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Abstract. We give a criterion for the annihilator in U(sl(∞)) of a simple highest weight
sl(∞)-module to be nonzero. As a consequence we show that, in contrast with the case of
sl(n), the annihilator in U(sl(∞)) of any simple highest weight sl(∞)-module is integrable,
i.e., coincides with the annihilator of an integrable sl(∞)-module. Furthermore, we define
the class of ideal Borel subalgebras of sl(∞), and prove that any prime integrable ideal in
U(sl(∞)) is the annihilator of a simple b0-highest weight module, where b0 is any fixed
ideal Borel subalgebra of sl(∞). This latter result is an analogue of the celebrated Duflo
Theorem for primitive ideals.

1. Introduction

The base field is C. If g is a semisimple finite-dimensional Lie algebra, the cele-
brated Duflo Theorem states that any primitive two-sided ideal in the enveloping
algebra U(g) of g (i.e., any annihilator of a simple U(g)-module) is the annihilator
of a simple highest weight g-module.

The purpose of the present paper is to study primitive ideals in the enveloping
algebra U(sl(∞)) of the infinite-dimensional Lie algebra sl(∞), and in particular
to obtain a partial analogue of Duflo’s Theorem for sl(∞). Recall that the Lie
algebra sl(∞) can be defined in several equivalent ways, for instance as a direct
limit lim−→

n≥2

sl(n) [Ba1, Ba2, DP1].

The study of two-sided ideals in U(sl(∞)) has been initiated by A. Zhilin-
skii [Zh1, Zh2, Zh3], and has been continued in [PP]. Zhilinskii’s idea has been to
study the joint annihilators of certain systems of sl(n)-modules for variable n > 2,
more precisely, the joint annihilators of coherent local systems of finite-dimensional
sl(n)-modules as defined in [Zh1]. Zhilinskii has also provided a classification of
coherent local systems [Zh1, Zh2]. We call the ideals introduced by Zhilinskii
integrable (see Section 5 for the precise definition).

A corollary of the results in [PP] is that the associated ”variety” of an arbitrary
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ideal in U(sl(∞)) coincides with the associated “variety” of some integrable ideal
in U(sl(∞)). We do not know whether any ideal in U(sl(∞)) is integrable, however
in the present paper we prove that the annihilator of any highest weight sl(∞)-
module is an integrable ideal in U(sl(∞)).

In order to recall the definition of a highest weight sl(∞)-module, we first need
to recall the definition of a splitting Borel subalgebra of sl(∞). According to [DP1],
a splitting Borel subalgebra is a subalgebra of sl(∞) which can be obtained as a
direct limit of lim−→ bn of Borel subalgebras bn ⊂ sl(n) for a suitable presentation
sl(∞) as a direct limit lim−→

n≥2

sl(n). In contrast with the finite-dimensional case, the

splitting Borel subalgebras of sl(∞) are not conjugate by the group of automor-
phisms of sl(∞); in fact, there are uncountably many conjugacy classes (and even
isomorphism classes) of splitting Borel subalgebras of sl(∞). However, a b-highest
weight module is defined as usual as an sl(∞)-module generated by a 1-dimensional
b-submodule.

The difference between the structure of ideals in U(sl(∞)) and in U(g) for a
finite-dimensional semisimple g, becomes apparent in the fact that the annihilators
in U(sl(∞)) of many simple highest weight modules equal to zero. In this paper
we give an explicit criterion for a simple b-highest weight module to have nonzero
annihilator. A further central result which we establish is that the annihilator of
any b-highest weight sl(∞)-module is integrable.

Our third notable result is an analogue of Duflo’s Theorem. We define a special
class of splitting Borel subalgebras b0 ⊂ sl(∞), which we call ideal, and prove that
any prime integrable ideal of U(sl(∞)) is the annihilator of a simple b0-highest
weight module for any b0. The ideal Borel subalgebras b0 have the property that
the adjoint representation of sl(∞) is a b0-highest weight module.

The paper is structured as follows. In Section 2 we review some well known and
some not so well known results about the Lie algebra sl(∞) and its representations.
Section 3 contains a precise statement of our main results. The proofs are given
in Sections 4, 5 and 6. In Section 7 we characterize simple sl(∞)-modules which
are determined up to isomorphism by their annihilators in U(sl(∞)), under the
assumption that the annihilator is integrable.
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second author acknowledges partial support by Jacobs University Bremen. Finally,
we are indebted to a referee for a very thorough reading of the original version of
this paper and for making a number of thoughtful suggestions to improve the text.

2. Preliminaries

1. The Lie algebra sl(∞)

The superscript ∗ indicates dual space, and S·(·) and Λ·(·) stand respectively
for symmetric and exterior algebra. For a Lie algebra g, U(g) stands for the
universal enveloping algebra of g. If M is a g-module, then AnnU(g)M denotes
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the annihilator of M in U(g).
The Lie algebra gl(∞) can be defined as the Lie algebra of matrices (aij)i,j∈Z>0

each of which has at most finitely many nonzero entries. Equivalently, gl(∞) can
be defined by giving an explicit basis. Let {eij}i,j∈Z>0 be a basis of a countable-

dimensional vector space denoted by gl(∞). Set ĥ := span{eii}i∈Z>0 . The struc-
ture of a Lie algebra on gl(∞) is given by the formula

[eij , ekl] = δjkeil − δilekj ,

where i, j ∈ Z>0 and δmn is Kronecker’s delta.
Next, one defines sl(∞) as the commutator subalgebra of gl(∞):

sl(∞) := [gl(∞), gl(∞)].

We set
h := ĥ ∩ sl(∞).

Clearly, ĥ is a maximal commutative subalgebra of gl(∞), and h is a maximal
commutative subalgebra of sl(∞). Moreover, gl(∞) has the following root decom-
position

gl(∞) = ĥ⊕
⊕
α∈∆

gl(∞)α,

similar to the usual root decomposition of gl(n). Here ∆ = {εi − εj}i,j∈Z>0
where

the system of vectors {εj}j∈Z>0 in ĥ∗ is dual to the basis {eii}i∈Z>0 of ĥ. The Lie
subalgebra sl(∞) inherits this root decomposition:

sl(∞) = h⊕
⊕
α∈∆

sl(∞)α,

where sl(∞)α = gl(∞)α for α ∈ ∆.
It is not difficult to prove that any Lie algebra obtained as a direct limit lim−→

n≥2

sl(n)

is isomorphic to sl(∞) as defined above. Moreover, a general definition of a splitting
Cartan subalgebra h′ of sl(∞) is as a direct limit of Cartan subalgebras h′n of
sl(n), where sl(∞) is identified with lim−→

n≥2

sl(n). Then, as noted in [DPSn], all

splitting Cartan subalgebras of sl(∞) are conjugate via the automorphism group
Aut sl(∞). This enables us to henceforth restrict ourselves to considering only the
fixed splitting Cartan subalgebra h of sl(∞) introduced above.

A splitting Borel subalgebra of sl(∞) ∼= lim−→
n≥2

sl(n) is defined as a direct limit

lim−→
n≥2

bn of Borel subalgebras bn ⊂ sl(n), see [DP1]. Since a general splitting Borel

subalgebra of sl(∞) is conjugate under Aut(sl(∞)) to a splitting Borel subalgebra
containing our fixed splitting Cartan subalgebra h ⊂ sl(∞), in what follows we only
consider splitting Borel subalgebras containing h. The latter Borel subalgebras are
given by the following construction. We say that a subset ∆∗ ⊂ ∆ is a subset of
positive roots if
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(1) for any root α ∈ ∆, precisely one of α and −α belongs to ∆∗;
(2) α, β ∈ ∆∗ and α+ β ∈ ∆ imply α+ β ∈ ∆∗.

To any positive subset of roots ∆∗ we assign the Borel subalgebra

b(∆∗) := h
⊕
α∈∆∗

sl(∞)α

of sl(∞), and in this way we obtain all splitting Borel subalgebras of sl(∞) con-
taining h.

This leads naturally to the observation [DP1] that the splitting Borel subalge-
bras containing h are in one-to-one correspondence with linear orders on Z>0: given
such a linear order ≺, the corresponding subset of positive roots is {εi − εj}i≺j .

It is easy to see that different Borel subalgebras containing h do not have to
be Aut sl(∞)-conjugate, as they simply may not be isomorphic as abstract Lie
algebras. Consider, for instance, the following three linear orders on Z>0:

(i) ... ≺ 5 ≺ 3 ≺ 1 ≺ 2 ≺ 4 ≺ 6 ≺ ...,
(ii) 1 ≺ 2 ≺ 3 ≺ ...,
(iii) 1 ≺ 3 ≺ 5 ≺ ... ≺ 2n+ 1 ≺ ... ≺ 2n ≺ ... ≺ 4 ≺ 2.

The reader can check that the corresponding Borel subalgebras are not isomorphic
as Lie algebras.

2. S-notation

Let S be a subset of Z>0. We denote by sl(S) the subalgebra of sl(∞) spanned by

{eij}i,j∈S,i̸=j and {eii − ejj}i,j∈S .
Then sl(Z>0) = sl(∞).

