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Abstract

Let V∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector
spaces V and V∗. The Mackey Lie algebra g = glM (V, V∗) corresponding to this pairing consists
of all endomorphisms ϕ of V for which the space V∗ is stable under the dual endomorphism
ϕ∗ : V ∗ → V ∗. We study the tensor Grothendieck category T generated by the g-modules V , V∗
and their algebraic duals V ∗ and V ∗∗ . The category T is an analogue of categories considered in
prior literature, the main difference being that the trivial module C is no longer injective in T.
We describe the injective hull I of C in T, and show that the category T is Koszul. In addition,
we prove that I is endowed with a natural structure of commutative algebra. We then define
another category IT of objects in T which are free as I-modules. Our main result is that the
category IT is also Koszul, and moreover that IT is universal among abelian C-linear tensor
categories generated by two objects X, Y with fixed subobjects X ′ ↪→ X, Y ′ ↪→ Y and a pairing
X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal
and symplectic analogues of the categories T and IT.
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1 Introduction

A tensor category for us is a symmetric, not necessarily rigid, C-linear monoidal abelian category.
In this paper we construct and study a tensor category which is universal as a tensor category
generated by two objects X, Y with fixed subobjects X ′ ↪→ X, Y ′ ↪→ Y and endowed with a
pairing X ⊗ Y → 1, the object 1 being the monoidal unit.

The simpler problem of constructing a universal tensor category generated just by two objects
X, Y endowed with pairing X ⊗ Y → 1 was solved several years ago, and explicit constructions of
such a category are given in [19] and [6]. The construction in [6] realizes this category as a category
Tsl(∞) of representations of the Lie algebra sl(∞), choosing X as the natural sl(∞)-module V , and
Y as its restricted dual V∗. Motivated mostly by a desire to understand better the representation
theory of the Lie algebra sl(∞), in [13] a larger category was constructed, denoted T̃ enssl(∞), which

contains also the algebraic dual modules V ∗ and V ∗∗ . It is clear that the category T̃ enssl(∞) has
a completely different flavor as its objects have uncountable length while Tsl(∞) is a finite-length
category.

However, in [14] the observation was made that the four representations V , V∗, V
∗, V ∗∗ generate

a finite-length tensor category T4
glM (V,V∗)

over the larger Lie algebra glM (V, V∗), see Section 2. We

call this latter Lie algebra a Mackey Lie algebra as its introduction has been inspired by G. Mackey’s
work [12]. The simple objects of T4

glM (V,V∗)
were determined in [3]. Furthermore, in [5] the tensor

category T3
glM (V,V∗)

, generated by V , V∗, and V ∗, was studied in detail. It was proved that T3
glM (V,V∗)

is Koszul, and it was established that T3
glM (V,V∗)

is universal as a tensor category generated by two

objects X, Y with a pairing X ⊗ Y → 1, such that X has a subobject X ′ ↪→ X. Later, a vast
generalization of the results of [5] was given in [4]: here a universal tensor category with two objects
X, Y , a paring X ⊗Y → 1 and an arbitrary (possibly transfinite) fixed filtration of X was realized
as category of representations of a certain large Lie algebra.

A main difference of the category T4
glM (V,V∗)

with previously studied categories is that, as we

show in the present paper, the injective hulls of simple objects are not objects of T4
glM (V,V∗)

but of

a colimit-completion of T4
glM (V,V∗)

which we denote simply by T. In particular, the trivial module

has an injective hull I in T of infinite Loewy length, i.e. with an infinite socle filtration. Moreover,
remarkably, I has the structure of a commutative algebra.

This leads us to the idea of considering the category IT of I-modules internal to T. The
morphisms in this new category are morphisms of glM (V, V∗)-modules as well as of I-modules. The
simple objects of IT are of the form I ⊗M where M is a simple module in T.

A culminating result of the present paper is that the category IT has the universality property
stated in the first paragraph of this introduction. The pairs X ′ ↪→ X and Y ′ ↪→ Y are realized
respectively as I ⊗ V∗ ⊂ I ⊗ V ∗ and I ⊗ V ⊂ I ⊗ V ∗∗ , I is the unity object in IT, and the tensor
product in IT is ⊗I .

Finally, in Section 4 we study analogues of the tensor categories To(∞) and Tsp(∞) considered in
[6] and [19]. Consider a tensor category generated by a single object X with a subobject X ′ ↪→ X
and a pairing X ⊗X → 1. After identifying V∗ and V , our construction of the category IT yields
a universal tensor category also in this setting. However, one can assume in addition that the
pairing X ⊗X → 1 is symmetric or antisymmetric, which leads to new universality problems for
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tensor categories. With this in mind, we introduce T2
o(V ) and T2

sp(V ) where o(V ) and sp(V ) are
respective orthogonal and symplectic Lie algebras of a countable-dimensional vector space V . In
analogy with our previous constructions, we then produce appropriate categories I′T2 for I ′ = Io(V )

and I ′ = Isp(V ) and prove that these latter categories are universal in the respective new settings.
Moreover, the categories Io(V )

T2 and Isp(V )
T2 are canonically equivalent as monoidal categories.
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2 Preliminaries

2.1 Notation

All vector spaces are defined over C (more generally, we could work over an algebraically closed field
of characteristic zero); similarly, all abelian categories and all functors between such are assumed
C-linear, and we refer to [17] for general background on abelian/additive categories.

By SkX and ΛkX we denote respectively the k-th symmetric and exterior powers of a vector
space X, and Sn stands for the symmetric group on n letters.

Once and for all we fix a non-degenerate pairing V∗ ⊗C V → C of countable-dimensional vector
spaces V and V∗. This pairing defines embeddings V∗ ⊂ V ∗, V ⊂ V ∗∗ , where V ∗ = HomC(V,C),
V ∗∗ = HomC(V∗,C). For any vector space M we set M∗ = HomC(M,C). We abbreviate ⊗C as ⊗.
By ⊗ we denote also tensor product in abstract tensor categories in the hope that this will cause
no confusion.

Except in Section 4, g will be the Mackey Lie algebra glM (V, V∗) of [14] associated to the pairing
V∗ ⊗ V → C. By definition,

glM (V, V∗) = {ϕ ∈ EndV | ϕ∗(V∗) ⊂ V∗},

where ϕ∗ : V ∗ → V ∗ is the operator dual to ϕ. We will describe g explicitly as a Lie algebra of
infinite matrices shortly.

We set
W∗ := V ∗/V∗, W := V ∗∗ /V and F := W∗ ⊗W.

There is an extension
0→ C→ Q→ F → 0 (2-1)

where Q is defined as the quotient of V ∗ ⊗ V ∗∗ by the sum of the kernels of the pairings

V ∗ ⊗ V → C and V∗ ⊗ V ∗∗ → C.

In Proposition 3.5 below we prove that the extension (2-1) is non-splitting.
We model the actions of g on various modules mentioned above as follows:

− V ∗∗ consists of infinite column vectors with entries indexed by N = {0, 1, · · · }.

− V ⊂ V ∗∗ consists of finite (or finitary) column vectors, i.e. those with at most finitely many
non-zero entries.
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− Dually, V ∗ consists of N-indexed infinite row vectors.

− The elements of V∗ ⊂ V ∗ are precisely the finite row vectors.

− g consists of N×N-matrices with finite rows and columns, acting on V ∗∗ by left multiplication.

− Similarly, g acts on V ∗ as minus right multiplication.

− V ∗⊗V ∗∗ consists of finite-rank N×N matrices with infinite rows and columns, acted upon by
g by commutation.

We will frequently make use of Schur functors Sλ attached to Young diagrams λ. Often we
write Xλ instead of SλX for a vector space X. Moreover, SkX = SρX, ΛkX = SγX, where ρ, γ
are respectively a row and a column with k boxes.

For Young diagrams λ, µ, ν and π we write

Lλ,µ,ν,π := W∗λ ⊗ Vµ,ν ⊗Wπ, (2-2)

Jλ,µ,ν,π := W∗λ ⊗ V ∗µ ⊗ Vν ⊗Wπ,

and similarly, for non-negative integers l,m, n, p we set

Ll,m,n,p := W⊗l∗ ⊗ Vm,n ⊗W⊗p,
Jl,m,n,p := W⊗l∗ ⊗ V ∗⊗m ⊗ V ∗⊗n∗ ⊗W⊗p, (2-3)

where Vm,n is the socle of V ∗⊗m ⊗ V ⊗n, i.e.

Vm,n =
⊕

|µ|=m,|ν|=n

V
mµ,ν
µ,ν

for appropriate multiplicities mµ,ν . Here |λ| denotes the degree (number of boxes) of a Young
diagram λ. Finally, for any subscript s of the form (•, •, •, •) we set

Is := I ⊗ Js, (2-4)

where I is the object constructed below in Section 3.

Definition 2.1 We refer to objects involving only the two outside diagrams λ and π as purely
thick and those involving only the two middle diagrams as thin. Everything else is mixed. �

It is essential to recall Corollary 4.3 in [5] which claims that Lλ,µ,ν,π is a simple g-module, and
implies that Ll,m,n,p is a semisimple g-module.

The following remark will be used implicitly and repeatedly: given a short exact sequence

0→ x′ → x→ x′′ → 0

in a tensor abelian category, the symmetric power Skx has a filtration

0 = F−1 ⊂ F0 ⊂ · · · ⊂ Fn = Skx

with isomorphisms
Fj/Fj−1

∼= Sk−jx′ ⊗ Sjx′′ for 0 ≤ j ≤ k.
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2.2 Plethysm

Given that F = W ⊗W∗ and we have to work with symmetric and exterior powers of F , we will
have to understand how such powers decompose as direct sums of objects of the form SλW ⊗SµW∗.
The result applies to a tensor product W ⊗W∗ in any C-linear tensor category, so we work in this
generality throughout the present subsection.

We call a partition λ special if it satisfies the condition: all hooks of λ whose corner lies on the
diagonal of λ have horizontal and vertical arms (not counting the corner) of length µi − 1 and µi,
respectively, where µ1 > µ2 > . . . > 0 is a partition. We now recall the following result.

Proposition 2.2 Let x and y be two objects in a C-linear tensor category. We have the following
decompositions:

(a) Sk(x ⊗ y) is the direct sum of all objects of the form Sλx ⊗ Sλy as λ ranges over all Young
diagrams of degree k.

(b) Λk(x ⊗ y) is the direct sum of all objects of the form Sλx ⊗ Sλ⊥y as λ ranges over all Young
diagrams of degree k, where λ⊥ denotes the conjugate partition.

(c) SkS2x is the direct sum of all Sλx for partitions λ of degree 2k with even parts , i.e. even
partitions.

(d) SkΛ2x is
⊕

even λ
|λ|=2k

Sλ⊥x.

(e) ΛkΛ2x is
⊕

special λ
|λ|=2k

Sλx.

