\\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)
$$

$$
\operatorname{det} D f=e^{2 x} \cos ^{2} y+e^{2 x} \sin ^{2} y=e^{2 x}>0
$$

Thus, If is invertible for cory $(x y) \in R^{2}$, which implies local innetitility of $f$ via the inverse function theorem.
(f) Clearly, $f$ is $2 \pi$-periodic w.r.t. $y$, so it cannot be $1-1$ on $\mathbb{R}^{2}$.

We note that the inverse function theorem only assents the existence of an open neighborhood about every point on which $f$ is invertible. It does not make any global clair.
2. Let $a, b \in \mathbb{R}^{n}$ fixed. Consider arbitrary smooth curves $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ that connect $a$ and $b$, i.e., satisfying $\gamma(0)=a$ and $\gamma(1)=b$. Recall that the length of the curve is given by

$$
L=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| \mathrm{d} t
$$

(a) Show that the derivative of $L$ at a particular curve $\gamma$ is the linear map acting on an abitrary smooth curve $\phi:[0,1] \rightarrow \mathbb{R}^{n}$ satisfying $\phi(0)=\phi(1)=0$

$$
\begin{equation*}
\mathrm{d} L(\gamma) \phi=\int_{D} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}\right) \cdot \phi \mathrm{d} t \tag{*}
\end{equation*}
$$

only
(b) Conclude from (a) that the length is minimized ${ }^{\text {on f }} \gamma \gamma$ is a straight line segment.
(a) Let $\gamma_{\varepsilon}$ denote a 1 -parameter family of curves connecting $a$ and $b$, and set

$$
\delta \gamma=\left.\frac{d}{d \varepsilon} \gamma_{\varepsilon}\right|_{\varepsilon=0}
$$

Note that $\delta \gamma(0)=0$ and $\delta y(1)=0$, as $X_{\varepsilon}(0)=a$ and $y_{\varepsilon}(1)=b \quad \forall \varepsilon$ Then $\delta L=\int_{0}^{1} \delta\left(\gamma^{\prime}(t) \cdot \gamma^{\prime}(t)\right)^{\frac{1}{2}} d t=\int_{0}^{1} \frac{1}{2}\left\|\gamma^{\prime}(t)\right\|^{-1} 2 \gamma^{\prime}(t) \cdot \delta \gamma^{\prime}(t) d t$

$$
=\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|} \cdot \underset{\substack{-=0}}{\left.\nabla \gamma(t)\right|_{t=0} ^{t=1}-\int_{0}^{1} \frac{d}{d t}\left(\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}\right) \cdot \delta \gamma(t) d t}
$$

Identifying $\Phi \equiv \delta \gamma$, we obtain (*)
(b) $L$ minimal implies that $d L(\gamma) \phi=0$ for alitrary moth $\phi$ with $\phi(\theta)=\phi(1)=1$ $\Rightarrow \frac{d}{d t}\left(\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}\right)=0$

$$
(* *)
$$

But $\frac{X^{\prime}}{\left\|X^{\prime}\right\|}$ is a unit vector tangent to $X$. ( $* *$ ) sais that it does not
change along the curve $X$. so ${ }^{3} X$ must be a straight line segment.
3. Minimize $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
f(x)=x+y+z
$$

subject to

$$
\begin{gather*}
x^{2}+y^{2}+z^{2}=1 \\
x-y-z=1 \tag{10}
\end{gather*}
$$

Use Lagrange multiphers:

$$
\begin{array}{ll}
\nabla f=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
g(x, y, z) \equiv x^{2}+y^{2}+z^{2}-1 & \Rightarrow \nabla g=\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right) \\
h(x, y, z)=x-y-z-1 & \Rightarrow \nabla h=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
\end{array}
$$

Necessary condition:

$$
\nabla f+\lambda \nabla_{g}+\mu \nabla h=0
$$

$$
\left.\Rightarrow \quad \begin{array}{l}
1+\lambda 2 x+\mu=0 \\
1+\lambda 2 y-\mu \mu=0 \\
1+\lambda 2 z-\mu=0
\end{array}\right\} \Rightarrow \lambda(y-z)=0 \quad \Rightarrow \lambda=0 \text { or } y=z
$$

$\lambda=0$ is inconsistent with the first equation, so we must have $y=z$.