Set hS := h ∩ sl(S). Note that
(1) if S is finite, then sl(S) is isomorphic to sl(n) where n = |S| is the cardinality

of S, and hS is a Cartan subalgebra of sl(S);
(2) if S is infinite, then sl(S) is isomorphic to sl(∞), and hS is a splitting Cartan

subalgebra of sl(S).
Next, we fix a splitting Borel subalgebra b ⊃ h of sl(∞) and put bS := sl(S) ∩ b.
We note that

(1) if S is finite, then bS is a Borel subalgebra of sl(S),
(2) if S is infinite, then bS is a splitting Borel subalgebra of sl(S).
Let CS denote the set of functions from S to C. Clearly, CS is a vector space of

dimension |S|. When S = {1, ..., n} we write simply Cn instead of C{1,...,n}. There
is a surjective homomorphism from CS to h∗S :

f 7→ λf , λf (eii − ejj) = f(i)− f(j). (1)

For any f ∈ CS we denote by |f | the the cardinality of the image of f . A weight
λ ∈ h∗S is sl(S)-integral, or simply integral, if λ(eii − ejj) ∈ Z for all i, j ∈ S.
Respectively, a function f ∈ CS is integral if f(i) − f(j) ∈ Z for all i, j ∈ S. A
function is almost integral if there exists a finite subset F ⊂ S such that f |S\F is
integral.

If bS ⊃ hS is a fixed splitting Borel subalgebra of sl(S), then an integral weight
λ ∈ h∗S is bS-dominant if λ(eii − ejj) ≥ 0 for i ≺ j where the order ≺ on S is
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determined by bS . Respectively, an integral function f ∈ CS is ≺-dominant if
f(i)− f(j) ≥ 0 for i ≺ j.

Let ≺ be a linear order on S, and let S = S1 ⊔ ...⊔St be a finite partition of S.
We say that the partition {Si}i≤t is compatible with the order ≺ if

i0 ≺ j0 ⇔ i < j

for any i ̸= j ≤ t and any i0 ∈ Si, j0 ∈ Sj . Finally, we say that f ∈ CS is locally
constant with respect to ≺ if there exists a compatible partition S1 ⊔ ... ⊔ St of S,
such that f is constant on Si for any i ≤ t.

We call a splitting Borel subalgebra bS ⊃ hS of sl(S) ideal if there is a partition
S = S1 ⊔ S2 ⊔ S3, compatible with the order ≺ defined by bS , such that

(a) S1 is countable and ≺ restricted to S1 is isomorphic to the standard order
on Z>0,

(b) S3 is countable and ≺ restricted to S3 is isomorphic to the standard order
on Z<0

(S2 may be empty). Clearly the Borel subalgebra defined by the above order (iii)
is ideal, while the Borel subalgebras defined by (i) and (ii) are not ideal.

3. Highest weight sl(S)-modules

Fix a splitting Borel subalgebra bS of sl(S), corresponding to a linear order ≺ on
S. A Verma module is defined as an induced module

M bS
(f) := U(sl(S))⊗U(bS) Cf ,

where Cf is a one-dimensional bS-module determined by a weight λf ∈ h∗S . By
definition, a bS-highest weight module is an sl(∞)-module isomorphic to a quotient
of M bS (f). It is not difficult to prove that M bS (f) has a unique simple quotient
LbS

(f), see [DP1].

As S and bS are fixed, in the rest of Section 3 we write simply M(f) and L(f)
instead of MbS (f) and LbS (f). We fix also a function f ∈ CZ>0 and a highest

weight vector v of L(f). For any subset S′ ⊂ S we denote by L̂(f |S′) the sl(S′)-

submodule of L(f) generated by v. Obviously L̂(f |S′) is a quotient of M(f |S′),

and L(f |S′) is the unique simple quotient of L̂(f |S′).

For any finite subset F ⊂ S, let wF be a fixed highest weight vector in M(f |F ),
and let vF be its image in L(f |F ). Let F ⊂ F ′ ⊂ S be two finite subsets. Then
there exists a unique morphism of sl(F )-modules

ψF,F ′ :M(f |F ) → L(f |F ′)

such that wF 7→ vF ′ . It is clear that if F ′′ ⊃ F ′ ⊃ F then kerψF,F ′′ ⊂ kerψF,F ′ .
Since the sl(F )-module M(f |F ) has finite length, there exists a sufficiently large
finite set F̄ ⊃ F such that kerψF,F̄ ⊂ kerψF ′,F for any finite set F ′ ⊃ F . We put
ψF := ψF,F̄ .

Proposition 1. The sl(F )-module L̂(f |F ) is isomorphic to the image of ψF .
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Proof. Let F ⊂ F ′ be two finite subsets of S. There exists a finite subset ¯̄F ⊂ S
such that F ⊂ ¯̄F, kerψF, ¯̄F = kerψF , and kerψF ′, ¯̄F = kerψF ′ . Then imψF, ¯̄F is

isomorphic to imψF and is equal to U(sl(F )) · v ¯̄F , and imψF ′, ¯̄F is isomorphic to

imψF ′ and is equal to U(sl(F ′))·v ¯̄F . This defines an embedding of imψF to imψF ′

such that ψF (wF ) 7→ ψF ′(wF ′).
The limit of the direct system of such morphisms over all finite subsets F of S

defines an sl(∞)-module L̃(f). Clearly, the direct limit of the vectors ψF (wF ) is
a highest weight vector of weight λf in L̃(f). Denote this vector by ṽ. We claim

that L̃(f) is isomorphic to L(f). For the proof we provide two sl(∞)-morphisms
L(f) → L̃(f) and L̃(f) → L(f) such that v 7→ ṽ and ṽ 7→ v respectively.

The morphism L̃(f) → L(f) arises from the fact that L̃(f) is a highest weight
module with highest weight λf . We may assume that under this morphism ṽ goes
to v (in general, ṽ maps to some vector proportional to v). Now we construct a
morphism L(f) → L̃(f). For any set F we pick F̄ as described above and consider
the chain

M(f |F ) → L̂(f |F ) → L̂(f |F̄ ) → L(f |F̄ )

of sl(F )-morphisms whose composition is ψF . This defines an sl(F )-morphism

L̂(f |F ) → imψF . By passing to the direct limit, we obtain the desired sl(∞)-
morphism L(f) → L̃(f).

Since the sl(F )-submodule of L̃(f) generated by the image of v in L̃(f) is
isomorphic to imψF , the proposition is proved.

Any compatible partition S1 ⊔ ... ⊔ St of S defines a parabolic subalgebra of
sl(S): this is the algebra p with root decomposition

hS ⊕
⊕

i≺j or i ̸=j∈Sk for some k

Ceij .

We set p = l E n, where

l := hS +
⊕
i∈Sk

sl(Si), n :=
⊕

eij /∈l,i≺j

Ceij .

Set also n− :=
⊕

eij /∈l,j≺i
Ceij .

Proposition 2. Let S1 ⊔ ... ⊔ St be a compatible partition of S, and f ∈ CS be a
function such that

f(k′)− f(l′) /∈ Z

for all k′ ∈ Si, l
′ ∈ Sl where i < l. Then L(f) is isomorphic to

U(sl(S))⊗U(p) L(f)
n,

where L(f)n stands for the n-invariants of L(f). Moreover, as an sl(S1) ⊕ ... ⊕
sl(St)-module, L(f)n is isomorphic to

L(f |S1
)⊗ ...⊗ L(f |St

).
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Proof. We set Lp := U(l)·v. Standard arguments show that Lp is a simple l-module
and that Lp = L(f)n. Therefore we have a natural surjective sl(S)-morphism

α : U(sl(S))⊗U(p) Lp → L(f).

We claim that α is an isomorphism. For this it suffices to show that

β : U(n−)⊗C Lp → L(f) (n⊗ l 7→ nl)

is injective. However, the injectivity of β follows from the fact established above
that the natural map L̂(f |F ) → L(f |F̄ ) is an injection for any finite subset F ⊂ S.

Next, one notes that the simplicity of Lp as a l-module implies its simplicity
as an [l, l]-module. This follows from the fact that any h-weight space of Lp is
also an (h ∩ [l, l])-weight space. Then, since L(f |S1) ⊗ ... ⊗ L(f |St) and Lp are
simple ([l, l] ∩ bS)-highest weight (sl(S1) ⊕ ... ⊕ sl(St) = [l, l])-modules with the
same highest weight, they are isomorphic.

We say that an sl(S)-module M is integrable, if

dim(U(g) ·m) <∞

for any m ∈M and any finite-dimensional Lie subalgebra g ⊂ sl(S).

Proposition 3. Let S1 ⊔ ... ⊔ St be a partition of S compatible with ≺. Then the
sl(S)-module L(f) is sl(Sk)-integrable if and only if f |Sk

∈ CSk is dominant.

Proof. Assume that L(f) is sl(Sk)-integrable. Then the (sl(2) ∼= sl({i, j}))-module
U(sl({i, j})) · v is integrable for i, j ∈ Sk. Hence f(i)− f(j) ∈ Z≥0 for i, j ∈ Sk by
a well-known statement about sl(2).

Now we wish to prove that if f |Sk
is dominant, then L(f) is sl(Sk)-integrable.

Clearly, it suffices to show that L̂(f |F ) is sl(Sk∩S)-integrable for any finite subset

F ⊂ S. According to Proposition 1, L̂(f |F ) ∼= imψF . The fact that imψF is
sl(Sk ∩ S)-integrable follows from the well-known fact, concerning modules over
finite-dimensional Lie algebras, that, for any finite subset F ′ ⊂ S, the sl(F ′)-
module L(f |F ′) is sl(Sk ∩ F ′)-integrable.

Corollary 4. The sl(S)-module L(f) is integrable if and only if f ∈ CS is domi-
nant.

Corollary 5. Assume that f is locally constant with respect to a compatible par-
tition S1 ⊔ ... ⊔ St of S. Then L(f) is an integrable sl(Si)-module for any i ≤ t.

