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Institut Élie Cartan de Lorraine
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Abstract. Let G be one of the ind-groups GL(∞), O(∞), Sp(∞), and let P1, . . . ,P`
be an arbitrary set of ` splitting parabolic subgroups of G. We determine all such sets
with the property that G acts with finitely many orbits on the ind-variety X1× · · ·×X`

where Xi = G/Pi. In the case of a finite-dimensional classical linear algebraic group G,
the analogous problem has been solved in a sequence of papers of Littelmann, Magyar–
Weyman–Zelevinsky and Matsuki. An essential difference from the finite-dimensional case
is that already for ` = 2, the condition that G acts on X1×X2 with finitely many orbits
is a rather restrictive condition on the pair P1,P2. We describe this condition explicitly.
Using the description we tackle the most interesting case where ` = 3, and present the
answer in the form of a table. For ` ≥ 4 there always are infinitely many G-orbits on
X1 × · · · ×X`.

Introduction

The following is a fundamental question in the theory of group actions: given a
linear reductive algebraic group G, on which direct products X1×X2×· · ·×X` of
compact G-homogeneous spaces does G act with finitely many orbits? The problem
is non-trivial only for ` > 2, since it is a classical fact that G always acts with
finitely many orbits on X1 × X2 (parabolic Schubert decomposition of a partial
flag variety). It has turned out that the problem is most interesting for ` = 3, as
for ` ≥ 4 the group G always acts with infinitely many orbits.

In the special case where one of the factors is a full flag variety, e.g., X1 = G/B,
the above problem is equivalent to finding whether there are finitely many B-orbits
on X2 ×X3; this special case is solved in [6] and [13]. In this situation, the theory
of spherical varieties is an effective tool. In particular, the existence of a dense B-
orbit is sufficient for ensuring that there are finitely many B-orbits. The problem
is also related to studying the complexity of a direct product of two HV-varieties,
i.e., closures of G-orbits of highest weight vectors in irreducible G-modules; this
problem is considered in [12].

If no factor Xi is a full flag variety, the problem is considered in the classical
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cases in [7], [8] (types A and C, through the theory of quiver representations) and
in [9, 10] (types B and D). For exceptional groups, the general question has been
considered in [1].

We also mention the works [5] and [11], where the authors study double flag
varieties of the form G/P ×K/Q with a finite number of K-orbits for a symmetric
subgroup K of G. The problem of finitely many G-orbits on X1 × X2 × X3 is
recovered if K is taken to be the diagonal embedding of G into G×G.

In the present paper we address the above general problem in a natural infinite-
dimensional setting. We let G be one of the classical (or finitary) ind-groups
GL(∞), O(∞), Sp(∞) and ask the same question, where each Xi is now a locally
compact G-homogeneous ind-space. The latter are known as ind-varieties of gene-
ralized flags and have been studied in particular in [2] and [4]; see also [3] and the
references therein.

For these ind-varieties our question becomes interesting already for ` = 2.
Indeed, for which direct products X1 × X2 of ind-varieties of generalized flags
does G act with finitely many orbits on X1 ×X2? We prove that this is a quite
restrictive property of the ind-variety X1 ×X2. More precisely, we show that G
acts with finitely many orbits on X1×X2 only if the stabilizers P1 and P2 of two
respective (arbitrary) points on X1 and X2 have each only finitely many invariant
subspaces in the natural representation V of G. In addition, it is required that the
invariant subspaces of one of the groups, say P1, are only of finite dimension or
finite codimension. The precise result is Theorem 1.4, where we introduce adequate
terminology: we call the parabolic ind-subgroup P1 large, and the parabolic ind-
subgroup P2 semilarge.