(f) ΛkS2x is
⊕

special λ
|λ|=2k

Sλ⊥x.

Proof (a) and (b) are reformulations of the Cauchy identities in [18, (6.2.8)]. The other four points
paraphrase [11, Example I.8.6]. �

2.3 Ordered Grothendieck categories

We recall the following notion from [4, Definition 2.3].

Definition 2.3 Let (P,�) be a poset. An ordered Grothendieck category with underlying order
(P,�) is a Grothendieck category C together with objects Xs, s ∈ P so that the following conditions
hold.

(a) The objects Xs are semi-artinian, in the sense that all of their non-zero quotients have non-zero
socles.

(b) Every object in C is a subquotient of a direct sum of copies of various Xs.

(c) The simple subobjects in

Ss := {isomorphism classes of simples in socXs} (2-5)

are mutually non-isomorphic for distinct s and they exhaust the simples in C.

(d) Simple subquotients of Xs outside the socle socXs are in the socle of some Xt, t ≺ s.
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(e) Each Xs is a direct sum of objects with simple socle.

(f) Let t ≺ s. The maximal subobject Xs�t ⊂ Xs whose simple constituents belong to various Sr
for s � r 6� t is the common kernel of a family of morphisms Xs → Xt. �

Ordered Grothendieck categories are well behaved in a number of ways. For instance ([4,
Corollary 2.6]):

Proposition 2.4 The indecomposable injective objects in an ordered Grothendieck category C are,
up to isomorphism, precisely the indecomposable summands of the objects Xs in Definition 2.3. �

Recall ([5, §3.2] or [4, Definition 2.8]):

Definition 2.5 For two elements i ≺ j in P the defect d(i, j) is the supremum of the set of
non-negative integers q for which we can find a chain

i = i0 ≺ · · · ≺ iq = j.

We put also d(i, i) := 0. In the context of an ordered Grothendieck category as in Definition 2.3
we adopt the simplified notation d(S, T ) for d(s, t) when S ∈ Ss and T ∈ St. �

According to [5, Proposition 2.9] ext functors in an ordered Grothendieck category exhibit the
following “upper triangular” behavior.

Proposition 2.6 Let S ∈ Ss and T ∈ St be two simple objects in an ordered Grothendieck category.
If Extq(S, T ) 6= 0 then d(s, t) ≥ q. �

It is implicit in the statement that, in particular, we have s � t (see [5, Lemma 3.8]). One of
our goals will be to show that in the ordered Grothendieck category T introduced in Section 3.4
below, we actually have equality, and hence the category T is Koszul in the following sense.

Definition 2.7 An ordered Grothendieck category is Koszul if for every q ≥ 0 and every two simple
objects S ∈ Ss and T ∈ St the canonical Yoneda composition map⊕

Ext1(S,U1)⊗ Ext1(U1, U2)⊗ · · · ⊗ Ext1(Uq−1, T )→ Extq(S, T )

is surjective, where the sum ranges over all isomorphism classes of simples Ui. �

This mimics one of the characterizations of Koszul connected graded algebras, namely the
requirement that the graded ext algebra Ext∗(k, k) of the ground field k be generated in degree one
([16, §2.1]).

We introduce the following term to capture the desirable situation where defects precisely
measure non-vanishing exts.

Definition 2.8 An ordered Grothendieck category is sharp if it satisfies the conclusion of Propo-
sition 2.6 with equality rather than inequality. �

The relevance of the concept to the preceding discussion follows from

Theorem 2.9 Assume that C is an ordered Grothendieck category as in Definition 2.3, such that

− the terms of the socle filtration of each indecomposable injective object have finite length;

6



− C is sharp in the sense of Definition 2.8.

Then C is Koszul.

Proof Fix arbitrary simple objects S ∈ Ss, T ∈ St and a positive integer q ≥ 2. It will be enough
to show that the Yoneda composition⊕

simple U

Extq−1(S,U)⊗ Ext1(U, T )→ Extq(S, T )

is onto, since we can then proceed by induction on q.
Let

0→ T → IT → RT → 0

be the short exact sequence resulting from the embedding of T into its injective hull IT . This
sequence constitutes an element of Ext1(RT , T ), and Yoneda multiplication by that element induces
an isomorphism

Extq−1(S,RT ) ∼= Extq(S, T ).

If Extq(S, T ) = 0 there is nothing to prove. Otherwise, our sharpness assumption shows that
d(S, T ) = q. Now, the simples in the socle of RT are smaller than T (with respect to the ordering),
and those that appear as subquotients of RT := RT /soc RT are smaller again. It follows that

− if any simple subquotient U of RT were to satisfy d(S,U) = q − 1 we would have d(S, T ) ≥
(q − 1) + 2 = q + 1 contradicting d(S, T ) = q,

− and hence no such U can contribute to Extq−1(S,RT ).

In conclusion,
Extq−1(S, soc RT ) ∼= Extq−1(S,RT ). (2-6)

By sharpness again, (2-6) can be identified with⊕
U

Extq−1(S,U)

with U ranging over those simple summands of soc RT with d(S,U) = q − 1. It follows that every
non-zero element of Extq(S, T ) will be contained in the image of the Yoneda map⊕

U

Extq−1(S,U)⊗ Ext1(U, T )→ Extq(S, T )

where U ranges over all isomorphism classes of simple constituents of socRT . This finishes the
proof. �

2.4 Comodules

[20, Chapters I and II] will provide sufficient background on coalgebras and comodules. For a
coalgebra C over a ground field k we writeMC for its category of right comodules andMC

fin for its
category of finite-dimensional comodules. Since the Grothendieck categories we are interested in will
turn out to be of the form MC for coalgebras C, we record in this short section a characterization
of such categories from [21].

The following is a paraphrase of [21, Definition 4.1], adapted in the context of Grothendieck (as
opposed to plain abelian) categories.
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Definition 2.10 A Grothendieck category is locally finite if it has a set of finite-length generators.�

We then have the following recognition result for categories of comodules over fields ([21, The-
orem 5.1]):

Theorem 2.11 Let k be a field. A k-linear Grothendieck category is equivalent to MC for a k-
coalgebra C if and only if it is locally finite in the sense of Definition 2.10 and the endomorphism
ring of every simple object is finite dimensional over k.

Moreover, in this caseMC
fin can be identified with the subcategory of C consisting of finite-length

objects. �

The following notion (analogous to its dual- ring-theoretic version [1, discussion preceding The-
orem 2.1]) will also be relevant below.

Definition 2.12 A coalgebra C is left semiperfect if either of the following conditions, equivalent
by [9, Theorem 10], holds:

− every indecomposable injective right C-comodule is finite dimensional;

− every finite-dimensional left C-comodule has a projective cover. �

2.5 Tensor categories

The categories we are most interested in are typically monoidal. The latter, in full generality, are
covered for instance in [10, Chapter XI]. In the context of abelian categories, we briefly recall the
relevant definitions (see also [5, §3.6], where we make the same linguistic conventions).

Definition 2.13 A C-linear abelian category C is monoidal if its monoidal structure has the prop-
erty that x⊗ • and • ⊗ x are exact endofunctors for every object x.

If in addition the monoidal structure is symmetric, (C,⊗) is a tensor category.
A tensor functor between tensor categories is a C-linear symmetric monoidal functor. �

Note that this differs from conventions made elsewhere in the literature. In [7, §1.2], for instance,
the term ‘catégorie tensorielle’ implies rigidity.

We occasionally write (C,⊗,1) for a monoidal category to specify both the tensor product
bifunctor and the monoidal unit object 1.

3 The categories T and IT

3.1 Definition of the object I

For every nonnegative integer k we have a canonical embedding

SkQ ↪→ Sk+1Q (3-1)

obtained as the composition

SkQ ∼= SkQ⊗ C SkQ⊗Q Sk+1Q,
id⊗ι multiplication (3-2)
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where ι : C → Q is the embedding defining Q as an extension of F by C. This gives rise to an
exact sequence

0 SkQ Sk+1Q Sk+1F 0.
ι π (3-3)

Taking the colimit (or simply union)

I := lim−→
k

SkQ, (3-4)

we obtain a g-module that has an infinite ascending filtration representable schematically as

S2F

F

C

...

,

(3-5)

where the boxes indicate the layers (successive quotients) of the filtration.
The morphism

ψ : I → I/C→ F ⊗ I (3-6)

to be defined below will play a central role in the sequel; we will occasionally write ψ for the
resulting factorization I/C → F ⊗ I as well, leaving it to context to separate the two possible
meanings.

We obtain the morphism ψ as a colimit lim−→k
ψk where

ψk : SkQ→ (SkQ)/C→ F ⊗ Sk−1Q. (3-7)

The latter map is defined as follows. First, recall that the symmetric algebra

S•Q =
⊕
k≥0

SkQ

has a graded Hopf algebra structure [20, p.228] making the degree-one elements primitive, i.e. such
that the comultiplication

∆ : S•Q→ S•Q⊗ S•Q (3-8)

is the unique algebra map defined by

S•Q ⊃ Q 3 v 7→ v ⊗ 1⊕ 1⊗ v ∈ (Q⊗ C)⊕ (C⊗Q) ⊂ S•Q⊗ S•Q.

The comultiplication (3-8) is a morphism of g-modules. By definition, the map (3-7) is given by

SkQ

Q⊗ Sk−1Q

F ⊗ Sk−1Q

(SkQ)/C

π⊗id

ψk
(3-9)

where
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− the upper left-hand arrow is the Q⊗ Sk−1Q-component of the comultiplication

∆ : SkQ→
k⊕
i=0

SiQ⊗ Sk−iQ

described above.

− π is the epimorphism fitting in (3-3).

To make sense of lim−→k
ψk we would have to argue that the maps ψk are compatible with the

embeddings
ι : SkQ ↪→ Sk+1Q

in (3-3), i.e. that the diagrams

SkQ F ⊗ SkQ
Sk+1Q

F ⊗ Sk−1Q

ι ψk+1

ψk id⊗ι

commute for arbitrary k. This can be seen by direct examination, fixing a basis {vα} for Q with a
distinguished element v0 = 1 ∈ C ⊂ Q and noting that the upper left-hand map in (3-9) is defined
on monomials by

vα1 · · · vαk 7→
k∑
i=1

vαi ⊗ vα1 · · · vαi−1vαi+1 · · · vαk . (3-10)

Lemma 3.1 The kernel of ψ : I → F ⊗ I is precisely C.

