Finite Mathematics

Homework 5

Due in class Monday, March 16, 2020

1. Recall that if the columns of an $m \times n$ matrix with $m \geq n$ (the matrix is taller than wide) are linearly independent, the least-square solution to the potentially over-determined linear system $A \boldsymbol{x}=\boldsymbol{b}$ is given by

$$
\boldsymbol{x}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}
$$

Show that this expression is equivalent to solving the linear system

$$
\begin{gathered}
A^{T} \boldsymbol{y}=0 \\
A \boldsymbol{x}+\boldsymbol{y}=\boldsymbol{b}
\end{gathered}
$$

2. Find the least square solution of the system

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right) \boldsymbol{x}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

3. Find the best straight line fit (in the least-square sense) to the points $(0,3),(1,3)$, and $(1,6)$.
4. Find the best plane fit (in the least-square sense) to the points $(1,1,1),(0,1,0),(1,0,2)$, and $(0,0,0)$.
Hint: Describe the plane by the equation $z=a+b x+c y$ and write out 4 equations in the 3 unknowns a, b, and c for the plane to pass through these points. Then find the least-square solution of this over-determined system of equations.