4. Ideals of U(sl(∞))

Let I be an ideal of U(sl(∞)). Under an ideal we always mean a two-sided ideal.
Fix an exhaustion

sl(2) ↪→ sl(3) ↪→ ... ↪→ sl(n) ↪→ sl(n+ 1) ↪→ ... (2)

of sl(∞). Then I = lim−→
n≥2

(I ∩ U(sl(n))). Set In := I ∩ U(sl(n)). To the ideal In

we assign a closed subvariety Var In ⊂ sl(n)∗ as follows. Consider the standard
filtration {U≤d}d∈Z≥0

on U(sl(n)). The associated graded algebra

grU(sl(n)) := ⊕d∈Z≥0
(U≤d /U≤d−1)
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is isomorphic to S·(sl(n)). We denote by Var In the set of common zeros in sl(n)∗

of the associated graded ideal grI := ⊕d≥0(I ∩ U≤d /I ∩ U≤d−1), and call Var In
the associated variety of In. By identifying sl(n) and sl(n)∗ via the Killing form
we can assume that Var In ⊂ sl(n).

For any positive integer r we introduce the varieties

sl(n)≤r := {x ∈ sl(n) | ∃λ ∈ C such that rk(x− λ) ≤ r},
where λ is understood as a scalar n×n-matrix. One can easily see that sl(n)≤r is
an SL(n)-stable subvariety of sl(n).

The following theorem reproduces the claim of [PP, Corollary 6.2 b)] for sl(∞).

Theorem 6. For any nonzero ideal I ⊂ U(sl(∞)) such that Var In ̸= 0 for some
n, there exists a positive integer r such that Var In = sl(n)≤r for any n ≥ 2.

5. Integrable ideals and coherent local systems

We say that an ideal I ⊂ U(sl(∞)) is integrable, if I is the annihilator of an
integrable sl(∞)-module. Integrable ideals are closely connected with coherent
local systems of modules which we define next.

Let Irrn denote the set of isomorphism classes of simple finite-dimensional sl(n)-
modules.

Definition 1. A coherent local system of modules (further shortened as c.l.s.) for
sl(∞) = lim−→ sl(n) is a collection of subsets

{Qn}n∈Z≥2
⊂

∏
n∈Z≥2

Irrn

such that Qm = ⟨Qn⟩m for any n > m, where ⟨Qn⟩m denotes the set of isomor-
phism classes of all simple sl(m)-constituents of the sl(n)-modules from Qn.

A c.l.s. {Qn}n∈Z>0 is proper if Qn ̸= Irrn for some n.

A. Zhilinskii [Zh2, Zh3] has classified c.l.s. for sl(∞) and more generally for any
locally simple Lie algebra. Moreover, if Q is a c.l.s., then

I(Qm) := ∩z∈Qm AnnU(sl(m)) z ⊂ ∩z∈Qn AnnU(sl(n)) z =: I(Qn)

for any n > m. Therefore ∪n(∩z∈Qn AnnU(sl(n)) z) = ∪nI(Qn) is an ideal of
U(sl(∞)); we denote it by I(Q). It follows from [Zh2, Lemma 1.1.2] that I(Q) is
integrable. Moreover, I(Q) ̸= 0 if Q is proper.

It turns out that Zhilinskii’s classification of c.l.s. yields a classification of
integrable ideals of U(sl(∞)). In this paper we present only the classification of
c.l.s. For the classification of integrable ideals see [PP, Theorem 7.9].

A c.l.s. Q is irreducible if Q ̸= Q′ ∪ Q′′ with Q′ ̸⊂ Q′′ and Q′′ ̸⊂ Q′. The
following proposition clarifies the role of the irreducible c.l.s.

Proposition 7. a) If Q is a proper irreducible c.l.s., then I(Q) is the annihilator
of a simple sl(∞)-module. In particular, I(Q) is primitive and hence prime.

b) If I is an integrable prime ideal of U(sl(∞)), then I = I(Q) for an irreducible
c.l.s. Q.
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Proof. Part a) follows directly from [Zh2, Lemma 1.1.2]. Part b) is a consequence
of [PP, Theorem 7.9].

Fix n. The set Irrn is parametrized by the lattice of integral dominant weights
of sl(n). Let z1, z2 be isomorphism classes of simple sl(n)-modules with respective
highest weights λ1, λ2. We denote by z1z2 the isomorphism class of the simple
module with highest weight λ1 + λ2. If S1, S2 ⊂ Irrn we set

S1S2 := {z ∈ Irrn | z = z1z2 for some z1 ∈ S1 and z2 ∈ S2}.
If Q′, Q′′ are c.l.s., we denote by Q′Q′′ the smallest c.l.s. such that

(Q′)n(Q
′′)n ⊂ (Q′Q′′)n.

However, by [Zh2] we have an equality

(Q′)n(Q
′′)n = (Q′Q′′)n.

Zhilinskii’s classification of c.l.s.. In this subsection we reproduce Zhilinskii’s clas-
sification of c.l.s. for sl(∞) [Zh1]. Any integrable sl(∞)-module M determines a
c.l.s. Q := {Qn}n∈Z>0 , where

Qn := {z ∈ Irrn |Hom(z,M) ̸= 0}.
We set cls(M) := Q. Moreover, AnnU(sl(∞))M = I(cls(M)). We construct an
irreducible c.l.s. as the c.l.s. of some explicitly given integrable sl(∞)-module.

Let V (∞) denote a vector space with basis {ei}i∈Z>0 . We endow V (∞) with
an action of sl(∞) by putting

eij · ek = eiδjk, (eii − ejj) · ek = eiδik − ejδjk for i, j, k ∈ Z>0.

In this way V (∞) becomes a simple integrable sl(∞)-module, and we call it the
natural sl(∞)-module. By V (∞)∗ we denote the restricted dual to V (∞), i.e., the
sl(∞)-submodule of V (∞)∗ spanned by the vectors {e∗i } i∈Z>0 which satisfy

e∗i (ej) = δij .

Any proper irreducible c.l.s. Q for sl(∞) is a product of the following basic
c.l.s.:

E := cls(Λ·V (∞)), Lp := cls(ΛpV (∞)), L∞
p := cls(S·(V (∞)⊗ Cp)),

Rq := cls(ΛqV (∞)∗), R∞
q := cls(S·(V (∞)∗ ⊗ Cq)),

where p, q ∈ Z≥0. More precisely, any proper irreducible c.l.s. is expressed uniquely
as

(L∞
v Lxv+1

v+1 Lxv+2

v+2 ...Lxn
n ) Em (R∞

w Rzw+1

w+1 R
zw+2

w+2 ...R
zl
l ), (3)

where

m,n, l, v, w, xi, zj ∈ Z≥0.

Here, if v = 0 (respectively w = 0), then L∞
v (respectively R∞

w ) is assumed to
be the identity (the c.l.s. consisting of the isomorphism class of the trivial 1-
dimensional module at all levels). In [Zh2] the above formulas are called the
unique factorization property.
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6. C.l.s. of simple integrable highest weight modules

We start with the following definition.

Definition 2. A c.l.s. Q is of finite type if Qn is finite for any n.

One can easily check that the irreducible c.l.s. of finite type are precisely the
c.l.s. of the form (3) with v = w = 0.

Let f ∈ CZ>0 be an integral function. We assume that a linear order on Z>0 is
fixed and therefore we use the notation of Section 3 for S = Z>0.

A result of Zhilinskii [Zh1, Lemma 2.3.1] (see also Proposition 12 below) implies
that if |f | = ∞ then cls(L(f)) is not a proper c.l.s.. If |f | < ∞, there are two
values a, b ∈ C of f such that a− b ∈ Z≥0 is maximal. We set s := a− b. For any
nonnegative integer c ≤ s we denote by dc the multiplicity of the value b+ c of f
(note that dc ∈ Z≥0∪+∞). Let p be the smallest integer such that dp = +∞, and
q be the largest integer such that dq = +∞ (if dc is finite for all 0 ≤ c ≤ b− a, we
put p = q = 0).

Proposition 8. a) For a ≺-dominant function f ∈ CZ>0 with |f | <∞, we have

cls(L(f)) = Ld0Ld0+d1 ...Ld0+d1+...+dp−1Eq−pRdsRds+ds−1 ...Rds+...+dq+1 . (4)

b) A c.l.s. of the form (4) is of finite type.
c) Let b0 be a fixed ideal Borel subalgebra of sl(∞). Then any irreducible c.l.s.

of finite type is equal to cls(Lb0(f0)) for an appropriate b0-dominant function
f0 ∈ CZ>0 .

Proof. First we prove part a). Recall that L(f) = lim−→
n≥2

L(f |{1,...,n}). Thus the

coherent local system cls(L(f)) is determined by the highest weights λn of the
finite-dimensional sl(n)-modules L(f |{1,...,n}). Such local systems have been con-
sidered by Zhilinskii [Zh1] and he provides an explicit algorithm which assigns to
{λi} a c.l.s. of the form (4). This implies a).

b) It is clear that any c.l.s. of the form (4) is a c.l.s. of finite type.
c) The ideal subalgebra b0 defines a partition S1 ⊔ S2 ⊔ S3 of Z>0 with fixed

order preserving bijections Z>0 → S1, Z<0 → S3. We denote the image of k ∈ Z>0

in S1 by k1, and the image of −k ∈ Z<0 in S3 by k3.
It is clear that any c.l.s. Q of the form (3) with v = w = 0 can be presented in

the form (4) for suitable integers p, q, d0, d1, ..., dp−1, ds, ds−1, ..., dq+1. Moreover,
cls(Lb0(f)) = Q for the b0-dominant function f ∈ CZ>0 defined as follows:

f(i) :=


p if i ∈ S2 or i = k1 for k > d0 + ...+ dp−1;

q if i = k3 for k > ds + ...+ dq+1;

j if i = k1 and d0 + ...+ dj−1 < k ≤ d0 + ...+ dj for j < p;

j if i = k3 and ds + ...+ dj+1 < k ≤ ds + ...+ dj for j > q.