Proof The kernel of the upper right-hand map in (3-9) is

C⊗ Sk−1Q ⊂ Q⊗ Sk−1Q, (3-11)

so we are in effect claiming that the preimage of (3-11) through the “partial comultiplication”

SkQ→ Q⊗ Sk−1Q (3-12)

is C ⊂ SkQ.
This is easily seen from the explicit description (3-10) of the comultiplication (3-12). �

3.2 Order

Following (or rather amplifying) [5], we order the quadruples (l,m, n, p) of non-negative integers
by setting

(l,m, n, p) � (l′,m′, n′, p′)

precisely if

l ≥ l′, m ≤ m′, p ≥ p′, n ≤ n′ (3-13)

l +m− n− p = l′ +m′ − n′ − p′.

For a quadruple s = (l,m, n, p) we define a family Σs of morphisms

Is = Js ⊗ I → Js′ ⊗ I = Is′

for various s′ ≺ s as follows:
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− first, those of the form θ ⊗ idI where θ ∈ Θs as in [5, §3.2];

− secondly, idJs ⊗ψ0 where
ψ0 : I → F ⊗ I (3-14)

is the morphism in (3-6).

The morphisms of the first type are such that their joint kernel is

Ll,m,n,p ⊗ I ⊆ Jl,m,n,p ⊗ I = Il,m,n,p.

On the other hand, the kernel of ψ0 is C ⊂ I and hence the joint kernel of Σs is

Ll,m,n,p ∼= Ll,m,n,p ⊗ C ⊂ Jl,m,n,p ⊗ I = Il,m,n,p. (3-15)

We now want to argue that (3-15) is precisely the inclusion of the socle:

Proposition 3.2 For every choice of non-negative integers l, m, n, and p, the object Ll,m,n,p is
the socle of Il,m,n,p via the inclusion (3-15).

This will require some preparation. First, we have the following remark, in the spirit of [5,
Lemma 3.1].

Lemma 3.3 Let G be a Lie algebra and I ⊆ G an ideal. Suppose U ⊆ U ′ is an essential inclusion
of G/I-modules and D is a G-module on which I acts densely. Then the inclusion

U ⊗D ⊆ U ′ ⊗D

is also essential.

Proof Let w1, . . . , wk be linearly independent vectors in D (k ≥ 1), and consider an element

f :=
k∑
i=1

ui ⊗ wi ∈ U ′ ⊗D

with non-zero ui. We claim that for every x ∈ G/I, there is x ∈ G so that x is the image of x and

xf =
∑
i

xui ⊗ wi.

To see this, first choose an arbitrary y ∈ G with image x in G/I, so that

yf =
∑
i

xui ⊗ wi +
∑
i

ui ⊗ ywi.

On the other hand, by the density assumption there is some a ∈ I satisfying awi = ywi for all i,
and we can simply set x = y − a.

Having settled the claim and fixed an element f as above, we can now proceed. The density of
U ⊆ U ′ means that we can find a in the universal enveloping algebra U(G/I) such that

− all aui belong to U , and

− at least one of them (auj , say) is non-zero.

11



Decomposing a as a polynomial in elements x ∈ G/I and lifting each of those to elements x ∈ G
as in the claim, we obtain an element a ∈ U(G) with

af =
∑
i

aui ⊗ wi ∈ U ⊗D.

Since wi are linearly independent and auj 6= 0, this is a non-zero element of U ⊗D, and the proof
is complete. �

The following result will require some additional conventions and elaboration. Recall that Q is
the quotient

V ∗ ⊗ V ∗∗ /(traceless tensors in V ∗ ⊗ V + V∗ ⊗ V ∗∗ ).

We noted above that we identify the space V ∗ ⊗ V ∗∗ with finite-rank infinite N × N-matrices, and
hence the quotient consists of equivalence classes of such matrices, where two are declared equivalent
whenever they differ by a traceless matrix (aij) such that aij = 0 for large enough i and j.

We fix a basis {eα}α∈A of Q as follows:

− e0 = 1 ∈ C;

− all other basis elements are classes of rank-1 matrices of the form v∗ ⊗ v for v∗ ∈ V ∗ and
v ∈ V ∗∗ .

Lemma 3.4 Let X ⊂ V ∗∗ − V and X∗ ∈ V ∗ − V∗ be finite subsets, linearly independent modulo V
and respectively V∗. Fix x0 ∈ X and x∗0 ∈ X∗. There is an element g ∈ g such that

− gx ∈ V for all x ∈ X,

− gx∗ ∈ V∗ for all x∗ ∈ X∗,

− g(x∗0 ⊗ x0) has non-zero trace,

− g(x∗ ⊗ x) has zero trace for all other choices of x ∈ X and x∗ ∈ X∗.

Proof The conclusion will follow from the remark that g acts densely on sets X ∪ X∗, i.e. that
given x ∈ X and x∗ ∈ X∗, the vectors gx ∈ V and gx∗ ∈ V∗ can be prescribed arbitrarily. Keeping
this in mind, we can then find g ∈ g such that

− gx = 0 for all x ∈ X,

− gx∗ = 0 for all x ∈ X∗ \ {x∗0},

− the inner product of gx∗0 with every x ∈ X \ {x0} vanishes,

− the inner product of gx∗0 with x0 does not vanish.

This choice will meet the requirements of the statement, hence the conclusion. �

Proposition 3.5 Let F ⊂W ∪W∗ be a finite set of vectors and

KF := AnngF ⊂ g

be the Lie subalgebra that annihilates all elements of F . Then for every positive integer k the
inclusion

C ⊂ SkQ

is essential over K = KF .

12



Proof We have to show that the K-submodule generated by any non-zero element of SkQ intersects
C. We fix a basis {eα}α∈A for Q containing e0 = 1 ∈ C, as in the discussion preceding the statement
of the present result. If we put a total order ≤ on the index set A, the elements

et = eα1 · · · eαk := σ(eα1 ⊗ · · · ⊗ eαk) (3-16)

for tuples
t = (α1, · · · , αk), α1 ≤ · · · ≤ αk ∈ A

form a basis of SkQ, where σ denotes the symmetrization operator on Q⊗k.
We assign 1 = e0 degree zero and every other eα degree 1, thus allowing us to define a degree

between 0 and k for each element (3-16) and by extension for each x ∈ SkQ, as the largest degree
of a basis element (3-16) appearing in a decomposition of x.

We can now prove the claim that
C ⊆ U(K)x

by induction on the degree of x. Since the base case deg(x) = 0 requires no proof, we focus on the
induction step.

Decompose

x =
∑

ctet, ct 6= 0, (3-17)

with deg(x) > 0. By Lemma 3.4 we can arrange for an element g ∈ K such that

− g annihilates all elements of F ⊂W ∪W∗,

− g sends one of the elements 1 6= eα appearing among the tensorands in (3-17) to a non-zero
scalar multiple of e0,

− g annihilates all other eα appearing in (3-17).

Clearly then
deg(gx) = deg(x)− 1,

and we can conclude the argument by using the induction hypothesis. �

Proof of Proposition 3.2 We know that Ll,m,n,p is semisimple by [5, Corollary 4.3], so it suffices
to show that (3-15) is essential.

Since W , W∗ and I are trivial as sl(∞)-modules and

Vm,n ⊂ V ∗⊗m ⊗ V ⊗n

is the socle over sl(∞), it follows by restricting to the latter subalgebra of g that the inclusion

Ll,m,n,p ⊗ I ⊂ Jl,m,n,p ⊗ I

is essential, reducing the goal to proving that so is the inclusion

Ll,m,n,p ⊂ Ll,m,n,p ⊗ I. (3-18)

We can simplify this further: recall that

Ll,m,n,p = W⊗l∗ ⊗ Vm,n ⊗W⊗p.

Now apply Lemma 3.3 in the following setup:

13



− G = g and I = sl(∞);

− the inclusion U ⊆ U ′ is
W⊗l∗ ⊗W⊗p ⊂W⊗l∗ ⊗W⊗p ⊗ I; (3-19)

− D is any of the simple direct summands Vµ,ν of Vm,n.

Lemma 3.3 then shows that the inclusion (3-18) is indeed essential, provided the inclusion (3-19)
is. In other words, it is enough to consider m = n = 0 in (3-18). Since I is the union of SkQ as
k →∞, it will furthermore be sufficient to argue that, for every l, p and k, the inclusion

W⊗l∗ ⊗W⊗p ⊂W⊗l∗ ⊗W⊗p ⊗ SkQ (3-20)

is essential.
We can now conclude via Proposition 3.5: an arbitrary non-zero element of the right-hand side

of (3-20) is of the form
r∑
i=1

ei ⊗ vi

where ei =
∑

j ai,j ⊗ bi,j are linearly independent elements of W⊗l∗ ⊗W⊗p and vi ∈ SkQ. Now
let F ⊂ W ∪W∗ be the finite set of vectors {ai,j , bi,j} and consider the annihilator KF of F , as in
Proposition 3.5.

The Lie algebra KF leaves the subspace(
r⊕
i=1

Cei

)
⊗ SkQ

invariant and its action makes that space isomorphic to (SkQ)⊕r. The conclusion thus follows from
Proposition 3.5. �

3.3 Simple objects and their endomorphism algebras

The main result of the present subsection is the following (presumably expected) claim.

Theorem 3.6 The simple objects Lλ,µ,ν,π are mutually non-isomorphic and have scalar endomor-
phism algebras.

The arguments, which require some groundwork, will be in the spirit of those used in the proof
of the analogous statement [5, Theorem 3.5]. First, recall [5, Lemma 3.1]:

Lemma 3.7 Let G be a Lie algebra and J ⊆ G be an ideal. Suppose U , U ′ are two G/J-modules
and D a G-module on which J acts densely and irreducibly with EndJ D = C. Then, the inclusion

HomG(U,U ′) 3 f 7→ f ⊗ id ∈ HomG(U ⊗D,U ′ ⊗D)

is an isomorphism. �

Proposition 3.8 For any two non-negative integers l, p and Young diagrams µ, ν the endomor-
phism algebra in T of the object W∗l ⊗ Vµ,ν ⊗ Wp is the group algebra C[Sl × Sp], with the two
symmetric-group factors acting on the two outer tensorands.
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Proof We apply Lemma 3.7 to the ideal

sl(∞) =: J ⊂ G := g,

with
U = U ′ = W∗l ⊗Wp and D = Vµ,ν .