The two constraints then read

$$
\begin{aligned}
& x^{2}=1-2 y^{2} \\
& x=1+2 y
\end{aligned}
$$

$$
x^{2}=(1+2 y)^{2}=1+4 y+4 y^{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1-2 y^{2}=1+4 y+4 y^{2} \\
& \Rightarrow \quad 0=4 y+6 y^{2} \\
& \Rightarrow \quad y=0 \quad \text { or } \quad 2+3 y=0 \Leftrightarrow y=-\frac{2}{3}
\end{aligned}
$$

This yields the two candidate points

$$
\begin{aligned}
& (1,0,0) \text { and }\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right) \\
& \text { where } f(1,0,0)=1 \text { and } f\left(-\frac{1}{3},-\frac{2}{3},-\frac{2}{3}\right)=-\frac{5}{3}
\end{aligned}
$$

Since the constraint set is compact, $f$ takes its minimum and maximum value on the constraint set, so the two candidate points must correspond to maximum and minimum, respectively.
4. Find the power series expansion for the function

$$
f(x)=\frac{\ln (1+x)}{x}
$$

about the point $x=0$ and determine its radius of convergence.

$$
\begin{aligned}
\ln (1+x) & =\int_{0}^{x} \\
& \underbrace{\frac{1}{1+t}} d t \\
& =1-t+t^{2}-t^{3}+\ldots \quad \text { (geometric saris) }
\end{aligned}
$$

The geometric series has radius of convergence, and within its radius of convergence, we can integrate term-by-term, so that

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots \quad \text { (this is the standard }
$$

$\Rightarrow$ The singularity at $x=0$ of $f$ is removable, and

$$
\begin{aligned}
f(x) & =1-\frac{1}{2} x+\frac{1}{3} x^{2}-\frac{1}{4} x^{3}+\ldots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} x^{2}
\end{aligned}
$$

5. Recall that the Fourier series of a $2 \pi$-periodic complex-valued continuous function is given by

$$
f(x)=\sum_{k=-\infty}^{\infty} f_{k} \mathrm{e}^{\mathrm{i} k x}
$$

where

$$
f_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} k x} f(x) \mathrm{d} x
$$

Show that for $2 \pi$-periodic complex-valued functions $f$ and $g$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f(x)} g(x) \mathrm{d} x=\sum_{k=-\infty}^{\infty} \overline{f_{k}} g_{k}
$$

(You may assume without further discussion that all integrals exist in a suitable sense.)

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f(x)} g(x) d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{k=-\infty}^{\infty} \overline{f_{k}} e^{-i k x} \sum_{j=-\infty}^{\infty} g_{j}^{\infty} e^{i j x} d x  \tag{5}\\
& \quad=\frac{1}{2 \pi} \sum_{k, j=-\infty}^{\infty} f_{k} g_{j}^{2 \pi} \int_{0}^{2} e^{i(j-k) x} \underbrace{2 \pi} \delta_{j k} \\
& \quad=\sum_{k=-\infty}^{\infty} \frac{f_{k}}{f_{k}} e_{k}
\end{align*}
$$

(This is known as the Passeval identity)
6. Convert to an integral in polar coordinates and evaluate:

$$
\begin{equation*}
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \mathrm{~d} y \mathrm{~d} x \tag{10}
\end{equation*}
$$




$$
=\frac{\pi}{2} \frac{1}{2} 2^{2}=\pi
$$

(area of quater-circle of radius 2.)
7. Determine whether or not

$$
F=\left(z / \cos ^{2} x, z, y+\tan x\right)
$$

is conservative on $\left(-\pi / 2, \frac{\pi}{2}\right) \times \mathbb{R}^{2}$. If $F$ is conservative, find a potential function for $F$.
$(5+5)$

$$
\nabla x F=\left(\begin{array}{c}
1-1 \\
\frac{1}{\cos ^{2} x}-\frac{\cos ^{2} x-\sin x(-\sin x)}{\cos ^{2} x} \\
0-0
\end{array}\right)=0
$$

$\Rightarrow F$ is locally conservative
As the domain is simply connected, this imphis that $\mathcal{F}$ is albally conservative.

By inspection, $\phi=y z+z \tan x+C$
is a potential function, as $\nabla \phi=\mp$.
8. Let

$$
F=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

be a vector field defined on $D=\mathbb{R}^{2} \backslash\{0\}$.
(a) Show that $F$ is locally conservative.
(b) Compute the line integral

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

(i) for any simple closed curve $\gamma$ encircling the origin, (ii) for any simple closed curve $\gamma$ not encircling the origin.
(c) Set $z=x+\mathrm{i} y$. Use the residue theorem to compute

$$
\int_{\gamma} \frac{1}{z} \mathrm{~d} z
$$

for any simple closed curve $\gamma$ encircling the origin in the complex plane, (ii) for any simple closed curve $\gamma$ not encircling the origin.
(d) State an identification between the real-variable computation from (b) and the complex-variable computation from (c).
(a) $\nabla^{+} \mp=-\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)+\frac{\partial}{\partial x}\left(\frac{x}{x+y}\right)$

$$
=\frac{1}{x^{2}+y^{2}}+y \frac{-2 y}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}+x \frac{-2 x}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