3. Statements of Main Results

Theorem 9. Let b ⊃ h be a splitting Borel subalgebra of sl(∞), and f ∈ CZ>0 .
Then AnnU(sl(∞)) Lb(f) ̸= 0 if and only if f is almost integral and locally constant
with respect to the linear order defined by b.
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Theorem 10. The following conditions on a nonzero ideal I of U(sl(∞)) are
equivalent:

— I = AnnU(sl(∞)) Lb(f) for some splitting Borel subalgebra b ⊃ h and some

function f ∈ CZ>0 ;
— I is a prime integrable ideal of U(sl(∞));
— I = AnnU(sl(∞)) Lb0(f0) for some f0 ∈ CZ>0 , where b0 is any fixed ideal

Borel subalgebra.

Proposition 11. If b is a nonideal Borel subalgebra then there exists a prime
integrable ideal I which does not arise as the annihilator of a simple b-highest
weight sl(∞)-module.

We split the proof of Theorem 9 into two parts:
a) if AnnU(sl(∞)) Lb(f) ̸= 0, then f is almost integral and locally constant;
b) if f is almost integral and locally constant with respect to the order defined

by b, then

AnnU(sl(∞)) Lb(f) ̸= 0.

Parts a) and b) of Theorem 9 are proved in Sections 4 and 5 respectively. Theo-
rem 10 and Proposition 11 are proved in Section 6.

4. Proof of Theorem 9 a)

To prove Theorem 9 a), we fix a Borel subalgebra b ⊃ h of sl(∞) and hence
an order ≺ on Z>0. Throughout Sections 4 and 5 we suppress the dependence
from b and ≺ in all notation. We set I(f) := AnnU(sl(∞)) L(f) for any f ∈ CZ>0 .
Sometimes we consider the finite-dimensional Lie algebra sl(n). In this case the
fixed order {1, ..., n} is the standard order, and I(f) ⊂ U(sl(n)) is the annihilator
of the simple sl(n)-module with highest weight λf for f ∈ Cn.

Theorem 9a) follows from Propositions 12, 13 and 14 below.

Proposition 12. Let f ∈ CZ>0 . If I(f) is nonzero, then |f | <∞.

Proposition 13. Let f ∈ CZ>0 . If I(f) is nonzero, then f is almost integral.

Proposition 14. Let f ∈ CZ>0 . If I(f) is nonzero, then f is locally constant with
respect to ≺.

We prove these propositions consecutively in Sections 1, 4 and 5. Clearly, Propo-
sition 12 follows from Proposition 14, however we require Proposition 12 for the
proof of Proposition 14. Propositions 13 and 14 rely on a version of the Robinson-
Schensted algorithm which we present in Section 2.

1. Proof of Proposition 12

We start with some notation. Let n ≥ 2 be a positive integer. For any ideal I ⊂
U(sl(n)) we denote by grI ⊂ S·(sl(n)) the associated graded ideal. By Var(I) ⊂
sl(n)∗ we denote the set of zeros of grI.

The radical ideals of the center ZU(sl(n)) of U(sl(n)) are in one-to-one corre-
spondence with Gn-invariant closed subvarieties of h∗n, where hn is a fixed Cartan
subalgebra of sl(n) and Gn is the symmetric group on n letters. Let I be an ideal
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of U(sl(n)). Then ZVar(I) denotes the subvariety of h∗n corresponding to the rad-
ical of the ideal I ∩ ZU(sl(n)) of ZU(sl(n)). If {It} is any collection of ideals in
U(sl(n)), then

ZVar(∩tIt) = ∪t ZVar(It), (5)

where here and below bar indicates Zariski closure.
Let ϕ : {1, ..., n} → Z>0 be an injective map. Slightly abusing notation, we

denote by ϕ the induced homomorphism

ϕ : U(sl(n)) → U(sl(∞)).

By inj(n) we denote the set of injective maps from {1, ..., n} to Z>0, and by inj0(n)
the set of order preserving maps from {1, ..., n} to Z>0 with respect to the standard
order on {1, ..., n} and the order ≺ on Z>0.

By sl(ϕ) we denote sl(imϕ) ⊂ sl(∞). For any f ∈ CZ>0 we set fϕ := f ◦ ϕ.
ThenM(fϕ) :=Mb∩sl(ϕ)(fϕ) and L(fϕ) := Lb∩sl(ϕ)(fϕ) are well defined (b∩sl(ϕ))-
highest weight sl(ϕ)-modules. If f is dominant and ϕ ∈ inj0(n), then fϕ is (b ∩
sl(ϕ))-dominant.

Let ϕ ∈ inj0(n) and M̃ (f) be any quotient of M (f). It is well known that

ZVar(AnnU(sl(ϕ)) M (fϕ)) = ZVar(AnnU(sl(ϕ)) M̃ (fϕ)) =
ZVar(AnnU(sl(ϕ)) L(fϕ)) = Gn(ρn + λfϕ),

where ρn ∈ h∗n is the half-sum of positive roots.
Let g be a Lie algebra. The adjoint group of g is the subgroup of Aut g generated

by the exponents of all nilpotent elements of g. We denote this group by Adj g.

Lemma 15. Let ϕ1 : k → g and ϕ2 : k → g be two Adj g-conjugate morphisms of
Lie algebras. Let I be a two-sided ideal of U(g). Then

ϕ−1
1 (I) = ϕ−1

2 (I).

Proof. The adjoint action of g on U(g) extends uniquely to an action of Adj g on
U(g). The ideal I is g-stable and thus is Adj g-stable. Let g ∈ Adj g be such that
ϕ1 = g ◦ ϕ2. Then

ϕ−1
1 (g(i)) = ϕ−1

2 (i)

for any i ∈ I. Hence,

ϕ−1
1 (I) = ϕ−1

2 (I).

Proof of Proposition 12. Let I(f) ̸= 0. Assume to the contrary that there exist
i1, ..., is, ... ∈ Z>0 such that

f(i1), ...., f(is), ...

are pairwise distinct elements of C. As I(f) ̸= U(sl(∞)), there exists a positive
integer n and an injective map ϕ : {1, ..., n} → Z>0 such that

Iϕ := I(f) ∩U(sl(ϕ)) ̸= 0,

or equivalently

U(sl(n)) ⊃ ϕ−1(I(f)) = ϕ−1(Iϕ) ̸= 0. (6)
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Let ψ ∈ inj(n) be another map. Since ϕ and ψ are conjugate via the adjoint
group of sl(∞), we have

ϕ−1(I(f)) = ψ−1(I(f)) ̸= 0. (7)

This means that ϕ−1(I(f)) depends on n and f but not on ϕ, and we set

In := ϕ−1(I(f)).

Assume now that ϕ ∈ inj0(n). Then the highest weight space of the sl(∞)-

module L(f) generates a highest weight sl(ϕ)-submodule L̂(fϕ). Clearly,

AnnU(sl(ϕ)) L(f) ⊂ AnnU(sl(ϕ)) L̂(fϕ).

Therefore,

In ⊂ ∩ϕ∈inj0(n) AnnU(sl(n)) L̂(fϕ)

and

In ∩ ZU(sl(n)) ⊂ ∩ϕ∈inj0(n)(AnnU(sl(n)) L̂(fϕ) ∩ ZU(sl(n))).

Hence, according to (5) we have

∪ϕ∈inj0(n)Gn(ρn + λfϕ) = Gn(ρn + ∪ϕ∈inj0(n)λfϕ) ⊂ ZVar(In).

We claim that

Gn(∪ϕ∈inj0(n)λfϕ) = h∗n,

and thus that
ZVar(In) = h∗n. (8)

Our claim is equivalent to the equality

Gn(∪ϕ∈inj0(n)λfϕ) = (∪ϕ∈inj(n)λfϕ) = h∗n

which is implied by the following equality:

(∪ϕ∈inj(n)fϕ) = Cn. (9)

We now prove (9) by induction. The inclusion {1, ..., n− j} → {1, ..., n} induces
a restriction map

res : Cn → Cn−j .

Denote by fψ∗ the preimage of fψ under res for ψ ∈ inj(n− j). We will show that

fψ∗ ⊂ ∪ϕ∈inj(n)fϕ (10)

for any j ≤ n and any map ψ ∈ inj(n− j). This holds trivially for j = 0. Assume
that it also holds for j. Fix ψ ∈ inj(n− j − 1) and set

(ψ × k)(l) :=

{
ψ(l) if l ≤ n− j − 1

ik if l = n− j
.
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It is clear that there exists s ∈ Z≥1 such that

(ψ × k) ∈ inj(n− j)

for any k ∈ Z≥s. Moreover, fψ×k1 ̸= fψ×k2 for any k1 ̸= k2. Therefore

∪k∈Z≥s
fψ×k∗ = fψ∗,

which yields (10).
For j = n, (10) yields Cn ⊂ ∪ϕ∈inj(n)fϕ, consequently (9) holds. Then (8) holds

also, hence

In ∩ ZU(sl(n)) = 0.

It is a well known fact that an ideal of U(sl(n)) whose intersection with ZU(sl(n))
equals zero is the zero ideal [Dix, Proposition 4.2.2]. Therefore, we have a contra-
diction with (6), and the proof is complete.