The density of the action of sl(∞) on Vµ,ν and the isomorphism Endsl(∞) Vµ,ν ∼= C follow by realizing
the object Vµ,ν as a colimit of irreducible sln-modules, while establishing an isomorphism

Endg(W∗l ⊗Wp) ∼= C[Sl × Sp]

is entirely parallel to [5, Proposition 3.2], whose proof we do not reprise here. Lemma 3.7 then
implies the desired isomorphism

Endg(W∗l ⊗ Vµ,ν ⊗Wp) ∼= Endg(W∗l ⊗Wp) ∼= C[Sl × Sp]. �

Proof of Theorem 3.6 According to Proposition 3.8, the endomorphism algebra

Endg(W∗l ⊗ Vµ,ν ⊗Wp) ∼= C[Sl × Sp] ∼= C[Sl]⊗ C[Sp] (3-21)

is semisimple. Since the tensor products cλ ⊗ cπ ∈ C[Sl] ⊗ C[Sp] of Young projectors ranging
over diagrams with |λ| = l, |π| = p, form a complete system of equivalence classes of minimal
idempotents in (3-21) under inner conjugation, the semisimple object W∗l ⊗ Vµ,ν ⊗Wp has simple
constituents isomorphic to

(cλ ⊗ cπ) (W∗l ⊗ Vµ,ν ⊗Wp) ∼= Lλ,µ,ν,π,

with Lλ,µ,ν,π not isomorphic to Lλ′,µ,ν,π′ for distinct pairs (λ, π) 6= (λ′, π′) because

cλ ⊗ cπ is not inner-conjugate to cλ′ ⊗ cπ′ .

Furthermore, using Proposition 3.8, we calculate

Endg Lλ,µ,ν,π ∼= Endg ((cλ ⊗ cπ) (W∗l ⊗ Vµ,ν ⊗Wp))
∼= (cλ ⊗ cπ) Endg (W∗l ⊗ Vµ,ν ⊗Wp) (cλ ⊗ cπ)
∼= (cλ ⊗ cπ)C[Sl × Sp](cλ ⊗ cπ).

Since (cλ⊗ cπ)C[Sl×Sp] = X is a simple C[Sl×Sp]-module, we have (cλ⊗ cπ)C[Sl×Sp](cλ⊗ cπ) =
EndC[Sl×Sp]X = C, and the statement is proved.

3.4 The category T

Definition 3.9 The category T is the smallest full tensor Grothendieck subcategory of the category

gMod of g-modules, closed under taking subquotients, and containing

− the objects V ∗ and V ∗∗ (and hence also Js of (2-3) for quadruples s = (l,m, n, p));

− the object I of (3-4). �

The indices s = (l,m, n, p) form a poset (P,�) under the ordering introduced in §3.2. Keeping
that in mind, we have
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Proposition 3.10 T is an ordered Grothendieck category in the sense of Definition 2.3.

Proof We have to check the conditions listed in Definition 2.3. Here, the objects Xs will be the
objects Is from (2-4) for s = (l,m, n, p).

Condition (a). This follows from the fact that all Is have countable filtrations whose subquo-
tients are simple objects of the form Lλ,µ,ν,π as in (2-2). The latter is clear as the objects Js have
finite length and I has the filtration (3-4).

Condition (b). This holds essentially by construction.
Condition (c) is a consequence of [5, Proposition 4.4].
Condition (d). Once more, we filter Is = Js ⊗ I by first refining the socle filtration maximally

of Js and then tensor by some maximal refinement of the filtration (3-4).
The successive subquotients

Sk+1Q/SkQ ∼= Sk+1F = Sk+1(W ⊗W∗)

of (3-4) can be decomposed as sums of objects of the form Wλ⊗W∗λ by part (a) of Proposition 2.2.
Hence, tensoring a simple subquotient S of Js for some s = (l,m, n, p) by such an object has the
effect of increasing l and p by the same amount, thus resulting in some t ≺ s according to our
ordering (3-13).

It thus remains to argue for simple subquotients of

Js = Jl,m,n,p = W⊗l∗ ⊗ V ∗⊗m ⊗ V ∗⊗n∗ ⊗W⊗p

instead. In this case though the filtration of Js is obtained either by surjecting one of the tensorands
V ∗ onto W∗ = V ∗/V∗ or similarly, one of the tensorands V ∗∗ onto W , or by evaluating some
V ∗(respectively, V ∗∗ ) against some V (respectively, V∗).

All of these procedures map into Jt for t ≺ s, hence the conclusion.
Condition (e). Indeed, for s = (l,m, n, p) the object Is decomposes as

Is =
⊕
λ,µ,ν,π

Iλ,µ,ν,π

where the sum ranges over |λ| = l, |µ| = m, etc. The summands have simple respective socles
Lλ,µ,ν,π by Proposition 3.2.

Condition (f). The morphisms Is → It will be compositions of the obvious ones:

− projecting one of the tensorands V ∗ of Is = Js ⊗ I onto W∗;

− the dual analogue, V ∗∗ →W ;

− the surjection defining Q,
V ∗ ⊗ V ∗∗ → Q ⊂ I; (3-22)

− applying the morphism I → F ⊗ I in (3-14) to the tensorand I of Is.

The verification that the joint kernel of these maps is as claimed is routine. �

In particular, [4, Proposition 2.5] and Proposition 3.2 together prove

Theorem 3.11 For every quadruple (λ, µ, ν, π) of Young diagrams, Iλ,µ,ν,π is an injective hull in
T of Lλ,µ,ν,π.
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We record the following observation.

Lemma 3.12 Let i = (l,m, n, p) and i′ = (l′,m′, n′, p′) be two elements of the poset described in
(3-13). Then i � i′ implies

d(i, i′) = l − l′ + n′ − n.

Remark 3.13 The category T is symmetric with respect to the simultaneous interchange V ↔ V∗,
V ∗ ↔ V ∗∗ . Numerically, this corresponds to l↔ p and n↔ m. Lemma 3.12 is compatible with this
transformation: according to the last condition in (3-13) we have

l − l′ + n′ − n = p− p′ +m′ −m,

so we could have substituted p− p′ +m′ −m for l − l′ + n′ − n in Lemma 3.12. �

3.5 Injective resolutions

We will now show that C admits an injective resolution in T

0→ C→ I0 → I1 → · · · (3-23)

with
Ij ∼= ΛjF ⊗ I.

We will also see that Ij/Im(Ij−1) admits an ascending filtration with layers

S(3,1,··· ,1)F

S(2,1,··· ,1)F

S(1,1,··· ,1)F

...

where each diagram has j + 1 rows.
To streamline the notation, for such Young diagrams we denote by (l, j × 1) the diagram with

a row of length l and j single-box rows.
To define the maps

ψj : ΛjF ⊗ I → Λj+1F ⊗ I (3-24)

we mimic the procedure used in the definition of (3-14). In fact, that notation will be compatible
with (3-24), in that we will recover that earlier map by setting j = 0 in the latter. As before, (3-24)
will be a colimit as k →∞ of maps

ψkj : ΛjF ⊗ SkQ→ Λj+1F ⊗ Sk−1Q. (3-25)

The analogue of diagram (3-9) in this context is

ΛjF ⊗ SkQ

ΛjF ⊗Q⊗ Sk−1Q ΛjF ⊗ F ⊗ Sk−1Q

Λj+1F ⊗ Sk−1Q

ψkj

(3-26)

where
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− the upper left-hand map is idΛjF ⊗∆ with

∆ : SkQ→ Q⊗ Sk−1Q,

the partial comultiplication also appearing in (3-9);

− the upper middle map is id⊗π ⊗ id, with π : Q → F the canonical surjection (again as in
(3-9));

− the upper right-hand map is the multiplication

ΛjF ⊗ F → Λj+1F

in the exterior algebra Λ•F , tensored with the identity on Sk−1Q.

To show that the maps (3-24) fit into a resolution (3-23), we begin with the following simple
observation.

Lemma 3.14 Let j, k be two positive integers and X be a vector space of dimension larger than
j + 1. The map

ΛjX ⊗ SkX

ΛjX ⊗X ⊗ Sk−1X

Λj+1X ⊗ Sk−1X

id
ΛjX

⊗∆ mult⊗id
Sk−1X

(3-27)

with ∆ : SkX → X ⊗ Sk−1X defined as in (3-10) annihilates the direct summand S(k+1,(j−1)×1)X

of ΛjX ⊗ SkX and maps the complementary summand S(k,j×1)X of ΛjX ⊗ SkX isomorphically

onto the corresponding summand of the codomain Λj+1X ⊗ Sk−1X.

Proof That the domain and codomain decompose as

ΛjX ⊗ SkX ∼= S(k+1,(j−1)×1)X ⊕ S(k,j×1)X

and
Λj+1X ⊗ Sk−1X ∼= S(k,j×1)X ⊕ S(k−1,(j+1)×1)X

respectively, follows from the Littlewood-Richardson rule [8, Appendix A, (A.8)]. The claim can
be checked on finite-dimensional vector spaces first, where all four direct summands are irreducible
representations of the algebraic group GL(X), then passing to arbitrary X by taking a colimit. �

Now consider one of the objects ΛjF ⊗ I, j ≥ 0 under discussion. Since I has the filtration
(3-5), the object ΛjF ⊗ I has a filtration by the subobjects ΛjF ⊗SkQ, with consecutive quotients
ΛjF ⊗ SkF . Moreover, these quotients are decomposed as

ΛjF ⊗ SkF ∼= S(k+1,(j−1)×1)F ⊕ S(k,j×1)F for j, k > 0

SkF ∼= S(k)F for j = 0, k > 0 (3-28)

ΛjF ∼= S(1,...,1)F for k = 0.

Moreover, these decompositions are canonical, i.e. the summands are unique.
We write

Kj := ker
(
ψj : ΛjF ⊗ I → Λj+1F ⊗ I

)
(3-29)
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for the kernel of the map (3-24) and

Kk
j := Kj ∩

(
ΛjF ⊗ SkQ

)
= ker

(
ψj : ΛjF ⊗ SkQ→ Λj+1F ⊗ Sk−1Q

)
;

by convention, we set K−1
j = {0}. We now have

Lemma 3.15 For each k ≥ 0 the quotient

Kk
j /K

k−1
j ⊂ ΛjF ⊗

(
SkQ/Sk−1Q

)
∼= ΛjF ⊗ SkF (3-30)

is the j-row summand of ΛjF ⊗ SkF .

Proof The map ψj respects the filtrations of its domain and codomain, by

ΛjF ⊗ SkQ and Λj+1F ⊗ Sk−1Q (3-31)

respectively, and the associated graded map gr ψj , in degree k, is precisely (3-27) with X = F . By
Lemma 3.14 this means that the degree-k kernel of gr ψj is the j-row summand of ΛjF ⊗ SkF .
This verifies the statement at the associated-graded level.

To conclude, it will suffice to construct gradings on the domain and codomain of ψj , compatible
with ψj , that give back the filtrations by (3-31). This would then prove that the filtered map ψj
arises from a grading, and hence that its kernel is the direct sum of the kernels of its homogeneous
components.

We construct the requisite gradings as follows: as in the discussion preceding Lemma 3.1, we
fix a basis {vα} for Q with v0 = 1 ∈ C ⊂ Q, and assign

deg vα =

{
0 for α = 0

1 otherwise.

One checks easily that ψj preserves degrees, finishing the proof as described above. �

We can now finally complete the discussion on the injective resolution (3-23).

Theorem 3.16 The morphisms (3-24) fit into an exact sequence (3-23).