Having settled the case ` = 2 in this way, we saw ourselves strongly motivated
to solve the problem for any ` ≥ 3. The case ` ≥ 4 is settled by a general statement,
Lemma 4.2, claiming roughly that in the direct limit case the number of orbits can
only increase. Hence for ` ≥ 4 there are infinitely many orbits on X1 × · · · ×X`.
The case ` = 3 is the most intriguing. Here we prove that X1×X2×X3 has finitely
many G-orbits, if and only if the same is true for all products X1 ×X2, X2 ×X3

and X1×X3, and in addition X1×X2×X3 can be exhausted by triple flag varieties
with finitely many orbits over the corresponding finite-dimensional groups. Those
triple flag varieties have been classified by Magyar–Weymann–Zelevinsky for SL(n)
and Sp(2n) [7, 8], and by Matsuki for O(2n+1) and O(2n) [9], [10]. In this way, we
settle the problem completely for the classical ind-groups GL(∞), O(∞), Sp(∞).

Acknowledgement. We are thankful to Roman Avdeev for pointing out the
papers [1] and [10] to us, and for some constructive remarks. We thank Alan
Huckleberry for a general discussion of the topic of this work. L.F. has been
supported in part by ANR project GeoLie (ANR-15-CE40-0012). I.P. has been
supported in part by DFG Grant PE 980/7-1.

1. Statement of main results

1.1. Classical ind-groups

The base field is C. Let V be a countable-dimensional vector space. Classical ind-
groups are realized as subgroups of the group GL(V ) of linear automorphisms of
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V . We consider three situations to which we refer as types:

(A) no additional structure on V ;
(BD) V is endowed with a nondegenerate symmetric bilinear form ω;

(C) V is endowed with a symplectic bilinear form ω.

The dual space V ∗ = Hom(V,C) is uncountable-dimensional. We fix once and for
all a countable-dimensional subspace V∗ ⊂ V ∗ such that the pairing

V∗ × V → C

is nondegenerate: in type (A) we fix any subspace V∗ ⊂ V ∗ which satisfies these
conditions, while in types (BD) and (C) (type (BCD), for short) we take V∗ :=
{ω(v, ·) : v ∈ V }.

Let G be one of the classical ind-groups

GL(∞) := {g ∈ GL(V ) : g(V∗) = V∗ and there are finite-codimensional
subspaces of V and V∗ fixed pointwise by g},

O(∞) := {g ∈ GL(∞) : g preserves ω} in type (BD),

Sp(∞) := {g ∈ GL(∞) : g preserves ω} in type (C).

To describe G as an ind-group, we need to take a basis of V . If E is a basis of
V , we denote by E∗ = {φe : e ∈ E} ⊂ V ∗ the dual family of linear forms defined
by

φe(e
′) =

{
0 if e′ ∈ E \ {e},
1 if e′ = e.

We call E admissible if, according to type, the following is satisfied:

(A) the dual family E∗ spans the subspace V∗;
(BCD) E is endowed with an involution iE : E → E, with at most one fixed point,

such that ω(e, e′) 6= 0 if and only if e′ = iE(e).

If E is admissible in the sense of type (BCD), then it is a fortiori admissible in
the sense of type (A). Note that in type (C), the involution iE cannot have a fixed
point.

We claim now that, for any admissible basis E, in type (A) the group G =
GL(∞) coincides with the group

GL(E) := {g ∈ GL(V ) : g(e) = e for almost all e ∈ E},

where “almost all” means “all but finitely many”. Indeed, clearly, GL(E) is a
subgroup of GL(∞). For the opposite inclusion, consider g ∈ GL(∞). Since g
fixes pointwise a finite-codimensional subspace of V , there exists a cofinite subset
E′ ⊂ E such that g(e′) − e′ =

∑
e∈E\E′ xe,e′e ∈ 〈E \ E′〉 for all e′ ∈ E′. On the

other hand, the fact that g−1(φe) ∈ V∗ implies xe,e′ = 0 for all e ∈ E \ E′ and
almost all e′, which shows that g ∈ GL(E).