2. Algorithm for sl(n)

According to Duflo’s Theorem, any primitive ideal of U(sl(n)) is the annihilator of
some simple highest weight module, i.e., any primitive ideal is of the form I(f) for
some f ∈ Cn. The associated variety of I(f) is the closure of a certain nilpotent
coadjoint orbit O(f) of sl(n) [Jo4]. To O(f) ⊂ sl(n)∗ one assigns a partition p(f)
of n as follows. One first represents O(f) by a nilpotent element x ∈ sl(n). Then
p(f) is the partition conjugate to the partition arising from the sizes of Jordan
blocks of x considered as a linear operator on the natural representation of sl(n).

We now describe the algorithm which computes p(f). This is a modification of
the Robinson-Schensted algorithm, see [Knu, Theorem A on p. 52].

Let f ∈ Cn be a function.
Step 1) Set f+ := (f(1), f(2)− 1, ..., f(n)− n+ 1).
Step 2) Introduce an equivalence relation ∼ on {1, ..., n}:

i ∼ j if and only if f(i)− f(j) ∈ Z.
Let t be the number of equivalence classes for ∼, and let n1, ..., nt be the cardinal-
ities of the respective equivalence classes.

Step 3) Consider f+ as a function f+ : {1, .., n} → C. The restriction of f+ to
the equivalence classes of Step 2) defines subsequences

seq1(f
+), seq2(f

+), ..., seqt(f
+)

of respective lengths n1, ..., nt.
Step 4) Fix i. Note that the elements of seqi(f

+) are linearly ordered as their
pairwise differences are integers. Since the elements of seqi(f

+) are not necessary
pairwise distinct, we modify the above linear order by letting f+(m) ◃ f+(k) if
m > k and f+(m) = f+(k). In this way we introduce a new linearly ordered set
˜seqi(f+) of cardinality ni.
Step 5) Apply the Robinson-Schensted algorithm to the linearly ordered sets
˜seqi(f+) from Step 4) to produce partitions pi of ni.
Step 6) Consider the partitions p1, p2, ..., pt as a partition RS(f) of n.
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Proposition 16. Let f ∈ Cn be a function. Then p(f) = RS(f).

Proof. This statement is contained in the work of A. Joseph, so all we need to do
is to translate Joseph’s result to the language which we use in this paper. For any
f ′ ∈ Cn set (f ′)# := (f ′(1), f ′(2) + 1, ..., f ′(n) + n− 1).

We note first that

I(f) = I((seq1(f
+), ..., seqt(f

+))#). (11)

This is a translation of the equality

J(w1w2λ) = J(w2λ) (12)

for appropriate choices of Weyl group elements w1,w2, as stated at the bottom of
the first page of [Jo1] (the equality (12) uses the notation of A. Joseph which is
slightly different from ours). Thus we can assume further that

f+ = (seq1(f
+), seq2(f

+), ..., seqt(f
+)).

Next, using the well known fact that p(f) is recovered uniquely from p(seqi(f
+))

for all i, we can suppose that f+ = seq1(f
+), i.e., that f is integral.

In the case when f+ is regular, i.e. when f+(k) ̸= f+(l) for k ̸= l, Joseph
states [Jo3, Section 3.3] that p(f) equals the shape of the output of the standard
Robinson-Schensted algorithm [Knu, 5.1.4, proof of Theorem A] applied to the
unique Weyl group element w such that w(f+) is dominant. It is easy to check
that this statement is equivalent to the claim that p(f) = RS(f) in this case.

In the case when f+ is not regular, following Joseph [Jo1, Section 2.1] we replace
f by any function f ′ such that (f ′)+ is regular and f belongs to the upper closure

F̂f ′ of a certain facette Ff ′ containing f ′ [Jo1, Section 2.1]. In our terminology
this means that f ′ and f satisfy the following conditions:

if f+(i) > f+(j), then (f ′)+(i) > (f ′)+(j) for all i, j ≤ n; (13)

if f+(i) < f+(j), then (f ′)+(i) < (f ′)+(j) for all i, j ≤ n; (14)

if f+(i) = f+(j) and i < j, then (f ′)+(i) > (f ′)+(j). (15)

Then, according to Joseph, p(f) = p(f ′) [Jo2, Section 2.4]. A direct checking using
(13)-(15) and the above linear order ▹ shows that in this case p(f ′) = RS(f).

Example 17. Let f = (
√
2− 1, 5, 9,

√
2 + 3, 5,

√
2 + 4, 7, 7) ∈ C8.

1) f+ = (
√
2− 1, 4, 7,

√
2, 1,

√
2− 1, 1, 0).

2-3) seq1(f
+) = (

√
2−1,

√
2,
√
2−1) (n1 = 3), seq2(f

+) = (4, 7, 1, 1, 0) (n2 = 5).

4) ˜seq1(f
+) = {(

√
2− 1)′,

√
2, (

√
2− 1)′′}, ˜seq2(f

+) = {4, 7, 1′, 1′′, 0}.
5) Applying the Robinson-Schensted algorithm we have

˜seq1(f
+) 7→

√
2 (

√
2− 1)′′

(
√
2− 1)′

7→ (2, 1) ,

˜seq2(f
+) 7→ 7 1′′ 0

4 1′
7→ (3, 2)

.

6) p(
√
2− 1, 5, 9,

√
2 + 3, 5,

√
2 + 4, 7, 7) = (2, 1) ∪ (3, 2) = (3, 2, 2, 1).
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3. Rank of a partition

Let, as above, O(f) ⊂ sl(n)∗ be the nilpotent coadjoint orbit of sl(n) assigned to
a function f ∈ Cn. For x ∈ O(f), the rank of x is independent on x and equals
n − p(f)max, where p(f)max is the maximal element of the partition p(f). By
definition, the integer p(f)max is the corank of p.

Lemma 18. Let f ∈ Cn. The corank of p(f) equals the length of a longest strictly
decreasing subsequence of f+ such that the difference between any two elements is
an integer.

Proof. It is obvious that the corank of p(f) equals the maximum of coranks of
p1, ..., pt, where p1, ..., pt are the partitions defined in Step 5) of Section 2. It is

known that for each i the corank of pi = p( ˜seqi(f+)) equals to the length of a

longest strictly decreasing subsequence [Knu, p. 69, Ex. 7] of ˜seqi(f+). For some

i0 a longest strictly decreasing subsequence of ˜seqi0(f
+) will also be a longest

strictly decreasing subsequence of f+ such that the difference between any two
elements is an integer, and the lemma is proved.

4. Proof of Proposition 13

Proposition 13 is implied by the following two lemmas.

Lemma 19. Let f ∈ CZ>0 . If I(f) ̸= 0, there exists r ∈ Z≥0 such that any finite
subset F ⊂ Z>0 has a subset F ′ ⊂ F so that f |F ′ is integral and |F\F ′| ≤ r.

Lemma 20. Fix r ∈ Z≥0. If for any finite subset F ⊂ Z>0 there is F ′ ⊂ F so
that f |F ′ is integral and |F\F ′| ≤ r, then there is a finite subset F ⊂ Z>0 such
that f |Z>0\F is integral and |F | ≤ r.

Proof of Lemma 19. Due to the description of the corank of p(f) presented in
Lemma 18, Lemma 19 is implied by the following lemma.

Lemma 21. Fix f ∈ CZ>0 . If I(f) ̸= 0, then there exists r ∈ Z≥0 such that
rk p(f |F ) ≤ r for any finite subset F ⊂ Z>0.

Proof. Assuming that I(f) ̸= 0, pick r as in Theorem 6. Let F be a finite subset
of Z>0.

There is a nonzero homomorphism of sl(F )-modules M (f |F ) → L(f). There-
fore, as L(f |F ) is the unique simple quotient of M (f |F ), L(f |F ) is isomorphic to
a subquotient of L(f) considered as an sl(F )-module. This implies

(U(sl(F )) ∩ I(f)) · L(f |F ) = 0

and

Var(I(f) ∩U(sl(F ))) ⊂ sl(F )≤r.

As all elements of Var(I(f |F )) are nilpotent, we have rkO(f |F ) ≤ r, and thus
rk p(f |F ) ≤ r.
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Proof of Lemma 20. We reduce the problem to a statement concerning the graph
Γ := (Z>0, Ef ) attached to the pair (Z>0, f) in the following way: the vertices
of Γ are the elements of Z>0, Ef stands for the edges of Γ, and i, j ∈ Z>0 are
connected by an edge if and only if f(i)− f(j) /∈ Z.

Lemma 20 is implied by the following lemma.

Lemma 22. Let Γ = (S,E) be a graph. Assume that there is r ∈ Z≥0 so that any
finite subset F ⊂ S decomposes into two subsets

inf(F ) ∪ fin(F )
with the properties

a) Γ|inf(F ) has no edges, b) |fin(F )| ≤ r. (16)

Then S decomposes into the union of two subsets inf(S) ∪ fin(S) satisfying (16)
with F replaced by S.

Proof. In what follows we say that a vertex of S is connected with another vertex
if they belong to a common edge. Denote by S>r the set of vertices of S which
belong to at least r + 1 edges. Respectively, let S≤r be the set of vertices of S
which belong to at most r edges. In addition, denote by S≤r the subset of S≤r

consisting of vertices connected with at least one vertex from S≤r.
We claim that both S>r and S≤r are finite and

i) |S>r| ≤ r, ii) |S≤r| ≤ r2. (17)

First we show (17) under the assumption that S>r and S≤r are finite. Let S̃>r

be a finite subset of S such that
1) S>r ⊂ S̃>r,

2) any vertex from S>r is connected with at least r+1 vertices form S̃>r (such

a subset S̃>r always exists).