Proof The maps ψj fit into a sequence

0→ C→ I
ψ0−→ F ⊗ I ψ1−→ Λ2F ⊗ I ψ2−→ · · · (3-32)

(not yet known to be exact) of filtered vector spaces. Lemma 3.14 applied to X = F shows that
the associated graded sequence is exact, and the conclusion follows from the fact that, as seen in
the proof of Lemma 3.15, the filtrations on the terms of (3-32) arise from gradings compatible with
the maps ψj . �

Corollary 3.17 For a simple object X of T we have

ExtjT(X,C) =

{
0 if X 6' Lλ,∅,∅,λ⊥ for λ with |λ| = j

C if X ' Lλ,∅,∅,λ⊥ for λ with |λ| = j.
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Proof The statement follows from the existence of the injective resolution (3-23) of the trivial
object C, since by Theorem 3.11

socIj = soc(ΛjF ⊗ I) = ΛjF = Λj(W∗ ⊗W ),

which in turn, by Proposition 2.2, (b), decomposes as⊕
|λ|=j

W∗λ ⊗Wλ⊥ . �

3.6 Koszulity

We will eventually show that the category T is Koszul. To that end, we first need to strengthen
Proposition 2.6 to an equality:

Theorem 3.18 The Grothendieck category T is sharp in the sense of Definition 2.8: for any two
simples S, T ∈ T we have

Extq(S, T ) 6= 0 ⇒ d(s, t) = q.

We do this in stages, considering the following particular case first.

Proposition 3.19 Theorem 3.18 holds when T is purely thick.

Proof Let T ∈ St. We have to argue that there is some injective resolution

0→ T → K0 → K1 → · · ·

so that the socle of Kq is a sum of simple objects S with d(S, T ) = q. This follows from Corol-
lary 3.17 for the trivial object T = C and in general for purely thick T from Theorem 3.11, which
implies that we can obtain an injective resolution for T by simply tensoring (3-23) with T . �

In order to push past purely thick objects we need a version of [5, Lemma 3.13], requiring
some notation: for a quadruple (λ, µ, ν, π) we write L+`

λ,µ,ν,π for the direct sum of all Lλ,µ′,ν,π with
µ′ obtained by adding a box to µ. Here ` stands for left, and we have a similarly defined object
L+r
λ,µ,ν,π (for right) obtained by enlarging ν instead.

Lemma 3.20 Consider a simple object Lλ,µ,ν,π.

(a) We have an exact sequence

0→ L+`
λ,µ,ν,π → V ∗ ⊗ Lλ,µ,ν,π → H → 0 (3-33)

where H is a sum of simple objects Lλ′,µ,ν,π with |λ′| = |λ|+ 1 and Lλ,µ,ν′,π with |ν ′| = |ν| − 1.

(b) Tensoring Lλ,µ,ν,π with V ∗∗ produces a similar exact sequence, containing L+r
λ,µ,ν,π rather than

L+`
λ,µ,ν,π.

Proof We focus on (a), the other half being entirely analogous.
The proof follows the same line of reasoning as that of [5, Lemma 3.13]. We first tensor the

extension
0→ V∗ → V ∗ →W∗ → 0
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with Lλ,µ,ν,π to obtain a sequence (3-33) with an as yet unidentified H, itself fitting into an extension

0→ H̃ → H →W∗ ⊗ Lλ,µ,ν,π → 0, (3-34)

with H̃ being a direct sum of simples obtained by evaluating one tensorand V∗ against the ν
component of Lλ,µ,ν,π. It follows that H̃ is a direct sum of simple objects Lλ,µ,ν′,π with |ν ′| = |ν|−1,
and the splitting of (3-34) follows from Proposition 2.6 and the observation that the indices of simple
direct summands Lλ′,µ,ν,π of W∗ ⊗ Lλ,µ,ν,π and Lλ,µ,ν′,π of H̃ are not comparable with respect to
the partial order (3-13). �

Proof of Theorem 3.18 This too presents no substantial difficulties beyond those encountered
in [5, Theorem 3.11]. Setting s =: (λ, µ, ν, π) and t =: (λ′, µ′, ν ′, π′), the argument proceeds by
induction on q+ |µ′|+ |ν ′|. The base case follows from Proposition 3.19 for empty diagrams µ′ and
ν ′, and trivially for q = 0.

If µ′ and ν ′ are empty we can fall back on Proposition 3.19. Otherwise, suppose for instance
that µ′ is non-empty. We can then embed T as a direct summand in L+`

λ′,β,ν′,π′ for |β| = |µ′| − 1.
The assumed non-vanishing of Extq(S, T ) and the long exact ext sequence applied to the extension

0→ L+`
λ′,β,ν′,π′ → V ∗ ⊗ Lλ′,β,ν′,π′ → H ′ → 0

provided by Lemma 3.20 forces us into one of two cases:

1: Extq−1(S,H ′) 6= 0. By the induction hypothesis we have d(S,U) = q − 1 for some simple
direct summand U of H ′, and the conclusion follows from this and the fact that d(U, T ) = 1 for
all such U (by the description of H ′ in Lemma 3.20 and the formula for the defect provided by
Lemma 3.12).

2: Extq(S, V ∗ ⊗ Lλ′,β,ν′,π′) 6= 0. This means that S is a direct summand of the socle of Zq for
any injective resolution

0→ V ∗ ⊗ Lλ′,β,ν′,π′ → Z0 → Z1 · · · . (3-35)

By induction we know that the socle of the qth term of an injective resolution

0→ Lλ′,β,ν′,π′ → Y0 → Y1 · · · (3-36)

consists of simples U with d(U,Lλ′,β,ν′,π′) = q. Now note that an injective resolution (3-35) can
be obtained by tensoring (3-36) with V ∗. The simple direct summands of the socle of V ∗ ⊗ Yq,
including S, differ from those of Yq in that their µ diagrams have one extra box, meaning that
indeed

d(S, T ) = d(U,Lλ′,β,ν′,π′) = q.

The case when µ′ is empty but ν ′ is not proceeds analogously, making use of part (b) of
Lemma 3.20 rather than (a). �

As a direct consequence of Theorems 2.9 and 3.18 we have

Theorem 3.21 The ordered Grothendieck category T is Koszul in the sense of Definition 2.7. �

Furthermore, we have the following analogue of [5, Corollary 3.19] and [4, Corollary 4.25 (d)].
In the statement, Tfin ⊂ T denotes the full subcategory consisting of finite-length objects.
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Theorem 3.22 The Grothendieck category T is equivalent to the category MC of comodules over
a Koszul graded coalgebra C, with Tfin 'MC

fin.

Proof The hypotheses of Theorem 2.11 are met (for the ground field C): T is generated by the
finite-length objects in T, since every object is isomorphic to a subquotient of a direct sum of
indecomposable injectives Is as defined in (3-9), and in turn the injectives Is are unions of their
finite-length truncations

Js ⊗ SkQ for k ∈ Z>0.

Moreover, according to Theorem 3.6, the endomorphism ring of a simple object Lλ,µ,ν,π as in (2-2)
is the field C. �

3.7 An internal commutative algebra and its modules

The object I has a structure of commutative algebra internal to the tensor category gMod of g-
modules. To see this, we observe that I is isomorphic as a g-module to a quotient algebra of the
symmetric algebra S•Q. Indeed, denote by a the distinguished element 1 ∈ C ⊂ Q of the degree-one
component Q ⊂ S•Q and consider the commutative algebra

S•Q/(a− 1),

where 1 ist the unit of the symmetric algebra and (a−1) is the ideal generated by a−1. This ideal
is clearly g-stable and S•Q/(a− 1) is an algebra in gMod. Moreover, the definition of I as lim−→SkQ
implies that there is an isomorphism of g-modules

I ∼= S•Q/(a− 1).

We will be interested in the category IT of I-modules internal to T. This is clearly a Grothendieck
category. Moreover, the forgetful functor

forget : IT→ T

fits into an adjunction

T IT.⊥
I⊗•

forget

(3-37)

We refer to I-modules in the image of the functor I ⊗ • as free. We will see that tensoring with I
has the effect of “partially semisimplifying” T, in the following sense.

Proposition 3.23 For every positive integer n, the filtration

0 ⊂ C ⊂ Q ⊂ S2Q ⊂ · · · ⊂ SnQ

splits in IT upon tensoring it with I. Consequently, for every n the object I ⊗ SnQ is injective in
T.

Proof We prove this inductively on n. For n = 1 the claim is that the embedding

I ∼= I ⊗ C ⊂ I ⊗Q
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splits in IT. To see this, consider the embedding

Q→ forget I

in T. It corresponds, via the adjunction (3-37), to a morphism in IT

σ : I ⊗Q→ I

that is clearly the identity on the I-submodule

I ∼= I ⊗ C ⊂ I ⊗Q.

The morphism σ is the required splitting, concluding the base case n = 1 of the induction.
The argument also shows that we have a decomposition

I ⊗Q ∼= I ⊕ (I ⊗ F ) (3-38)

in IT (and hence also in T), implying that I ⊗ Q is injective in T (by Theorem 3.11 for instance,
which shows that both summands in (3-38) are injective).

We regard Q as a subobject of S2Q via the embedding Q ↪→ S2Q described in (3-2). By the
injectivity of I ⊗Q ∈ T noted above, the embedding

Q ∼= C⊗Q ⊂ I ⊗Q

extends to a morphism in T
S2Q→ I ⊗Q.

Once more, the adjunction (3-37) retrieves a morphism in IT

I ⊗ S2Q→ I ⊗Q

that restricts to the identity on the submodule

I ⊗Q ⊂ I ⊗ S2Q, (3-39)

showing that the embedding (3-39) splits in IT. This proves the main claim for n = 2 and the fact
that there is a splitting

I ⊗ S2Q ∼= (I ⊗Q)⊕
(
I ⊗ S2F

)
,

meaning that I ⊗ S2Q is injective in T. We now repeat the procedure recursively to complete the
inductive argument. �

Since it will be our goal to study the category IT along the same lines as T, we next turn to
simple objects therein.

Theorem 3.24 The simple objects in IT are (up to isomorphism) precisely the free I-modules I⊗S
for simples S ∈ T. For each of them, the endomorphism algebra in IT is C.

Proof We first prove that I ⊗ S is simple in IT. The simple objects of T are precisely the various
modules Lλ,µ,ν,π of (2-2), and according to Theorem 3.11 the injective hull S ⊂ IS contains I ⊗ S
(IS exists because IT is a Grothendieck category). Since the embedding

S ∼= C⊗ S ⊂ I ⊗ S
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is essential in IS , it is also essential in I ⊗ S. It follows that any non-zero subobject

T ⊂ I ⊗ S

in IT contains S and hence the I-module I ⊗ S it generates, so T = I ⊗ S. This concludes the
proof of the claim that all I ⊗ S are simple.