In type (BCD), we have

G = {g ∈ GL(V ) : g(e) = e for almost all e ∈ E, and g preserves ω}.
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If we take any filtration E =
⋃
n≥1En by finite subsets, such that En is iE-stable

in type (BCD), we get an exhaustion of G,

G =
⋃
n≥1

G(En) for G(En) := G ∩GL(〈En〉).

Here the notation 〈·〉 stands for the linear span, and GL(〈En〉) is viewed as a
subgroup of GL(V ) in the natural way. The subgroups G(En) are finite-dimen-
sional algebraic groups isomorphic to GLm(C), Om(C), or Spm(C), depending
on whether G is GL(∞), O(∞), or Sp(∞). This exhaustion provides G with a
structure of ind-group, which is independent of the chosen admissible basis.

1.2. Splitting Cartan and parabolic subgroups

We call H ⊂ G a splitting Cartan subgroup if it is the subgroup H(E) of elements
which are diagonal in some admissible basis E.

We call P ⊂ G a splitting parabolic subgroup if it contains a splitting Cartan
subgroup H = H(E), for some admissible basis E, and P(En) := P ∩G(En) is a
parabolic subgroup of G(En) for all n ≥ 1.

Splitting parabolic subgroups can be fully classified in terms of so-called gene-
ralized flags; see Section 2.2. A splitting Borel subgroup is a splitting parabolic
subgroup which is minimal (equivalently this is the stabilizer of a generalized flag
which is maximal). We consider two types of splitting parabolic subgroups which
are not Borel subgroups:

Definition 1.1. We say that a splitting parabolic subgroup P is semilarge if it has
only finitely many invariant subspaces in V . This is equivalent to the requirement
that P be the stabilizer in G of a finite sequence of subspaces

{F0 = 0 ( F1 ( F2 ( · · · ( Fm−1 ( Fm = V }

(such that F⊥k = Fm−k in type (BCD)).
We say that P is large if, moreover, each subspace Fk is either finite-dimensional

or finite-codimensional.

Given a splitting parabolic subgroup P ⊂ G, the quotient set G/P has a
structure of ind-variety, which is given by the exhaustion

G/P =
⋃
n≥1

G(En)/P(En).

Each quotient G(En)/P(En) is a flag variety for the group G(En), hence a projec-
tive variety. Thus G/P is locally projective, but in general it is not projective, i.e.,
does not admit an embedding as a closed ind-subvariety in the infinite-dimensional
projective space P∞(C). However, if P is large or semilarge, such an embedding
does exist (see [2, Prop. 7.2]). It is worth noting that, for any splitting parabolic
subgroup P, the ind-variety G/P can be realized as an ind-variety of generalized
flags; see Section 2.3.

Contrary to the finite-dimensional situation, any two splitting Cartan subgroups
of G do not have to be conjugate; see Example 2.3. In this paper, a source of



MULTIPLE FLAG IND-VARIETIES WITH FINITELY MANY ORBITS

difficulty is that we are considering splitting parabolic subgroups which do not a
priori have a splitting Cartan subgroup in common, even up to conjugacy. The
following characterization of large splitting parabolic subgroups will be useful in
this respect.

Proposition 1.2 (see Proposition 3.1). Let P ⊂ G be a splitting parabolic sub-
group. The following conditions are equivalent.

(i) P is large;
(ii) for every splitting Cartan subgroup H ⊂ P, there is g ∈ G such that

gHg−1 ⊂ P.

The proof is given in Section 3.

1.3. Main results

We consider a product of ind-varieties of the form

X = G/P1 × · · · ×G/P` (1.1)

where P1, . . . ,P` ( G are splitting parabolic subgroups of G. The ind-variety X
is equipped with the diagonal action of G. Our purpose is to solve the following
problem:

Problem 1.3. Characterize all `-tuples (P1, . . . ,P`) such that X has a finite
number of G-orbits.