A vertex i ∈ inf(S̃>r) can be connected only with vertices from fin(S̃>r), and
hence i ∈ S<r by (16)a). Therefore,

inf(S̃>r) ⊂ S≤r ∩ S̃>r.

This implies
S>r ⊂ fin(S̃>r), (18)

and since |fin(S̃>r)| < r by (16)b), we obtain (17)i).
To prove (17)ii), note that since any vertex of fin(S≤r) belongs to at most r

edges, the entire set fin(S≤r) belongs to at most r2 edges. As any vertex from
S≤r is connected with a vertex from fin(S≤r), we obtain (17)ii).

Now we drop the assumption that both S>r and S≤r are finite. Applying the
preceding arguments we show that (17) holds if we replace S>r and S≤r by their
intersections with any finite subset of S. Thus (17) holds also for S>r and S≤r.

To finish the proof, we set

fin(S) := fin(S̃>r ∪ S≤r).
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Then |fin(S)| ≤ r by (16)b). The same arguments we used to prove (18) imply

S>r ⊂ fin(S̃>r ∪ S≤r) := S.

Due to the definition of S≤r, any vertex from

S\(S̃>r ∪ S≤r)

can be connected only with vertices from S>r. Thus Γ|S\fin(S) has no edges, and
the proof is complete.

5. Proof of Proposition 14

Lemma 23. Fix r ∈ Z≥0. Let f ∈ C2r+2 be an integer valued function such that

f(2i) > f(2i− 1) (19)

for 1 ≤ i ≤ r + 1. Then rk p(f) > r.

Proof. Assume rk p(f) ≤ r. Then the sequence f+ = (f(1), f(2)−1, ..., f(n)−n+1)
contains a strictly decreasing subsequence seq′ of length at least r + 2. The set
{1, ..., 2r+2} is the disjoint union of r+1 pairs of the form {2i, 2i− 1}, hence for
some i both f(2i− 1)− (2i− 1)+1 and f(2i)− 2i+1 belong to seq′. On the other
hand,

f(2i− 1)− (2i− 1) + 1 ≤ f(2i)− 2i+ 1

by (19), thus seq′ is not strictly decreasing. This contradiction shows that rk p(f) >
r.

Proof of Proposition 14. Assume that I(f) ̸= 0 and pick r as in Lemma 21. Using
Proposition 12 and Proposition 13, we reduce Proposition 14 to the following
statement:

If an integer valued function f ∈ CZ>0 takes finitely many distinct values and
there exists r ∈ Z≥0 such that rk p(f |F ) ≤ r for any finite subset F ⊂ Z>0, then
f is locally constant.

We prove this statement by induction on |f |. The base of induction (|f | = 1) is
trivial.

Assume that the statement holds for |f | = n ≥ 1, and let f be a function
which takes precisely (n+ 1) values. Let M be the maximal value of f . Say that
i, j ∈ Z>0, i ̸= j, are equivalent whenever one of the following conditions hold:

1) i ≺ j, f(i) = f(j) =M , and f(s) =M , for any s, i ≺ s ≺ j;
2) i ≺ j, f(i) < M , f(j) < M , and f(s) < M , for any s, i ≺ s ≺ j.

It is easy to see that this this is a well defined equivalence relation on Z>0. There
are two possibilities for the respective equivalence classes Sα:

a) f(s) =M for any s ∈ Sα;
b) f(s) < M for any s ∈ Sα.
We claim that there exist no more than r + 1 equivalence classes of type b).

Assume to the contrary that s0 ≺ s2 ≺ ... ≺ s2r+2 are elements from r+2 distinct
equivalence classes of type b). Then, for any i, 0 ≤ i ≤ r, there exists s2i+1 ∈ S
such that

f(s2i+1) =M and s2i ≺ s2i+1 ≺ s2i+2.
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The restriction of f to the set F := {s0, s1, ..., s2r+2} satisfies the assumption of
Lemma 23. Hence rk p(f |F ) > r, which contradicts the statement of Lemma 21.

Therefore, there are at most r + 1 equivalence classes Sα of type b). Any two
classes of type a) must be separated by a class of type b), and hence there are at
most r + 2 equivalence classes of type a). In particular the partition ⊔αSα = Z>0

is finite.
Clearly, f takes at most n values on each Sα. By the induction assumption each

Sα admits a compatible partition such that f |Sα is locally constant. Therefore, f
is also locally constant.

5. Proof of Theorem 9 b)

Theorem 9b) is a corollary of the following result.

Proposition 24. Let f ∈ CZ>0 be a locally constant and almost integral function.
Then there is a nonzero integrable ideal I of U(sl(∞)) such that I ⊂ I(f).

We will prove a more precise version of this result. Let S1 ⊔ ... ⊔ St = Z>0 be
a fixed finite partition of Z>0 compatible with the order ≺. Denote by Si1 , ..., Six
all infinite sets in this partition. By γ we denote the total number of elements in
the finite sets of the partition. Let f ∈ CZ>0 be a function locally constant with
respect to the partition S1 ⊔ ... ⊔ St. It is easy to see that f ∈ CZ>0 is almost
integral if and only if f(j)− f(k) ∈ Z for any j ∈ Sj′ and k ∈ Sk′ such that both
Sj′ and Sk′ are infinite. Under the assumption that f is almost integral, we set

α(f) :=
∑

1≤j<x
max(0, f(Sij+1)− f(Sij )),

A(f) :=
∑

1≤j<x
max(f(Sij )− f(Sij+1), 0),

(20)

where f(Si) is the value of f on any element of Si (we recall that f is constant on
Si).

The following proposition is a more precise version of Proposition 24 and com-
pares the annihilator of a simple highest weight module with the annihilator of a
c.l.s. We will prove it by first establishing a finite-dimensional analogue, namely
Proposition 26, and then showing that Proposition 25 actually reduces to this
finite-dimensional analogue.

Proposition 25. Let f ∈ CZ>0 be a function, locally constant with respect to the
partition S1 ⊔ ... ⊔ St of Z>0. Then

I(L∞
(α(f)+γ)E

A(f)) ⊂ I(f).

Let F be a finite subset of Z>0. Clearly,

(S1 ∩ F ) ⊔ ... ⊔ (St ∩ F )

is a partition of F . We wish to define α(f ′) and A(f ′) by formulas analogous
to (20) for any function f ′ ∈ CF which is locally constant with respect to the
partition (S1 ∩ F ) ⊔ ... ⊔ (St ∩ F ). For this purpose we denote by S′

1 the first Sij
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for which Sij ∩F ̸= ∅, by S′
2 the second Sij for which Sij ∩F ̸= ∅ and so on. Then

we define α(f ′) and A(f ′) by the respective right-hand sides of (20) applied to the
subsets (S′

1 ∩ F ), (S′
2 ∩ F ), ... instead of Si1 , Si2 , .... Finally, γ(F ) stands for the

total number of elements in all intersections Si ∩ F for finite sets Si. For a large
enough F we have γ(F ) = γ,A(f |F ) = A(f), α(f |F ) = α(f).

Proposition 26. Let F ⊂ Z>0 be a finite subset with n elements, and f ′ ∈ CF be
a function locally constant with respect to the partition (S1∩F )⊔ ...⊔(St∩F ) = F .
Then

I((L∞
(α(f ′)+γ(F ))E

A(f ′))n) ⊂ I(f ′).

For the proof of Proposition 26 we need two lemmas (Lemmas 27 and 28 below)
and some more notation. In Lemma 27 f = (f1, ..., fn) stands for a function
f ∈ Cn. We set L(f1, ..., fn) := L(f) and I(f1, ..., fn) := I(f) (where the fixed
order on {1, 2, ..., n} is the standard one). For a fixed nonnegative integer s < n
and z0 ∈ C, we put:

f̃ = (f1, ..., fs, z0, fs+1, ..., fn) ∈ Cn+1.

If A,B are two subsets of Irrn, A⊗B stands for the set of isomorphism classes of
all simple constituents of the tensor products α⊗ β for α ∈ A and β ∈ B.

Lemma 27. Let Qn be a subset of Irrn such that

I(Qn) ⊂ I(f1, ..., fs, fs+1 − 1, ..., fn − 1).

Then
I((L∞

1 )n ⊗Qn) ⊂ I(f̃),

I(Qn ⊗ (L∞
1 )n) being an ideal of U(sl(n)) and I(f̃) being an ideal of U(sl(n+1)).

Proof. Our idea is to replace z0 by a “generic value”. To do this, consider the
supplementary Lie algebras

sl(n+ 1)[z] := sl(n+ 1)⊗C C[z] ⊂ sl(n+ 1)(z) := sl(n+ 1)⊗C C(z),

the larger Lie algebra sl(n + 1)(z) being finite dimensional and simple over the

algebraically closed field C(z). The sequence f̂ := (f1, ..., fs, z, fs+1, ..., fn) of
elements of C(z) defines a weight λf̂ ∈ h∗n+1 ⊗ C(z).

Applying the equality (11) to f̂ , we obtain

I(f̂) = I(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s).

By Proposition 2, we have

L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s) ∼=
∼= U(sl(n+ 1)(z))⊗U(p) L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s)n,

where p is a parabolic subalgebra of sl(n + 1)(z) with a semisimple part sl(n)(z)
and nilradical n. Proposition 2 yields also an isomorphism of sl(n)(z)-modules

L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s)n ∼=
∼= L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1)⊗C C(z).
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Therefore we have an isomorphism of sl(n)-modules

L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s) ∼=
∼= L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1)⊗C S·(C(z)

n
).