The existence of an isomorphism

End
IT(I ⊗ S) ∼= C, (3-40)

follows from the observation that by the adjunction (3-37) there is an isomorphism

End
IT(I ⊗ S) ∼= HomT(S, I ⊗ S).

Indeed, since I ⊗ S is an injective hull of S in T, every morphism S → I ⊗ S factors through the
socle S ⊂ I ⊗ S, and therefore the isomorphism EndT S = C implies (3-40).

As for the fact that I ⊗ S are, up to isomorphism, all irreducible objects in IT, consider an
arbitrary object T and note that it must have a simple subobject S ∈ T. Hence T must be a
quotient of the (irreducible!) free object I⊗S ∈ IT. Consequently, we have T ∼= I⊗S as desired.�

Since I is a commutative algebra in T, the category IT of internal modules has a natural
symmetric monoidal structure for which I is the unit object and ⊗I is the tensor product. Whenever
we refer to IT as a tensor category, this will be the structure we consider.

3.8 The category IT

We are now ready to apply to IT the same treatment we subjected T to. The poset defining the
Grothendieck order is obtained from the poset (P,�) of quadruples (l,m, n, p) of non-negative
integers with the ordering described in (3-13), with the additional condition:

l +m ≤ l′ +m′, p+ n ≤ p′ + n′. (3-41)

The corresponding objects of IT are Is = I ⊗ Js for s ∈ P, as in equations (2-2) to (2-4).
We will similarly consider the simple (by Theorem 3.24) objects of IT

Tλ,µ,ν,π := I ⊗ Lλ,µ,ν,π (3-42)

and the semisimple objects Tl,m,n,p := I ⊗ Ll,m,n,p, that are direct sums of the various Tλ,µ,ν,π.
We now have the following analogue of Proposition 3.10.

Proposition 3.25 IT is an ordered Grothendieck category in the sense of Definition 2.3.

Proof Taking as above the objects Xs to be our Is (this time regarded as objects in IT rather than
just T), the argument proceeds much as in the proof of Proposition 3.10 with a small difference in
how we define the morphisms Is → It for t ≺ s from Definition 2.3, (f).

Once again, said morphisms will be tensor products and compositions of a few building blocks:

− projecting one of the tensorands V ∗ of Is = Js ⊗ I onto W∗;

− the dual analogue, V ∗∗ →W ;
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− the “pairing”

I0,1,0,0 ⊗I I0,0,1,0 = (I ⊗ V ∗)⊗I (I ⊗ V ∗∗ ) ∼= I ⊗ V ∗ ⊗ V ∗∗ → I (3-43)

obtained via the adjunction (3-37) from the composition

V ∗ ⊗ V ∗∗ → Q ⊂ I

in (3-22).

Everything else goes through as sketched in the proof of Proposition 3.10. �

The difference from T is that now the free I-modules generated by the full duals V ∗ and V ∗∗
admit the pairing (3-43) valued in the unit object I of the category IT under consideration.

We also have an I-module version of Theorem 3.11.

Theorem 3.26 For every quadruple (λ, µ, ν, π) of Young diagrams, the inclusion

Tλ,µ,ν,π = I ⊗ Lλ,µ,ν,π ⊆ Iλ,µ,ν,π = I ⊗ Jλ,µ,ν,π

obtained by applying the functor I ⊗ • to the inclusion

Lλ,µ,ν,π ⊆ Jλ,µ,ν,π

is an injective hull in IT. �

Just as T, the category IT can be realized as comodules over a coalgebra (see Theorem 3.22).
As in that previous result, we denote by ITfin ⊂ IT the full subcategory of finite-length objects.
Note that the indecomposable injectives

Iλ,µ,ν,π = I ⊗ Jλ,µ,ν,π ∈ IT

have finite length: Jλ,µ,ν,π have finite filtrations with subquotients simple in T, and according to
Theorem 3.24 tensoring these simple objects by I produces simples in IT.

Theorem 3.27 The Grothendieck category IT is equivalent to the category MD of comodules over
a coalgebra D, with ITfin 'MD

fin. Furthermore, the coalgebra D is left semiperfect in the sense of
Definition 2.12.

Proof The argument is largely parallel to that underpinning Theorem 3.22, via Theorem 2.11
(minus Koszulity, which we have not yet addressed for I-modules).

The additional remark, that D is semiperfect, follows directly from Definition 2.12 and the fact
that, as observed above, in IT the indecomposable injectives Iλ,µ,ν,π have finite length. �

We also need the following remark, which parallels [5, Lemma 2.19] (the proof is virtually
identical, so we omit it).

Lemma 3.28 The tensor subcategory IT′ of IT generated by the morphisms described in the proof
of Proposition 3.25 is the full subcategory containing Il,m,n,p. �

We next turn to the Koszulity of IT. In keeping with the theme, the argument will be very
similar to what we saw in proving Theorems 3.18 and 3.21.
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Theorem 3.29 The Grothendieck category IT is sharp in the sense of Definition 2.8: for any two
simples S, T ∈ T we have

Extq(S, T ) 6= 0 ⇒ d(s, t) = q.

In particular, the ordered Grothendieck category IT is Koszul in the sense of Definition 2.7.

Proof The last claim follows from sharpness by Theorem 2.9, so we focus on proving the sharpness
claim. In turn, the latter follows as in the proof of Theorem 3.18, with the exact sequence (3-33)
replaced by its analogue, obtained by simply tensoring it with I. �

Remark 3.30 Note that in the present setting the proof of Koszulity is in fact simpler than in
§3.6: we do not need a version of Proposition 3.19, since for purely thick simple objects Lλ,∅,∅,π the
corresponding simple object of IT

Tλ,∅,∅,π = I ⊗ Lλ,∅,∅,π
is injective. �

As a consequence, we can supplement Theorem 3.27, fully bringing it in line with Theorem 3.22.

Corollary 3.31 The coalgebra D in Theorem 3.27 can be chosen graded and Koszul. �

We end the present subsection with description of one possible choice for the graded coalgebra
C from Theorem 3.22. This discussion parallels [5, §3.4], which in turn is analogous to [6, §5].

Let T be the tensor algebra in IT of the object

(W∗ ⊗ I)⊕ (V ∗ ⊗ I)⊕ (V ∗∗ ⊗ I)⊕ (W ⊗ I) = I1,0,0,0 ⊕ I0,1,0,0 ⊕ I0,0,1,0 ⊕ I0,0,0,1

with Td denoting its degree-d component, and the non-unital algebra of endomorphisms

A :=
⊕

m,n∈Z≥0

Hom
IT(Tm, Tn) =

⊕
s,t∈P

Hom
IT(Is, It).

The algebra A is naturally Z≥0-graded by means of the defect introduced in Definition 2.5:

Ad :=
⊕
s,t∈P
d(t,s)=d

Hom
IT(Is, It).

Finally, the coalgebra C is simply the graded dual of A, with Cd = A∗d.
The fact that C (and hence A) is Koszul then implies

Proposition 3.32 The algebra A is quadratic.

Proof Koszul algebras are well known to be quadratic; see e.g. [2, §2.3]. �

3.9 Universality

We can now characterize IT as a universal category in the sense of [5, Theorem 4.23] and [4,
Theorem 5.2]. First, note that in IT there is a pairing

(I ⊗ V ∗)⊗I (I ⊗ V ∗∗ ) ∼= I ⊗ V ∗ ⊗ V ∗∗ → I (3-44)

corresponding to (3-22) through the adjunction (3-37). We will occasionally indicate tensoring with
I by a left-hand ‘I’ subscript, as in IX := I ⊗X.
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Theorem 3.33 Let (D, ⊗, 1) be a (C-linear abelian) tensor category, x ↪→ x∗∗ and x∗ ↪→ x∗ be
monomorphisms in D, and

p : x∗ ⊗ x∗∗ → 1

be a morphism in D.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal functor
F : ITfin → D sending

− the pairing (3-44) to p;

− the surjection IV
∗
∗ → IW to x∗∗ → x∗∗/x;

− the surjection IV
∗ → IW∗ to x∗ → x∗/x∗.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-preserving
functor IT→ D.

The argument will be analogous to that employed in the proof of [5, Theorem 3.23], revolving
around the fact that the algebra A in the preceding discussion is quadratic (Proposition 3.32). For
that reason, it will be necessary to understand its components of degree ≤ 2. In degree zero things
are simple: the following result is the version of [5, Lemma 3.24] appropriate here.

Lemma 3.34 For (l,m, n, p) ∈ P the endomorphism algebra of the injective object Il,m,n,p ∈ IT is
isomorphic to C[Sl × Sm × Sn × Sp], with the symmetric groups acting naturally on the relevant
tensorands of

Il,m,n,p = I ⊗ Jl,m,n,p
= I ⊗W⊗l∗ ⊗ (V ∗)⊗m ⊗ (V ∗∗ )⊗n ⊗W⊗p.

Proof We have
End

IT(I ⊗ Jl,m,n,p) ∼= HomT(Jl,m,n,p, I ⊗ Jl,m,n,p).

The quotient of Jl,m,n,p by its socle in T has a filtration by subquotients Lλ′,µ′,ν′,π′ with

(|λ′|, |µ′|, |ν ′|, |π′|) ≺ (l,m, n, p) ∈ P,

which thus admit no non-zero morphisms to

soc(I ⊗ Jl,m,n,p) = socJl,m,n,p.

It follows that restricting an arbitrary morphism

Jl,m,n,p → I ⊗ Jl,m,n,p

in T to the socle induces an isomorphism

HomT(Jl,m,n,p, I ⊗ Jl,m,n,p) ∼= EndT

(
W⊗l∗ ⊗ (V ∗)⊗m ⊗ (V ∗∗ )⊗n ⊗W⊗p

)
. (3-45)

We can see that the right-hand side of (3-45) is naturally identifiable with C[Sl × Sm× Sn× Sp] as
in Proposition 3.8. �
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As for degree 1, we need an analogue of [5, Lemma 3.25]. Stating such an analogue will require
some notation. Degree-one morphisms between the objects Il,m,n,p ∈ IT come in three flavors:

Il,m,n,p → Il,m−1,n−1,p,

Il,m,n,p → Il+1,m−1,n,p,

Il,m,n,p → Il,m,n−1,p+1.

We distinguish families of each flavor, as follows. The morphism

φi,j : Il,m,n,p → Il,m−1,n−1,p for 1 ≤ i ≤ m, 1 ≤ j ≤ n

executes the pairing
V ∗ ⊗ V ∗∗ → I

of the ith tensorand V ∗ and the jth tensorand V ∗∗ in

Il,m,n,p = I ⊗W⊗l∗ ⊗ (V ∗)⊗m ⊗ (V ∗∗ )⊗n ⊗W⊗p

and acts as the identity on all other tensorands.
Next, we have the map

i,jπ : Il,m,n,p → Il+1,m−1,n,p for 1 ≤ i ≤ m, 1 ≤ j ≤ n

which

− first permutes cyclically the first i tensorands V ∗;

− maps the new first (old ith) tensorand V ∗ onto W∗ = V ∗/V∗;

− finally permutes the last m−j+1 tensorands W ∗ cyclically so the newly-created W∗ becomes
the jth.

