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Abstract. We compute the automorphism groups of finite and cofinite ind-grassmannians,
as well as of the ind-variety of maximal flags indexed by Z>0. We pay special attention to
differences with the case of ordinary flag varieties.
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1. Introduction

The flag varieties of the classical Lie groups are central objects of study both in geometry and
representation theory. In a sense, they are a hub for many directions of research in both fields.
Several different infinite-dimensional analogues of the ordinary flag varieties have been studied
in the literature, one such analogue being the ind-varieties of generalized flags introduced in [DP]
and further investigated in [PT], [IPW], [FP1], [FP2]; see also the survey [IP]. The latter ind-
varieties are direct limits of classical flag varieties and are homogeneous ind-spaces for the simple
ind-groups SL(∞), SO(∞), Sp(∞). Without doubt, some of these ind-varieties, in particular
the ind-grassmannians, have been known long before the paper [DP].

A natural question of obvious importance is the question of finding the automorphism groups
of the ind-varieties of generalized flags. The purpose of the present note is to initiate a discussion
in this direction and to point out some differences with the case of ordinary flag varieties: see
Section 4. The topic is very close to Vasil’s interests and expertise, and for sure I would have
discussed it with him if he were still alive.
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2. Automorphisms of finite and cofinite ind-grassmannians

The base field is C. Let V be a fixed countable-dimensional complex vector space. We fix
a basis E = {e1, . . . , en, . . . } of V and set Vn := spanC{e1, . . . , en}. Then V = ∪nVn. Fix
k ∈ Z>0. By definition, Gr(k, V ) is the set of all k-dimensional subspaces in V and has an
obvious ind-variety structure:

Gr(k, V ) = lim
−→

Gr(k, Vn).

The projective ind-space P(V ) equals Gr(1, V ). Note that the basis E plays no role in this con-
struction. We think of the ind-varieties Gr(k,E) for k ∈ Z>0 as the ”finite ind-grassmannians.”

The basis E plays a role when defining the ”cofinite” ind-grassmannians. Fix a subspace
W ⊂ V of finite codimension in V and such that E ∩W is a basis of W . Let Gr(W,E, V ) be
the set of all subspaces W ′ ⊂ V which have the same codimension in V as W and in addition
contain almost all elements of E. Then Gr(W,E, V ) has the following ind-variety structure:

Gr(W,E, V ) = lim
−→

Gr(codimV W, V̄n)
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where {V̄n} is any set of finite-dimensional spaces with the properties that V̄n ⊃ span{E\{E ∩
W}}, dim V̄n = n > codimV W , E ∩ V̄n is a basis of V̄n, and ∪V̄n = V .

It is clear that the ind-varieties Gr(W,E, V ) and Gr(k, V ) are isomorphic: the isomorphism
is given by

(1) Gr(W,E, V ) 3W ′ → AnnW ′ ⊂ V∗ := span{E∗},

where E∗ = {e∗1, e∗2, . . . } is the system of linear functionals dual to the basis E: i.e. e∗i (ej) = δij .
The map (1) is an obvious analogue of finite-dimensional duality. Therefore the automorphism
groups Aut Gr(k, V ) and Aut Gr(W,E, V ) for codimW V = k are isomorphic; by an automor-
phism we mean of course an automorphism of ind-varieties.

The following result should in principle be known. We present a proof which shows a connec-
tion with the work [PT].

Proposition 1. Aut Gr(k, V ) = PGL(V ) where GL(V ) denotes the group of all invertible linear
operators on V and PGL(V ) := GL(V )/CmultId (where Cmult is the multiplicative group of C).

Proof. An automorphism φ : Gr(k, V ) → Gr(k, V ) induces embeddings φn : Gr(k, Vn) ↪→
Gr(k, VN(n)) for appropriate N(n) ≥ n. These embeddings are linear in the sense that
φ∗n(OGr(k,VN(n))(1)) is isomorphic to OGr(k,Vn)(1), where by O·(1) we denote the positive genera-

tor of the respective Picard group. According to Theorem 1 in [PT], φn is one of the following:

(i) an embedding induced by the choice of an n-dimensional subspace Wn ⊂ VN(n) for some
N(n) ≥ n,

(ii) an embedding factoring through a linearly embedded projective space PM(n) ⊂ Gr(k, VN(n))
for some M(n) < N(n).