Of course if ` = 1, then X has only one G-orbit. If ` = 2, the number of orbits
in X is infinite in general, and our first main result claims the following.

Theorem 1.4. If ` = 2, then X (of (1.1)) has a finite number of G-orbits if and
only if one of the subgroups P1,P2 is large and the other one is semilarge.

Corollary 1.5. Let P be a splitting parabolic subgroup of G. Then the ind-variety
G/P has a finite number of P-orbits if and only if P is large.

Next we consider the case ` = 3, i.e.,

X = G/P1 ×G/P2 ×G/P3.

By Theorem 1.4, if X has a finite number of G-orbits then all three splitting
parabolic subgroups P1,P2,P3 are semilarge and at least two of them are large.
Moreover, it follows from Proposition 1.2 that, up to replacing the parabolic
subgroups by conjugates, there is no loss of generality in assuming that P1,P2,
and P3 contain the same splitting Cartan subgroup H = H(E) for some admissible
basis E. This assumption guarantees that the construction of Section 1.2 can be
done simultaneously for each factor G/Pi (i ∈ {1, 2, 3}). Hence, by considering a
filtration E =

⋃
nEn as in Section 1.2, we obtain an exhaustion

X =
⋃
n≥1

X(En) (1.2)

where X(En) :=
∏3
i=1 G(En)/Pi(En) is a triple flag variety for the group G(En).

See Section 4.1 for more details.
Our main result regarding the case ` = 3 can be stated as follows.
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Theorem 1.6. If ` = 3, then X can have a finite number of G-orbits only if the
splitting parabolic subgroups P1,P2,P3 are semilarge and at least two of them are
large. Moreover, in this situation, X has a finite number of G-orbits if and only
if, for all n, the finite-dimensional triple flag variety X(En) has a finite number
of G(En)-orbits.

Finally, X has a finite number of G-orbits if and only if the triple (P1,P2,P3)
appears, up to permutation, in Table 1.

In Table 1, we use the following notation for a semilarge parabolic subgroup
P obtained as the stabilizer of a finite chain of subspaces {F0 = 0 ( F1 ( . . . (
Fm = V } as in Definition 1.1. We set |P| = m and denote by Λ(P) the list of
values dimFk/Fk−1 (k = 1, . . . ,m) written in nonincreasing order; in case of j
repetitions of the same value a, we write aj . Note that this list always starts with
∞, and P is large if and only if there is a unique occurrence of ∞ in the list.

Table 1. Classification of triples (P1,P2,P3), up to permutation, such that the ind-
variety G/P1 ×G/P2 ×G/P3 is of finite type.

GL(∞) case:
P1 P2 P3 additional condition

|P1| = 2 |P2| = 2 semilarge two of P1,P2,P3 are large

|P1| = 2 |P2| = 3 3 ≤ |P3| ≤ 5 two of P1,P2,P3 are large

Λ(P1) = (∞, 2) |P2| = 3 semilarge P2 or P3 is large

|P1| = 2 |P2| = 3, 1 ∈ Λ(P2) semilarge two of P1,P2,P3 are large

Λ(P1) = (∞, 1) large semilarge no additional condition

Sp(∞) case:
P1 P2 P3

|P1| = 2 |P2| = 3, large |P3| ∈ {3, 5}, large

|P1| = 2 Λ(P2) = (∞, 12) large

Λ(P1) = (∞, 12) |P2| = 3 large

Λ(P1) = (∞, 12) |P2| = 3, large semilarge

O(∞) case:
P1 P2 P3

|P1| = 2 Λ(P2) = (∞, b2), b ≤ 3 large

|P1| = 2 Λ(P2) = (∞, 14) large

|P1| = 2 |P2| = 3, large |P3| ∈ {3, 5}, large

|P1| = 2 |P2| = 3, large Λ(P3) = (∞, c2, 14), c <∞
|P1| = 2 |P2| = 3, large Λ(P3) = (∞, 18)

Λ(P1) = (∞, b2), b <∞ Λ(P2) = (∞,∞, 1) |P3| ∈ {3, 5}, large

Λ(P1) = (∞, 12) |P2| = 3, large semilarge

Λ(P1) = (∞, 12) |P2| ∈ {3, 4} large

Finally, it is not surprising that, as in the case of finite-dimensional multiple
flag varieties, the following holds.