$\Rightarrow$ Firs locally conservative
(b) By (a), the integral is independent of continuous reformations \& $\gamma,>0$ :
(i) WLOG, let $\gamma$ be the unit circle parametrized as

$$
\gamma(\phi)=(\cos \phi, \sin \phi), \quad \phi \in[0,2 \pi]
$$

$$
\Rightarrow \int_{\gamma} F \cdot d s=\int_{0}^{2 \pi} \underbrace{(-\sin \phi, \cos \phi) \cdot \gamma^{\prime}(\phi)}_{=1} d \phi=2 \pi
$$

(ii) the line integral is $O$ as $\gamma$ can be contracted to a point.
(c) $\int_{\gamma} \frac{1}{z} d z=2 \pi i \operatorname{Res}\left(\frac{1}{z}, 0\right)=2 \pi i$ if $\gamma$ encircles the origin $\int_{\gamma} \frac{1}{z} d z=0$ otherwise (Cauchy's theorem)
(d) with $z=x+i y$ :

$$
\begin{aligned}
\frac{1}{z}=\frac{1}{x+i y} & =\frac{x-i y}{x^{2}+y^{2}}=i(u-i v) \quad \text { with }(u, v)=F \\
\Rightarrow \int_{\gamma} \frac{1}{z} d z & =\int_{\gamma} i(u-i v)(d x+i d y) \\
& =\int_{\gamma} v d x-u d y+i \underbrace{\int_{\gamma} u d x+v d y}_{\gamma} \\
& =i \int_{\gamma} F \cdot d s
\end{aligned}
$$

So the fins integral must be zero - compare (b) with (c)

This can also be verified by direct computation.
9. Let

$$
F(x, y, z)=(y, x z, 1)
$$

be a vector field in $\mathbb{R}^{3}$. Let $M$ be the upper hemisphere

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

Let $\gamma=\partial M$ be the unit circle in the $x y$-plane, oriented counter-clockwise when viewed from above.
(a) Compute the line integral

$$
\int_{\gamma} F \cdot \mathrm{~d} x
$$

directly.
(b) Compute the same line integral via Stokes' theorem as a surface integral over the capping surface $M$.

$$
\begin{aligned}
\left.(a) \quad \gamma^{\prime} \phi\right) & =(\cos \phi, \sin \phi, 0) \quad \phi \in[0,2 \pi] \\
X^{\prime}(\phi) & =(-\sin \phi, \cos \phi, 0) \\
\Rightarrow \int_{\gamma} F \cdot d x & =\int_{0}^{2 \pi}(\sin \phi, 0,1) \cdot(-\sin \phi, \cos \phi, 0) d \phi \\
& =-\int_{0}^{2 \pi} \underbrace{\sin ^{2} \phi} d \phi \\
=\frac{1}{2}\left(1-\frac{1}{2} 2 \pi\right. & =-\pi
\end{aligned}
$$

(b) Parameterize M via spherical polar coordinates:

$$
f(\phi, \theta)=(\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)
$$

12

$$
\phi \in[G, \alpha \pi],
$$

$$
\theta \in\left[0, \frac{\pi}{2}\right]
$$

Stokes' theorem

$$
\int_{X} F \cdot d s=\int_{M}(\nabla \times F) \cdot \hat{n} d \sigma=\int_{D}(\nabla \times F) \cdot n d(\phi, \theta)
$$

where $r=\frac{\partial f}{\partial \theta} \times \frac{\partial f}{\partial \phi}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\cos \phi \cos \theta \\
\sin \phi \cos \theta \\
-\sin \theta
\end{array}\right) \times\left(\begin{array}{cc}
-\sin \phi & \sin \theta \\
\cos \phi & \sin \theta \\
0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sin ^{2} \theta \cos \phi \\
\sin ^{2} \theta \sin \phi \\
\cos ^{2} \phi \cos \theta \sin \theta+\sin ^{2} \phi \cos \theta \sin \theta
\end{array}\right) \\
& =\cos \theta \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \times F=\left(\begin{array}{c}
-x \\
0 \\
z-1
\end{array}\right) \\
& \Rightarrow \int_{D}(\nabla \times 7) \cdot n d(\phi, \theta)=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \pi}\left(\cos \phi \sin ^{2} \theta \sin \phi+(\cos \theta-1) \cos \theta \sin \theta\right) d \phi d \theta \\
& \frac{\pi}{2} \quad \left\lvert\, \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d \theta\right. \\
& =\left.\sin ^{2} \theta\right|_{0} ^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta \\
& \Rightarrow \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d \theta=\frac{1}{2} \\
& =2 \pi\left(-\frac{1}{2}\right)=-\pi
\end{aligned}
$$

This is consistent with (a)