Finally, we have the left-right mirror image

πi,j : Il,m,n,p → Il,m,n−1,p+1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n

of i,jπ, obtained by substituting V ∗∗ for V ∗, W for W∗, reversing the directions of the cyclic per-
mutations, etc.

We write
Sl,m,n,p := Sl × Sm × Sn × Sp

for products of symmetric groups and, unless specified otherwise, morphism spaces in Lemma 3.35
below are in the category IT.

Lemma 3.35 Let (l,m, n, p) ∈ P.

(a) Hom(Il,m,n,p, Il,m−1,n−1,p) is isomorphic to C[Sl,m,n,p] as a bimodule over

End Il,m−1,n−1,p
∼= C[Sl,m−1,n−1,p] and End Il,m,n,p ∼= C[Sl,m,n,p],

with any of the morphisms φi,j as a generator for the right C[Sl,m,n,p]-module structure while
identifing the subgroups

Sm−1 ⊂ Sm and Sn−1 ⊂ Sn
with the isotropy groups of i and j respectively.
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(b) Hom(Il,m,n,p, Il+1,m−1,n,p) is isomorphic to the induced module

C[Sl+1,m,n,p] ∼= Ind
Sl+1

Sl
C[Sl,m,n,p] = C[Sl+1]⊗C[Sl] C[Sl,m,n,p]

as a bimodule over

End Il+1,m−1,n,p
∼= C[Sl+1,m−1,n,p] and End Il,m,n,p ∼= C[Sl,m,n,p],

with i,jπ as a generator for the right C[Sl,m,n,p]-module structure while identifying the subgroups

Sl ⊂ Sl+1 and Sm−1 ⊂ Sm

with the isotropy groups of j and i respectively.

(c) The left-right mirror image of (b): Hom(Il,m,n,p, Il,m,n−1,p+1) is isomorphic to the induced
module

C[Sl,m,n,p+1] ∼= Ind
Sp+1

Sp
C[Sl,m,n,p] = C[Sp+1]⊗C[Sp] C[Sl,m,n,p]

as a bimodule over

End Il,m,n−1,p+1
∼= C[Sl,m,n−1,p+1] and End Il,m,n,p ∼= C[Sl,m,n,p],

with πi,j as a generator for the right C[Sl,m,n,p]-module structure while identifying the subgroups

Sp ⊂ Sp+1 and Sn−1 ⊂ Sn

with the isotropy groups of j and i respectively.

Proof (a) Having fixed i and j as in the statement, we have a morphism

C[Sl,m,n,p]→ Hom(Il,m,n,p, Il,m−1,n−1,p) (3-46)

of (C[Sl,m−1,n−1,p],C[Sl,m,n,p])-bimodules, sending 1 to φi,j . Lemma 3.28 implies that this morphism
is surjective, so it is the injectivity that we focus on.

Note that the morphism (3-46) factors as

C[Sl,m,n,p]

C[Sl,p]⊗ C[Sm,n] (End Il,0,0,p)⊗Hom(I0,m,n,0, I0,m−1,n−1,0)

Hom(Il,m,n,p, Il,m−1,n−1,p)

∼= (3-47)

where the downward arrow is the tensor product (over the unit object I ∈ IT) of morphisms in

IT. Since the vertical maps are injective, the bottom morphism (which is in our focus) will be
one-to-one if and only if the top arrow is. The left-hand tensorand

C[Sl,p]→ End Il,0,0,p

of the top map in (3-47) is an isomorphism by Lemma 3.34, so it is enough to consider the right
hand tensorand

C[Sm,n]→ Hom(I0,m,n,0, I0,m−1,n−1,0)
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of that map; equivalently, it suffices to resolve the present discussion in the case l = p = 0. But this
follows from [5, Lemma 3.25 (a)] (which is analogous to the result being proven here), by noting
that the restrictions of the compositions

φi,j ◦ σ : I0,m,n,0 → I0,m−1,n−1,0, σ ∈ Sm,n

to
(V ∗)⊗m ⊗ V ⊗n ⊂ (V ∗)⊗m ⊗ (V ∗∗ )⊗n ⊂ I0,m,n,0

are precisely the morphisms proven linearly independent there.
(b) We again have an (C[Sl+1,m−1,n,p],C[Sl,m,n,p])-bimodule map

C[Sl+1,m,n,p]→ Hom(Il,m,n,p, Il+1,m−1,n,p) (3-48)

sending 1 to i,jπ, and its surjectivity is a consequence of Lemma 3.28. The injectivity follows as in
part (a), by first decomposing (3-48) as a tensor product of maps

C[Sl+1,m]→ Hom(Il,m,0,0, Il+1,m−1,0,0)

and
C[Sn,p]→ End I0,0,n,p.

The latter is an isomorphism by Lemma 3.34, and the former is an injection as in the proof of (a),
by appealing to [5, Lemma 3.25 (b)].

(c) As noted in the statement, this is entirely parallel to part (b), interchanging the roles of V ∗

and V ∗∗ , l and p, m and n, etc. �

The composition map from the degree-one to the degree-two component of A comes in several
varieties, depending on the domain. Before listing the various options, it will be convenient to
introduce

Notation 3.36 For a quadruple (l,m, n, p) ∈ P we write

Il,m↓,n↓,p := Hom
IT(Il,m,n,p, Il,m−1,n−1,p)

and similarly for other morphism spaces, with arrows indicating whether the respective index
increases or decreases, and multiple arrows to indicate the amount. Other examples are

Il,m↓↓,n↓↓,p := Hom
IT(Il,m,n,p, Il,m−2,n−2,p),

Il↑,m↓,n,p := Hom
IT(Il,m,n,p, Il+1,m−1,n−2,p)

and so on.
For composable morphism spaces in IT we denote by ‘�’ the tensor product over the endomor-

phism algebra of the intermediate object. For example:

Il,(m−1)↓,(n−1)↓,p � Il,m↓,n↓,p := Il,(m−1)↓,(n−1)↓,p ⊗C[Sl,m−1,n−1,p] Il,m↓,n↓,p. �

With this in place, the possibilities for composition of degree-1 morphisms are:

Il,(m−1)↓,(n−1)↓,p � Il,m↓,n↓,p → Il,m↓↓,n↓↓,p, (3-49)
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which is mirror-self-dual,

I(l+1)↑,(m−1)↓,n,p � Il↑,m↓,n,p → Il↑↑,m↓↓,n,p (3-50)

and its mirror image

Il,m,(n−1)↓,(p+1)↑ � Il,m,n↓,p↑ → Il,m,n↓↓,p↑↑, (3-51)

(Il↑,(m−1)↓,n−1,p � Il,m↓,n↓,p)⊕ (Il+1,(m−1)↓,n↓,p � Il↑,m↓,n,p)→ Il↑,m↓↓,n↓,p (3-52)

and its mirror image

(Il,m−1,(n−1)↓,p↑ � Il,m↓,n↓,p)⊕ (Il,m↓,(n−1)↓,p+1 � Il,m,n↓,p↑)→ Il,m↓,n↓↓,p↑, (3-53)

and finally, the self-dual morphism

(Il+1,m−1,n↓,p↑ � Il↑,m↓,n,p)⊕ (Il↑,m↓,n−1,p+1 � Il,m,n↓,p↑)→ Il↑,m↓,n↓,p↑. (3-54)

The nine ‘�’ symbols above account for the nine possible ways of composing two morphisms,
each being of one of the three flavors listed in Lemma 3.35.

Remark 3.37 Note that in all cases the product ‘�’ conserves the total number of up as well as
down arrows. �

Proof of Theorem 3.33 (sketch) As in the proof of [5, Theorem 3.23], an appeal to [5, Theorem
2.22] together with Proposition 3.25 proves the statement as soon as we argue that the initial data
of

x ↪→ x∗∗, x∗ ↪→ x∗ and p : x∗ ⊗ x∗∗ → 1

in the tensor category D extends to a linear monoidal functor

F : IT′ → D,

where IT′ is, as in Lemma 3.28, the full subcategory of IT on the objects Il,m,n,p. Set IT := T ⊗ I
for any T ∈ T. Since the objects of IT′ are precisely the tensor powers (over I ∈ IT) and the
morphisms are tensor products and compositions of permutation of tensorands, evaluations (3-44),
inclusions IV∗ ⊂ IV

∗ and IV ⊂ IV
∗
∗ , etc., there is an obvious candidate for such an extension F ,

sending

IV
∗
∗ 7→ x∗∗ and IW 7→ x∗∗/x,

IV
∗ 7→ x∗ and IW∗ 7→ x∗/x∗,

(3-44) 7→ p,

etc. What we have to argue is that that extension is in fact well defined.
The fact that, by Proposition 3.32, the algebra A defined in Section 3.8 is quadratic, means that

it will be enough to check that the degree-two relations between degree-one morphisms between
the Il,m,n,p (i.e. the kernels of the maps (3-49) to (3-54)) vanish in D upon substituting x for IV ,
x∗ for IV∗, etc. This would be a somewhat tedious and unenlightening check if done exhaustively,
so we exemplify the argument by treating (3-49) alone. In that regard, we make the claim:
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The kernel of the composition (3-49) is generated, as an (Sl,m−2,n−2,p, Sl,m,n,p)-bimodule, by

φm−1,n−1 ⊗ φm,n − φm−1,n−1 ⊗ φm,n ◦ (m,m− 1)(n, n− 1), (3-55)

where (m,m− 1) is the respective transposition in Sm ⊂ Sl,m,n,p and similarly,

(n, n− 1) ∈ Sn ⊂ Sl,m,n,p.

Assuming the claim for now, we observe that the relations annihilated by (3-49) hold in any
tensor category. It follows that our candidate functor F is indeed compatible with the quadratic
relations imposed by composition, and hence is well defined. It thus remains to prove the claim;
this is the goal we focus on for the duration of the present proof, following the layout of the proof
of [5, Lemma 3.27 (a)].