Theorem 1.7. If ` ≥ 4, then X has an infinite number of G-orbits.
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The rest of the paper is structured as follows. In Section 2 we summarise some
existing results on the classical ind-groups and their homogeneous ind-varieties.
In Section 3 we show the characterization of large parabolic subgroups stated in
Proposition 1.2. In Section 4 we explain the construction of the exhaustion of (1.2)
in more detail, and prove Lemma 4.2 which claims that whenever the multiple
ind-variety X of (1.1) has an exhaustion as in (1.2), we get an embedding of orbit
sets

X(En)/G(En) ↪→ X/G.

This lemma plays a key role in the proof of our main results. Theorem 1.4 is proved
in Sections 5–6. Theorem 1.6 is proved in Section 7, except for the verification of
Table 1 which is done in Appendix A. Finally the proof of Theorem 1.7 appears
in the very short Section 8.

2. Preliminaries on admissible bases and generalized flags

2.1. Splitting Cartan subgroups and admissible bases

We refer to Sections 1.1 and 1.2 for the definitions of admissible basis and splitting
Cartan subgroup. Note that the group G acts on the set of admissible bases.
Moreover, if E is an admissible basis of V then

H(g(E)) = gH(E)g−1,

hence G acts by conjugation on the set of splitting Cartan subgroups.

Lemma 2.1. Let E,E′ be two admissible bases of V which differ by finitely many
vectors, that is,

E = E0 t I and E′ = E0 t I ′

where I, I ′ are finite sets. Then the splitting Cartan subgroups H(E) and H(E′)
are conjugate.

Conversely, if H and H′ are two conjugate splitting Cartan subgroups, then
there are admissible bases E and E′ which differ by finitely many vectors such that
H = H(E) and H′ = H(E′).

Proof. First, we note that I and I ′ have the same cardinality, equal to the codimen-
sion of 〈E0〉 in V . In type (A) we take g ∈ GL(V ) such that g(I) = I ′ and g(e) = e
for all e ∈ E0, hence g(E) = E′. This element g actually belongs to GL(∞) = G,
and we get H(E′) = H(g(E)) = gH(E)g−1.

In type (BCD), up to considering larger I and I ′ if necessary, we may assume
that I and I ′ are stable by the involutions iE and iE′ , respectively. Since I and I ′

have the same cardinality and the involutions iE and iE′ have at most one fixed
point, we can write either

I = {e1, . . . , ek, e
∗
1, . . . , e

∗
k} and I ′ = {e′1, . . . , e′k, e′∗1 , . . . , e′∗k },

or

I = {e0, e1, . . . , ek, e
∗
1, . . . , e

∗
k} and I ′ = {e′0, e′1, . . . , e′k, e′∗1 , . . . , e′∗k },
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with e∗i = iE(ei), e
′∗
i = iE′(e

′
i) for 1 ≤ i ≤ k and e0 = iE(e0), e′0 = iE′(e

′
0). Up to

replacing the vectors of I and I ′ by scalar multiples (which does not change the
splitting Cartan subgroups) we may assume that

ω(ei, e
∗
i ) = ω(e′i, e

′∗
i ) = 1 for 1 ≤ i ≤ k, ω(e0, e0) = ω(e′0, e

′
0) = 1.