Hence L(f1, ...fs, fs+1 − 1, fs+2 − 1, ..., fn − 1, z + n− s) is annihilated by

I(Qn ⊗ (L∞
1 )n),

i.e.,

I(Qn ⊗ (L∞
1 )n) ⊂ I(f1, ..., fs, fs+1 − 1, fs+2 − 2, ..., fn − 1, z + n− s) = I(f̂).

For this reason it suffices to show that

I(f̂ ) ∩U(sl(n+ 1)) ⊂ I(f̃)

for any z0 ∈ C.
Let vf̂ be a highest weight vector of the sl(n+1)(z)-module L(f̂). Consider the

U(sl(n+ 1)[z])-module

U(sl(n+ 1)[z]) · vf̂ . (21)

Clearly, the action of hn+1 on the module defined in (21) is semisimple. The λf̂ -

weight space of (21) coincides with U(hn+1 ⊗ C[z]) · vf̂ , and is isomorphic to C[z]
as a C[z]-module. Therefore, the λf̂ -weight space of the quotient

U(sl(n+ 1)[z]) · vf̂/(z − z0)U(sl(n+ 1)[z]) · vf̂ (22)

is one-dimensional. In particular, the quotient (22) is nonzero.

Obviously, (22) is annihilated by

I(f̂) ∩U(sl(n+ 1)). (23)

On the other hand, (22) has a highest weight vector of weight λf̃ , and thus L(f̃)
is annihilated by (23). This is precisely what we have to prove.

Lemma 28. Let F be a finite subset of Z>0 with n elements, and f ′ ∈ CF be a
function locally constant with respect to the partition (S1 ∩F )⊔ ...⊔ (St ∩F ) = F .
After identification of sl(F ) with sl(n) we have

I((L∞
(α(f ′)+γ(F ))E

A(f ′))n−(γ(F )+α(f ′))) ⊂ I(f ′),

where I((L∞
(α(f ′)+γ(F ))E

A(f ′))n−(γ(F )+α(f ′))) ⊂ U(sl(n−(γ(F )+α(f ′))) and I(f ′) ⊂
U(sl(n)).
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Proof. We prove this lemma by induction on γ(F ) + α(f ′).
Let γ(F ) = α(f ′) = 0. Then f ′ is dominant, L(f ′) is integrable and the

statement of Lemma 27 follows from Lemma 8.
Next, assume that γ(F ) + α(f ′) = k + 1 and that our statement holds for

γ(F ) + α(f ′) ≤ k. Then α(f ′) > 0 or γ(F ) > 0. We consider both possibilities.
Let α(f ′) > 0. Then f ′(S′

j) < f ′(S′
j+1) for some j. Denote by s the maximal

element of S′
j ∩ F (with respect to the order inherited from the order ≺). Put

F− := F\s, f ′− := f ′|F− ∈ CF− ,

and note that f ′− is locally constant with respect to the partition

(S1 ∩ F−) ⊔ ... ⊔ (St ∩ F−)

of F−. Moreover, it is easy to see that

γ(F−) = γ(F ), α(f ′−) < α(f ′) and A(f ′−) ≤ A(f ′).

Thus we can apply the induction assumption to f ′−, which yields

I((L∞
γ(F )+α(f ′

−) ⊗ EA(f ′
−))n−1−(γ(F )+α(f ′

−))) ⊂ I(f ′−).

Applying Lemma 27 to s, z0 = f ′(s), we obtain

I((L∞
γ(F )+α(f ′

−)+1E
A(f ′

−))n−1−(γ(F )+α(f ′
−))) ⊂ I(f ′). (24)

Since

γ(F−) + α(f ′−) + 1 ≤ γ(F ) + α(f ′) and
n− 1− (γ(F−) + α(f ′−)) ≥ n− (γ(F ) + α(f ′)),

(24) implies

I((L∞
γ(F )+α(f ′)E

A(f ′))n−(γ(F )+α(f ′))) ⊂ I(f ′),

which is precisely what we need to prove.
In the case when α(f ′) = 0, γ(F ) > 0 we pick s to be the least element of

F\ ∪j≤x Sij with respect to the order inherited from ≺. Then we apply the same
arguments as above.

Remark 1. It is clear that Lemma 28 applies to an arbitrary linearly ordered finite
set F , an arbitrary compatible partition of F , an arbitrary function f ∈ CF locally
constant with respect to this partition, and an arbitrary choice of equivalence
classes of this partition used to define α(·),A(·) and γ(·).

Proof of Proposition 26. Identify F with {1, .., n} as ordered sets (the order on F
being inherited from the order ≺). The function f ′ ∈ CF becomes

f ′ = (f ′1, ..., f
′
n) ∈ Cn.
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Let s be the least element of S′
1 ∩ F under the above identification. Put

f̌ := (f ′1, ..., f ′s, f
′
s, ..., f

′
s︸ ︷︷ ︸

(γ(F )+α(f ′)+1)− times

,, f ′s+1, ..., f
′
n).

It is clear that f̌ is locally constant with respect to the partition

Š1 ⊔ Š2 ⊔ ... = {1, ..., n+ α(f ′) + γ(F )},
which is defined as follows:

(1) Ši coincides with (Si ∩ F ) for i < j, where j is defined by the equality
Sj = S′

1;
(2) Šj = (Sj ∩F )∪{š+1, ..., š+α(f ′)+γ(F )}, where š is the image in {1, ..., n}

of the last element of Sj ∩ F ;
(3) Ši = {š− + γ(F ) + α(f ′), š− + γ(F ) + α(f ′) + 1, ..., š+ + γ(F ) + α(f ′) −

1, š+ + γ(F ) + α(f ′)} for i > j, where š− and š+ are is the images in {1, ..., n} of
the least and the greatest elements of Si ∩ F .

Remark 1 enables us to apply Lemma 28 to the function f̌ and the partition
Š1 ⊔ Š2 ⊔ ... = {1, ..., n+ α(f ′) + γ(F )}:

I((L∞
γ(F )+α(f ′)E

A(f ′)))n) ⊂ I(f̌).

Finally, since L(f) is an sl(n)-subquotient of L(f̌), we have

I(f̌) ∩U(sl(n)) ⊂ I(f ′),

and Proposition 26 is proved.

Proposition 25 follows now from Proposition 26 and the next lemma.

Lemma 29. Let I ⊂ U(sl(∞)) be an ideal, and f ∈ CZ>0 be a function. Then
I ⊂ I(f) if and only if IF := I ∩U(sl(F )) annihilates L(f |F ) for any finite subset
F of Z>0.

Proof. Let I ⊂ I(f). Denote by vf a highest weight vector of L(f). If F is a
finite set, then U(sl(F )) · vf is a highest weight sl(F )-submodule of L(f). Thus
L(f |F ) is isomorphic to a subquotient of L(f), and consequently IF = I∩U(sl(F ))
annihilates L(f |F ).

We now prove the converse. Set

M (F ) := M (f |F )/(I ∩U(sl(F )) ·M (f |F ).
As I∩U(sl(F )) annihilates L(f |F ),M (F ) is a nonzero highest weight sl(F )-module.
Let vf (F ) be a highest weight vector of M(F ). For any finite subsets F1 ⊂ F2 ⊂
Z>0, there exists a unique morphism of sl(F1)-modules

ϕF1,F2 : M (F1) → M (F2)

such that ϕF1,F2(vf (F1)) = vf (F2). This defines a direct system of morphisms

{ϕF1,F2
}F1⊂F2

,

and we denote its limit by M̃ (f).
By definition, I annihilates the sl(∞)-module M̃ (f). Our construction guaran-

tees that M̃ (f) contains a highest vector vf := lim−→ vf |Fi
of weight λf . Thus L(f)

is isomorphic to a simple quotient of M̃ (f), which implies I ⊂ I(f).
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6. Proof of Theorem 10 and Proposition 11

Theorem 10 is implied by the following propositions.

Proposition 30. Let b ⊃ h be a splitting Borel subalgebra of sl(∞), and f ∈ CZ>0

be a function. Then I = AnnU(sl(∞)) Lb(f) is a prime integrable ideal of U(sl(∞)).

Proposition 31. Let I be a prime integrable ideal of U(sl(∞)) and b0 ⊃ h be
an ideal Borel subalgebra of sl(∞). Then I = AnnU(sl(∞)) Lb0(f0) for some f0 ∈
CZ>0 .

1. Proof of Proposition 30

The annihilator of a simple module is always prime, therefore in order to prove
Proposition 30 we have to prove that the ideal AnnU(sl(∞)) Lb(f) is integrable

for any b and any f ∈ CZ>0 . This is a direct consequence of the following three
statements.

Proposition 32. Let S be an infinite subset of Z>0 and ϕ : Z>0 → S be a fixed
bijection. Let I be an ideal of U(sl(∞)). Then the induced isomorphism ϕ :
U(sl(∞)) → U(sl(S)) identifies I and I ∩U(sl(S)).

Proof. Fix the exhaustion (2) and assume that sl(n) is generated by eij for i ̸=
j, i, j ≤ n. Then sl(S) = ∪msl(Sm), where Sm is the image of {1, ...,m} under ϕ.
We have

I ∩U(sl(S)) = ∪m(I ∩U(sl(Sm))).

Since, for every n ≥ 1, sl(n) is Adj sl(∞)-conjugate to sl(Sn), Lemma 15 yields

ϕ−1(I ∩U(sl(S))) = ϕ−1(∪n(I ∩U(sl(Sn)))) = ∪n(I ∩U(sl(n))) = I.

Corollary 33. Let M be an sl(∞)-module and S be an infinite subset of Z>0.
Then AnnU(sl(∞))M is an integrable ideal in U(sl(∞)) if and only AnnU(sl(S))M
is an integrable ideal of U(sl(S)).