If k > 2, option (ii) may hold only for finitely many n as the contrary implies that the image
of φn is contained in a projective ind-subspace

P := lim
−→

PM(n) ⊂ Gr(k, V ).

Then, since P is not isomorphic to Gr(k, V ) by Theorem 2 in [PT], the image of φn would
necessarily be a proper ind-subvariety of Gr(k, V ), which is a contradiction.

For k = 1, options (i) and (ii) are the same, and therefore without loss of generality we can
now assume that for our fixed k option (i) holds for all n. The embeddings φn : Gr(k, Vn) ↪→
Gr(k, VN(n)) determine injective linear operators φ̃n : Vn → VN(n). Moreover, the operators φ̃n

are defined up to multiplicative constants which can be chosen so that φ̃n|Vn−1 = φ̃n−1 for any
n. Therefore, we obtain a well-defined linear operator

φ̃ : V = lim
−→

Vn → V = lim
−→

VN(n)

which induces our automorphism φ. Since φ is invertible, φ̃ is also invertible, and since φ̃ depends
on a multiplicative constant, we conclude that φ determines a unique element φ̄ ∈ PGL(V ).

In this way we have constructed an injective homomorphism

Aut Gr(k, V )→ PGL(V ), φ 7→ φ̄.

The inverse homomorphism

PGL(V )→ Aut Gr(k, V )

is obvious because of the natural action of PGL(V ) on Gr(k, V ). The statement follows. �
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3. Ind-variety of maximal ascending flags

We now consider a particular ind-variety of maximal generalized flags, in fact the simplest
case of maximal generalized flags. Let V and E be as above. Define Fl(FE , E, V ) as the set of
all infinite chains F ′E of subspaces of V

0 ⊂ (F ′E)1 ⊂ · · · ⊂ (F ′E)k ⊂ . . .

where dim(F ′E)k = k and (F ′E)n = Fn
E := span{e1, . . . , en} for large enough n. This set has an

obvious structure of ind-variety as

Fl(FE , E, V ) = lim
−→

Fl(Fn
E)

where Fl(Fn
E) stands for the variety of maximal flags in the finite-dimensional vector space Fn

E .
Denote by GL(E, V ) the subgroup of GL(V ) of automorphisms of V which keep all but finitely

many elements of E fixed. The elements of GL(E, V ) are the E-finitary automorphisms of V .

Proposition 2.

AutFl(FE , E, V ) = P (GL(E, V ) ·BE)

where BE ⊂ GL(V ) is the stabilizer of the chain FE in GL(V ) and GL(E, V )·BE is the subgroup
of GL(V ) generated by GL(E, V ) and BE.

We start with a lemma.

Lemma 1. Fix k ≥ 2. Let ψk−1, ψk : V → V be invertible linear operators such that
ψk−1(Wk−1) ⊂ ψk(Wk) for any pair of subspaces Wk−1 ⊂ Wk of V with dimWk−1 = k − 1,
dimWk = k. Then ψk−1 = cψk for some 0 6= c ∈ C.

Proof. Assume the contrary. Let v be a vector in V such that the space Z := spanC{ψk−1(v), ψk(v)}
has dimension 2. Extend v to a basis v = v1, v2, . . . of V . Then, setting Wk = spanC{v1, . . . , vk}
and Wk−1 = spanC{v1, . . . , vk−1}, we see that the condition ψk−1(Wk−1) ⊂ ψk(Wk) implies Z ⊂
ψk(Wk). Similarly, settingW ′k = spanC{v1, vk+1, vk+2 . . . , v2k−1} andW ′k−1 = spanC{v1, vk+1, vk+2 . . . , v2k−2}
we have Z ⊂ ψk(W ′k). However clearly

dim(Wk ∩W ′k) = 1,

hence the dimension of the intersection ψk(Wk)∩ψk(W ′k) must also be 1 due to the invertibility
of ψk. Contradiction.