Then, by letting g(e) = e for e ∈ E0 and g(ei) = e′i, g(e∗j ) = e′∗j for all i, j, we get

an element g ∈ G such that H(E′) = H(g(E)) = gH(E)g−1.
The converse statement follows by observing that, if E is an admissible basis

such that H = H(E), and g ∈ G satisfies H′ = gHg−1, then H′ = H(g(E)), where
g(E) is an admissible basis which differs from E by finitely many vectors. �

Remark 2.2.
(a) In type (A), if E is an admissible basis of V , then any basis E′ which differs

from E by finitely many vectors is admissible. Indeed, in this case we have an
element g ∈ G such that E′ = g(E).

(b) In type (BCD), part (a) of the remark does not hold, but we point out
the following construction of admissible basis. Let an orthogonal decomposition
V = V1 ⊕ V2 be given. The restriction ωi of the form ω to each subspace Vi
(i ∈ {1, 2}) is nondegenerate. For i ∈ {1, 2}, let Ei be an admissible basis of Vi,
that is, a basis endowed with an involution iEi

: Ei → Ei with at most one fixed
point such that ω(e, e′) 6= 0 if only if e′ = iEi

(e). Moreover, assume that iE1
or

iE2 has no fixed point. Then E1 ∪E2 is an admissible basis of V for the involution
iE1 ∪ iE2 .

(c) In type (BCD) any admissible basis can be written as

E = {en, e∗n}n≥1 or E = {e0} ∪ {en, e∗n}n≥1

where e∗n = iE(en) for all n ≥ 1 and e0 = e∗0 is the fixed point of iE (if it exists).
By replacing the vectors by scalar multiples (which does not change the splitting
Cartan subgroup H(E)), we can transform E into a basis with

ω(em, e
∗
n) = δm,n for all m,n.

In [2], a basis which satisfies this property is called ω-isotropic. If ω is symplectic,
an ω-isotropic basis is said to be a basis of type (C). If ω is symmetric, an ω-
isotropic basis is called of type (B) or (D) depending on whether iE has a fixed
point or no fixed point.

In type (BD), bases of both types (B) and (D) do exist in V and their corres-
ponding splitting Cartan subgroups cannot be conjugate.

The following example shows that, in any type, there are splitting Cartan
subgroups which are not conjugate. In fact, using the construction made in this
example, it is easy to show that there are infinitely many conjugacy classes of
splitting Cartan subgroups.

Example 2.3. Let H = H(E) ⊂ G be a splitting Cartan subgroup, associated to
an admissible basis. Let I = {en, e′n}n≥1 be a double-infinite sequence of (pairwise
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distinct) vectors of E, moreover in type (BCD) we assume that these vectors are
pairwise orthogonal, that is,

{en, e′n}n≥1 spans an isotropic subspace of V . (2.1)

We construct a splitting Cartan subgroup H′ ⊂ G such that

∀n ≥ 1, ∃h ∈ H′ such that h(en) = e′n and h(e′n) = en. (2.2)

The subgroup H′ cannot be conjugate to H: for every g ∈ G, we have g(en) = en
and g(e′n) = e′n whenever n ≥ 1 is large enough, and (2.2) yields h ∈ H′ with

ghg−1(en) = gh(en) = g(e′n) = e′n /∈ 〈en〉.

Hence, gH′g−1 6⊂ H.
For constructing H′, we construct an admissible basis Ẽ of V which contains

the vectors ẽn := en + e′n and ẽ′n := en − e′n, for all n ≥ 1, and then we define H′

as the subgroup H(Ẽ) ⊂ G of all elements which are diagonal in the basis Ẽ. This
subgroup fulfills (2.2), since for all n ≥ 1 we can find h ∈ H′ such that h(ẽn) = ẽn
and h(ẽ′n) = −ẽ′n.

The construction of Ẽ is done as follows. In type (A), we take

Ẽ := (E \ I) ∪ {ẽn, ẽ′n}n≥1.