Proposition 34. Let b and f be as in Proposition 30. If AnnU(sl(∞)) Lb(f) ̸= 0,
then there exists an infinite subset S ⊂ Z>0 such that Lb(f) is an integrable sl(S)-
module.

Proof. As AnnU(sl(∞)) Lb(f) ̸= 0, f is locally constant relative to some partition
S1 ⊔ ... ⊔ St = Z>0, compatible with the order determined by b. Since Si is
infinite for some i, we apply Proposition 5 to conclude that Lb(f) is an integrable
sl(Si)-module.

2. Proof of Proposition 31

Let b0 ⊃ h be a fixed ideal Borel subalgebra of sl(∞). The goal of this section is to
show that any integrable ideal is an annihilator of some b0-highest weight module
of sl(∞), and thus to prove Proposition 31. Due to the fact that an arbitrary
irreducible c.l.s. has the form L∞

l QR∞
r for l, r ∈ Z≥0 and some irreducible c.l.s.

of finite type Q, it is enough to prove the following proposition.
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Proposition 35. For any irreducible c.l.s. Q of finite type and any l, r ∈ Z≥0

there exists f ∈ CZ>0 such that

AnnU(sl(∞)) Lb0(f) = I(L∞
l QR∞

r ).

We fix l, r ∈ Z≥0. According to Proposition 32, the ideals AnnU(sl(∞))M and
AnnU(sl(S))M can be identified for any sl(∞)-module M and any infinite subset
S of Z>0. Therefore, Proposition 35 is implied by the following lemma.

Lemma 36. For any irreducible c.l.s. Q of finite type and any l, r ∈ Z≥0, there
exist f ∈ CZ>0 and an infinite subset S ⊂ Z>0 such that the sl(∞)-module Lb0(f) is
integrable as an sl(S)-module and the c.l.s. for sl(S) of Lb0(f) equals to L∞

l QR∞
r .

We now prove Lemma 36 by pointing out a concrete set S for which the claim of
the lemma holds. We recall that the ideal Borel subalgebra b0 defines a partition
S1 ⊔ S2 ⊔ S3 of Z>0. Let Fl be the set consisting of the first l elements of S1. As
an ordered set Fl is isomorphic to {1, ...., l} with the standard order. Let Fr be
set consisting of the the last r elements of S3. As an ordered set Fr is isomorphic
to {−r, ....,−1} with the standard order. Put

S := Z>0\(Fl ⊔ Fr).

Note that b0S := b0∩ sl(S) is an ideal Borel subalgebra of sl(S). Therefore, Propo-
sition 8 c) asserts that, for any c.l.s. Q of finite type, there is a b0S-dominant
function f0 ∈ CS such that Q = cls(Lb0

S
(f)). For this reason Lemma 36 is a direct

corollary of the following lemma.

Lemma 37. Let f ∈ CZ>0 satisfy the conditions
1) f |S ∈ CS is b0S-dominant,
2) f(i)− f(j) /∈ Z for any i ̸= j, j ∈ Fl,
3) f(i)− f(j) /∈ Z for any i ̸= j, j ∈ Fr.

Then the c.l.s. of the sl(S)-module Lb0(f) is equal to L∞
l cls(Lb0

S
(f |S))R∞

r .

Proof. By Proposition 2,

Lb0(f) ∼= U(sl(∞))⊗U(p) Lb0(f)n,

where Lb0(f)n ∼= Lb0
S
(f |S) as an sl(S)-module. Hence, there is an isomorphism of

sl(S)-modules
Lb0(f) ∼= S·(sl(∞)/p)⊗C Lb0

S
(f |S). (25)

Furthermore, there is an isomorphism of sl(S)-modules

sl(∞)/p ∼= (V (S)⊗ Cl ⊕ C
l(l−1)

2 )⊕ (V (S)∗ ⊗ Cr ⊕ C
r(r−1)

2 )⊕ Crl, (26)

where V (S) is the natural sl(S)-module and C stands for the one-dimensional
trivial sl(S)-module. Thus,

S·(sl(∞)/p) ∼= S·(V (S)⊗Cl)⊗S·(V (S)∗⊗Cr)⊗S·(C
l(l−1)

2 ⊕C
r(r−1)

2 ⊕Crl). (27)

The c.l.s. of S·(V (S) ⊗ Cl) = S·(V (S))⊗l coincides with L∞
l , and the c.l.s. of

S·(V (S)∗⊗Cr) = S·(V (S)∗)
⊗r coincides with R∞

r . Hence the c.l.s. of S·(sl(∞)/p)
as an sl(S)-module coincides with L∞

l R∞
r , and the proof is complete.
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Example 38. Consider the fixed exhaustion (2) of sl(∞). Note that there is a
canonical injection of sl(i)-modules Si Vi → Si+1 Vi+1, where Vi and Vi+1 are
respectively the natural representations of sl(i) and sl(i + 1). The direct limit
D := lim−→i

Si Vi is a simple integrable sl(∞)-module which is multiplicity free as an
h-module. The module D has no highest weight with respect to any splitting Borel
subalgebra b [DP1]. The c.l.s. corresponding to D equals L∞

1 , and in particular
has infinite type. Lemma 37 implies that AnnU(sl(∞))D equals to the annihilator
of a simple nonintegrable highest weight module. Indeed, let b0 be the ideal Borel
subalgebra corresponding to the order (iii) in Section 1 and let f be the function

f(1) = α /∈ Z, f(n) = 0, n > 1.

Then AnnU(sl(∞))D = AnnU(sl(∞)) Lb0(f). This example illustrates the role of
simple integrable non-highest weight modules in Theorem 10: the annihilators of
such simple modules arise as annihilators of simple nonintegrable highest weight
modules.

3. Proof of Proposition 11

It remains to prove Proposition 11.

Proof of Proposition 11. We say that an ideal I of U(sl(∞)) is of locally finite
codimension if I ∩ U(g) has finite codimension in U(g) for any finite-dimensional
subalgebra g ⊂ sl(∞). It is easy to see that such ideals have the following remark-
able properties:

(i) the map Q 7→ I(Q) identifies the set of c.l.s. of finite type with the set of
ideals of locally finite codimension;

(ii) if an sl(∞)-module M is annihilated by an ideal I ⊂ U(sl(∞)) of locally
finite codimension, then M is integrable.

Using the properties (i) and (ii) one observes that if b is a Borel subalgebra, such
that for any prime ideal I of locally finite codimension there exists f ∈ CZ>0 with
I = AnnU(sl(∞)) Lb(f), then b is ideal. Indeed, Proposition 8a) gives an explicit
expression of cls(Lb(f)) in terms of f . The requirement that this procedure allows
for every c.l.s. of finite type to appear in the right-hand side of (4) forces the
existence of a ≺-compatible decomposition Z>0 = F ⊔S ⊔F ′, where F and F ′ are
arbitrary finite sets. Clearly, this is equivalent to the requirement that b is ideal.

7. On simple sl(∞)-modules determined up to isomorphism by their
annihilators

It is a remarkable fact that if g is finite dimensional and semisimple, then a
simple g-module M is determined up to isomorphism by its annihilator in U(g) if
and only if M is finite dimensional. We now provide an analogue of this fact for
sl(∞).

Recall that a simple tensor module of sl(∞) is a simple submodule of the tensor
algebra

T·(V (∞)⊕ V (∞)∗)
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[DPS, PS]. It is easy to check that, for any fixed ideal Borel subalgebra b0, the
simple tensor modules are precisely the highest weight modules Lb0(f) such that
f can be chosen to be 0 almost everywhere (recall that the isomorphism class of a
module Lb0(f) recovers f up to an additive constant).

Proposition 39. Let M be a simple sl(∞)-module which is determined up to
isomorphism by its annihilator I = AnnU(sl(∞))M . If I is integrable, then M is
isomorphic to a simple tensor module.

Proof. If I is not of locally finite codimension, then Lemma 37 shows that our
assumption on M is contradictory as the function f from Lemma 37 is not deter-
mined uniquely by I up to an additive constant by I. In other words, if I is not of
locally finite codimension, then Lemma 37 implies that there exist f1, f2 ∈ CZ>0

such that
AnnU(sl(∞)) Lb0(f1) = AnnU(sl(∞)) Lb0(f2) = I

but Lb0(f1) ̸∼= Lb0(f2).
Assume now that I has locally finite codimension. Then I = I(Q) for an irre-

ducible c.l.s. of finite type Q, and by Proposition 8 c) M is isomorphic to Lb0(f0)
for some ideal Borel subalgebra b0 and b0-dominant function f0. Moreover, as
I is clearly fixed under the group G̃ := {g ∈ AutCV (∞) | g∗(V (∞)∗) = V (∞)∗}
considered as a group of automorphisms of U(sl(∞)), it follows thatM is invariant
under G̃. Now Theorems 3.4 and 4.2 in [DPS] imply that Lb(f) is a simple tensor
module.

It remains to show that a simple tensor sl(∞)-module M is determined up to
isomorphism by its annihilator AnnU(sl(∞))M . If M ′ is a simple sl(∞)-module
with AnnU(sl(∞))M

′ = AnnU(sl(∞))M = I, then the fact that I has locally finite
codimension implies that M ′ is integrable and that the c.l.s. of M ′ coincides with
the c.l.s. of I, i.e., cls(M) = cls(M ′). Furthermore, a careful analysis (carried
out in detail in A. Sava’s master’s thesis [S]) shows that M ′ is a highest weight
sl(∞)-module with respect to the ideal Borel subalgebra given by the order (iii)
of Section 1, and that the highest weight of M equals the highest weight of M ′.
This of course implies that M ′ ∼=M .
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