First, note that the morphism (3-49) is surjective by Lemma 3.28. Secondly, the fact that (3-55)
belongs to the kernel of (3-49) is immediate: this is because

− evaluating the mth tensorand IV
∗ against the nth tensorand IV

∗
∗ , and then

− evaluating the (m− 1)st tensorand IV
∗ against the (n− 1)st tensorand IV

∗
∗

has the same effect as

− permuting the mth and (m− 1)st tensorands IV
∗,

− permuting the nth and (n− 1)st tensorands IV
∗
∗

and then repeating the two evaluations above.
The proof will thus be complete if we argue that the kernel of (3-49) is not strictly larger than

the bimodule generated by (3-55). We do this by a dimension count. Tensoring two instances of
Lemma 3.35, (a) over C[Sl,m−1,n−1,p], we conclude that the domain

Il,(m−1)↓,(n−1)↓,p � Il,m↓,n↓,p

of (3-49) is isomorphic to C[Sl,m,n,p] as an (C[Sl,m−2,n−2,p],C[Sl,m,n,p])-bimodule, with

− φm,n identified with the generator 1 ∈ C[Sl,m,n,p], and

− Sl,m−2,n−2,p ⊂ Sl,m,n,p being the subgroup fixing m, m− 1, n and n− 1.

This identification turns the putative generator (3-55) of the kernel of (3-49) into

1− (m,m− 1)(n, n− 1) ∈ C[Sl,m,n,p]. (3-56)

The (C[Sl,m−2,n−2,p],C[Sl,m,n,p])-bimodule generated by (3-56) coincides with the right Sl,m,n,p-
module generated by the same element. The dimension of that module is half that of C[Sl,m,n,p],
and hence

dim ker (3-49) =
1

2
l!m!n!p! =

1

2
(dim domain of (3-49)) .

The desired conclusion that the kernel of the surjection (3-49) cannot strictly contain the bimodule
generated by (3-55) will thus follow if we prove that

dim Il,m↓↓,n↓↓,p = dim Hom(Il,m,n,p, Il,m−2,n−2,p) ≥
1

2
l!m!n!p!.
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Since we have an embedding

(End Il,0,0,p)⊗ I0,m↓↓,n↓↓,0 → Il,m↓↓,n↓↓,p

and the left-hand tensorand is isomorphic to C[Sl,p] by Lemma 3.34, it is enough to assume that
l = p = 0 and show that

dim Hom
IT

(
(IV

∗)⊗m ⊗I (IV
∗
∗ )⊗n, (IV

∗)⊗(m−2) ⊗I (IV
∗
∗ )⊗(n−2)

)
≥ 1

2
m!n!,

or equivalently, via the adjunction (3-37), that

dim HomT

(
(V ∗)⊗m ⊗ (V ∗∗ )⊗n, I ⊗ (V ∗)⊗(m−2) ⊗ (V ∗∗ )⊗(n−2)

)
≥ 1

2
m!n!.

This, however, follows by restricting the morphisms on the left to V ⊗m∗ ⊗ V ⊗n and noting that we
already know the analogous inequality

dim HomT

(
V ⊗m∗ ⊗ V ⊗n, V ⊗(m−2)

∗ ⊗ V ⊗(n−2)
)
≥ 1

2
m!n!

from the computation carried out in [6, Lemma 6.3], or from [5, Lemma 3.27 (a)] (which is analogous
to the claim being proven here). �

4 Orthogonal and symplectic analogues of the categories T and IT

In this final section we discuss briefly the orthogonal and symplectic versions of the categories T
and IT. The orthogonal and symplectic analogues of the Lie algebra glM (V, V∗) are the Lie algebras
o(V ) and sp(V ) where V is now equipped with a nondegenerate symmetric or antisymmetric bilinear
form 〈·, ·〉 : V × V → C, yielding a respective linear map S2V → C or Λ2V → C. The Lie algebras
o(V ) and sp(V ) are defined as the respective largest subalgebras of glM (V, V ) for which the map
S2V → C or Λ2V → C is a morphism of representations.

Let g = o(V ), sp(V ). Then V is a submodule of V ∗ (via the form 〈·, ·〉), and the g-module
W := V ∗/V is irreducible. This can be proved for instance by considering W over the family of
Lie subalgebras glM (V ′, V ′∗) ⊂ g arising from varying decompositions of V as V ′ ⊕ V ′∗ for maximal
isotropic subspaces V ′, V ′∗ . Over each such subalgebra W is isomorphic to

V ′∗/V∗ ⊕ (V∗)
∗/V,

and hence has precisely two proper submodules. Since these submodules vary when V ′ and V ′∗ vary,
the module W is irreducible over g.

Furthermore, for any Young diagram λ, the irreducible glM (V, V )-module Vλ restricts to g
yielding a generally reducible g-module. In all cases the socle of Vλ|g is simple, and we denote it
by V[λ] for g = o(V ) and by V〈λ〉 for g = sp(V ). It is clear that the Lie algebras o(∞) and sp(∞)
considered in [15] are subalgebras respectively of o(V ) and sp(V ), and by [14, Theorem 7.10] the
socle filtrations of Vλ|o(∞) and Vλ|sp(∞), described explicitly in [15], coincide with the respective
socle filtrations of Vλ|o(V ) and Vλ|sp(V ).

If λ, µ is a pair of Young diagrams, we set

Lλ,µ :=

{
Wλ ⊗ V[µ] for g = o(V ),

Wλ ⊗ V〈µ〉 for g = sp(V ).
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Then Lλ,µ is a simple g-module. This can be seen by essentially the same argument as in the case
of W . Moreover,

Lλ,µ ∼= Lλ′,µ′ if and only if λ = λ′ and µ = µ′.

The analogue of the injective object I from Section 3.4 is constructed as follows. One sets

Fg :=

{
S2W for g = o(V ),

Λ2W for g = sp(V ).

Furthermore, the quotient Qg of S2V ∗ by the sum of kernels of the pairings V ∗ ⊗ V → C and
S2V → C admits a non-splitting exact sequence

0→ C→ Qg → Fg → 0.

The socle filtration of I has the form

S2Fg

Fg

C

...

.

Then the embedding (3-1) induces embeddings

SkQg ↪→ Sk+1Qg,

which allow us to define Ig as the colimit

Ig = lim−→SkQg.

Moreover, by the same construction as in Section 3.7, Ig is endowed with the structure of a com-
mutative algebra.

The category Tg is introduced in the same way as in Section 3.4, where now Js = W⊗l ⊗ V ∗⊗m
for pairs s = (l,m), l, m ∈ N, and the object I is replaced by Ig. In the Introduction we denoted
this category by T2

g to emphasize that is generated as a tensor category by two modules V and V ∗.
In the rest of the paper we use the shorter notation Tg. We leave it to the reader to check that
Proposition 3.10 holds also for the category Tg, and that Ig is an injective hull in Tg of the object
C. The respective partial order (l,m) � (l′,m′) on N×N is given by l ≥ l′, m ≤ m′, l+m′ ≤ l′+m.
The results of Section 3.3 also hold with obvious modification.

The canonical injective resolution (3-23) stays the same with F replaced by Fg, however now
the socle of the object (Ig)j = Ig ⊗ ΛjFg decomposes as

⊕
SλV for g = sp(V ) and

⊕
Sλ⊥V for

g = o(V ) where λ runs over all special partitions of degree 2j.

Corollary 4.1 For any simple object X of To(V ) we have

ExtjTo(V )
(X,C) =

{
0 if X 6∼= Lλ,∅ for a special λ with |λ| = 2j,

C if X ∼= Lλ,∅ for a special λ with |λ| = 2j,

and for any simple object X of Tsp(V ) we have

ExtjTsp(V )
(X,C) =

{
0 if X 6∼= Lλ⊥,∅ for a special λ with |λ| = 2j,

C if X ∼= Lλ⊥,∅ for a special λ with |λ| = 2j.
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Next, Theorem 3.18 and Proposition 3.19 stay valid with T replaced by Tg. We leave it to
the reader to modify Lemma 3.20 accordingly. Furthermore, Proposition 3.23, and Theorem 3.24
also hold for Ig and Qg (instead of I and Q, respectively). The same applies to Proposition 3.25,
Theorem 3.26 (with Lλ,µ instead of Lλ,µ,ν,π), Theorem 3.27, Theorem 3.29, and Corollary 3.31.

The universality results from Section 3.9 also carry over to the cases g = o(V ), sp(V ). In
particular, the category IgT is defined in the same way as the category IT: it is the category of
internal Ig-modules in Tg.

Note also that the analogue
V ∗ ⊗ V ∗ → Qg ⊂ Ig

of the map (3-22) is well defined and factors through maps

S2V ∗ → Qg and Λ2V ∗ → Qg

in the respective cases g = o(V ) and g = sp(V ). This defines pairings

Ig ⊗ V ∗ ⊗Ig ⊗Ig ⊗ V ∗ → Ig ⊗ S2V ∗ → Ig (4-1)

and
Ig ⊗ V ∗ ⊗Ig ⊗Ig ⊗ V ∗ → Ig ⊗ Λ2V ∗ → Ig, (4-2)

respectively.
Now we have

Theorem 4.2 Let (D, ⊗, 1) be a tensor category, and x ↪→ x∗ be a monomorphism in D. Assume
that a morphism in D

p : x∗ ⊗ x∗ → 1

is given, satisfying p ◦ σ = p for g = o(V ) and p ◦ σ = −p for g = sp(V ), where σ is the flip
automorphism of x∗⊗ x∗ as an object of the tensor category D coming from the assumption that D
is a symmetric monoidal category.

(a) There is a unique (up to monoidal natural isomorphism) left exact symmetric monoidal functor
F : IgTfin → D, where g = o(V ) if p ◦ σ = p and g = sp(V ) if p ◦ σ = −p, sending

− the respective pairing (4-1) or (4-2) to p;

− the surjection IgV
∗ → IgW to x∗ → x∗/x.

(b) if D is additionally a Grothendieck category then F extends uniquely to a coproduct-preserving
functor IgT→ D.

The universality of the tensor categories Io(V )
T and Isp(V )

T leads to the fact that they are

equivalent as monoidal categories. More precisely, consider the (symmetric) tensor category T−sp(V )
defined in the same way as Tsp(V ) but with the flip isomorphism

σ : V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗, σ(v ⊗ w) = w ⊗ v

replaced by −σ. One checks that T−sp(V ) is well-defined, i.e. that the new flip isomorphism on

V ∗ ⊗ V ∗ induces a well-defined structure of tensor category preserving the monoidal structure on
Tsp(V ).

In addition, one checks that there is a well-defined tensor category Isp(V )
T− of internal I-modules

in T−sp(V ) which coincides with Isp(V )
T as a monoidal category.
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Corollary 4.3 The tensor categories Io(V )
T and Isp(V )

T− are canonically equivalent.

Proof By Theorem 4.2, there are distinguished functors

F : Io(V )
T→ Isp(V )

T−

F− : Isp(V )
T− → Io(V )

T �

sending V ∗ ⊗ Io(V ) to V ∗ ⊗ Isp(V ), V∗ ⊗ Io(V ) to V∗ ⊗ Isp(V ) and W ⊗ Io(V ) to W ⊗ Isp(V ), and vice
versa. Again, by Theorem 4.2 the functors F and F− must be mutually inverse.
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