The dual family Ẽ∗ = {φ̃e : e ∈ Ẽ} consists of the linear functions

φ̃e :=


φe if e ∈ E \ I,
1
2 (φen + φe′n) if e = ẽn,
1
2 (φen − φe′n) if e = ẽ′n,

where E∗ = {φe : e ∈ E} is the dual family of E. Hence 〈Ẽ∗〉 = 〈E∗〉, and this
shows that Ẽ is admissible.

In type (BCD), we note first that condition (2.1) implies that the double
sequence I and its image by the involution iE : E → E are pairwise disjoint.
Then we set

Ẽ := (E \ (I ∪ iE(I)) ∪ {ẽn, ẽ′n}n≥1 ∪ {f̃n, f̃ ′n}n≥1

where

f̃n :=
iE(en)

ω(en, iE(en))
+

iE(e′n)

ω(e′n, iE(e′n))
,

f̃ ′n :=
iE(en)

ω(en, iE(en))
− iE(e′n)

ω(e′n, iE(e′n))
.

It is easy to check that the basis Ẽ so-obtained is admissible, with involution
iẼ : Ẽ → Ẽ given by iẼ(ẽn) = f̃n, iẼ(ẽ′n) = f̃ ′n for all n ≥ 1 and iẼ ≡ iE on
E \ (I ∪ iE(I)).

For later use, we also point out that an element of G (contrary to a general
element of GL(V )) cannot map a subspace A ⊂ V onto a larger subspace.
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Lemma 2.4. Given subspaces A ( B ⊂ V , there is no g ∈ G such that g(A) = B.

Proof. Arguing by contradiction, assume that there exists g ∈ G with g(A) =
B. Let E be an admissible basis of V . There is a finite subset E0 ⊂ E, such
that g(e) = e for all e ∈ E \ E0 and g stabilizes the finite-dimensional subspace
〈E0〉. Up to choosing the finite subset E0 larger if necessary, we may assume that
A ∩ 〈E0〉 ( B ∩ 〈E0〉, while the equality g(A ∩ 〈E0〉) = B ∩ 〈E0〉 holds. This is a
contradiction. �

2.2. Splitting parabolic subgroups and generalized flags

The notion of splitting parabolic subgroups can be described in a more handy way
by using a model from linear algebra, based on the following definition.

Definition 2.5.
(a) A generalized flag in V is a collection F of linear subspaces of V which

satisfies the following conditions:

• The inclusion relation ⊂ is a total order on F ; moreover every subspace F ∈ F
has an immediate predecessor or an immediate successor in F with respect
to ⊂.

• For every nonzero vector v ∈ V , there is a pair of consecutive subspaces
F ′, F ′′ ∈ F such that v ∈ F ′′ \ F ′.

• In type (BCD) we require a generalized flag to be isotropic in the following
sense: for every F ∈ F we have F⊥ ∈ F , and the map iF : F 7→ F⊥ is an
involution of F .

Note that the group G acts on the respective set of generalized flags in a natural
way.

(b) Let E be an admissible basis. A generalized flag F in V is said to be E-
compatible if it is H(E)-fixed. This is equivalent to requiring that each subspace
F ∈ F is spanned by a subset of E.

(c) We say that F is weakly E-compatible if it is compatible with a basis E′ of
V such that E′ \E and E \E′ are finite (that is, E and E′ differ by finitely many
vectors).

Example 2.6. Generalized flags can take various forms:
(a) A generalized flag can be a finite sequence of subspaces F = {F0 = 0 ⊂

F1 ⊂ · · · ⊂ Fm = V }.
(b) Let F ⊂ V be a subspace (taken isotropic in type (BCD)). In type (A), we

set FF := {0 ⊂ F ⊂ V }; this is the minimal generalized flag which contains the
subspace F . In type (BCD), we set FF := {0 ⊂ F ⊂ F⊥ ⊂ V }; this is the minimal
isotropic generalized flag which contains F . In each case we call FF the generalized
flag associated to F .

(c) F = {F0 = 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ . . .} is a generalized flag (in type
(A)) provided that

⋃
n Fn = V .