�

Proof of Proposition 2. We first embed A := AutFl(FE , E, V ) into the group PGL(V ). For
this we consider the obvious embedding

A ↪→ Π∞i=1 Aut Gr(i, V )

arising from the diagram of surjective morphisms of ind-varieties

Fl(FE , E, V )

uu �� ))
P(V ) = Gr(1, V ) Gr(2, V ) . . . Gr(k, V ) . . . .

By Proposition 1, the groups Aut Gr(k, V ) are isomorphic to PGL(V ) for all k ∈ Z>0. More-
over, it is clear that the injective homomorphism A→ ΠkPGL(V ) factors through the diagonal
of ΠkPGL(V ) since Lemma 1 shows that an automorphism from A induces necessarily the same
element in PGL(V ) via any projection Fl(FE , E, V )→ Gr(k, V ).
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It remains to determine which elements of the group PGL(V ) arise as images of elements
of A. It is clear that this image contains both PGL(E, V ) and PBE as each of these groups
acts faithfully on Fl(FE , E, V ). Indeed, the fact that PGL(E, V ) acts on Fl(FE , E, V ) is clear.
To see that PBE acts on Fl(FE , E, V ) one notices that for any F ′E ∈ Fl(FE , E, V ) and any
γ ∈ PBE , the flag γ(F ′E) differs from FE only in finitely many positions, hence is a point on
Fl(FE , E, V ).

On the other hand, it is clear that the image φ̄ ∈ PGL(V ) of φ ∈ A is contained in
P (GL(E, V ) · BE). Indeed the composition ψ ◦ φ̄ with a suitable element of PGL(E, V ) will
fix the point FE on Fl(FE , E, V ). This means that ψ ◦ φ̄ ∈ PBE . Therefore the image of A in
PGL(V ) is contained in P (GL(E, V ) ·BE), and we are done.

�

4. Discussion

First, Proposition 1 can be generalized to ind-varieties of the form Fl(F,E, V ) where F is a
finite chain consisting only of finite-dimensional subspaces of V , or only of subspaces of finite
codimension of V . The precise definition of the ind-varieties Fl(F,E, V ) is given in [DP]. In
these cases, the respective automorphism groups are always isomorphic to PGL(V ), however in
the case of finite codimension there is a natural isomorphism with PGL(V∗).

We now point out some differences with the case of ordinary flag varieties. A first obvious
difference is the following. Despite the fact that Gr(k, V ) = PGL(E, V )/Pk, where Pk is the
stabilizer in PGL(E, V ) of a k-dimensional subspace of V , the automorphism group of Gr(k, V )
is much larger than PGL(E, V ). Therefore Gr(k, V ) is a quotient of any subgroup G satisfying
PGL(E, V ) ⊂ G ⊂ PGL(V ), and there is quite a variety of such subgroups. Similar comments
apply to the other examples we consider.

Next, we note that the automorphism group of an ind-variety of generalized flags is in gen-
eral not naturally embedded into PGL(V ). Indeed, the case of the cofinite ind-grassmannian
Gr(W,E, V ) shows that the natural isomorphism Aut Gr(W,E, V ) = PGL(V∗) does not em-
bed Aut Gr(W,E, V ) into PGL(V ) by duality, but only embeds Aut Gr(W,E, V ) into the much
larger group PGL((V∗)

∗) in a way that its image does not keep the subspace V ⊂ (V∗)
∗ invariant.

This is clearly an infinite-dimensional phenomenon.
Finally, recall that the automorphism groups of all flag varieties of the group GL(n) are

isomorphic, and inclusions of parabolic subgroups induce isomorphisms of automorphism groups.
This note shows that the latter statement is not true for the group GL(E, V ) as the injection
AutFl(FE , E, V ) ↪→ Aut Gr(k, V ) constructed in the proof of Proposition 2 is proper (and both
Gr(k, V ) and Fl(FE , E, V ) are homogeneous ind-varieties for GL(E, V )).

We hope that the above differences motivate a more detailed future study of the automorphism
groups of arbitrary ind-varieties of generalized flags.
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