(d) F = {. . . ⊂ F−n ⊂ · · · ⊂ F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · } is a generalized
flag (in type (A)) if

⋂
n Fn = 0 and

⋃
n Fn = V . It is a generalized flag in type

(BCD) if and only if there is some n0 such that F⊥n = Fn0−n for all n.
(e) Let E = {ex}x∈Q be a basis of V indexed by the rational numbers. For

x ∈ Q let F ′x := 〈ey : y < x〉 and F ′′x := 〈ey : y ≤ x〉. Then F := {F ′x, F ′′x }x∈Q is an
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E-compatible generalized flag (in type (A)) such that each subspace lacks either
an immediate predecessor or an immediate successor.

Proposition 2.7 ([2]). Let E be an admissible basis and F be an E-compatible
generalized flag in V . Then the subgroup

PF = StabG(F) := {g ∈ G : gF = F}

is a splitting parabolic subgroup of G that contains the Cartan subgroup H(E).
Moreover, every parabolic subgroup of G that contains H(E) is obtained in this
way.

In addition, PF is a splitting Borel subgroup if and only if the generalized flag F
is maximal, in the sense that dimF ′′/F ′ = 1 for each pair of consecutive subspaces
{F ′, F ′′} in F .

Remark 2.8. Contrary to the finite-dimensional situation, two splitting Borel sub-
groups of G are not necessarily G-conjugate, even if they contain the same splitting
Cartan subgroup. This observation follows from Proposition 2.7 and from the
fact that two E-compatible maximal generalized flags F ,G do not belong to the
same G-orbit in general. For instance, F and G certainly belong to different
G-orbits if they are not isomorphic as totally ordered sets. However, even if
they are isomorphic as totally ordered sets, the generalized flags F and G do
not have to be G-conjugate. For instance if F = {〈e1, . . . , en〉}n≥0 and G =
{〈e1, . . . , e2n〉, 〈e1, . . . , e2n, e2n+2〉}n≥0 (where E = {ek}k≥1), then StabG(F) and
StabG(G) are two splitting Borel subgroups of G = GL(∞) which are not conju-
gate. Indeed every g ∈ G satisfies g(〈e1, . . . , en〉) = 〈e1, . . . , en〉 for large n, hence
G /∈ G · F .

2.3. Ind-varieties of generalized flags

Fix an admissible basis E of V and a generalized flag F = {Fα} in V , compatible
with E. Let P = PF ⊂ G be the splitting parabolic subgroup obtained as the
stabilizer of F , as in Proposition 2.7. In this section, we describe the homogeneous
space G/P = G · F as an ind-variety of generalized flags. See [2] for more details.

Definition 2.9. A generalized flag G is said to be E-commensurable with F if
G = {Gα} is parameterized by the same ordered set as F , and in addition satisfies
the following conditions:

• G is weakly E-compatible;
• there exists a finite-dimensional subspace U ⊂ V , such that Fα+U = Gα+U

and dimFα ∩ U = dimGα ∩ U for any α.

Let Fl(F , E, V ) denote the set of all generalized flags G that are E-commen-
surable with F . Let Flω(F , E, V ) denote the subset of all such generalized flags
which are isotropic. Then the homogeneous space G/PF = G·F coincides with the
set Fl(F , E, V ) in type (A), respectively with Flω(F , E, V ) in type (BCD). (Note
that the notion of commensurability is the same whatever type is considered.)

In Section 1.2 we notice that the quotient G/PF has the structure of an ind-
variety, obtained by considering a filtration

E =
⋃
n≥1

En



LUCAS FRESSE, IVAN PENKOV

by finite subsets; in type (BCD) the basis is endowed with the involution iE : E →
E (with at most one fixed point) and we require the subsets En to be iE-stable,
so that the restriction of the form ω to each subspace 〈En〉 is nondegenerate.

The ind-structure on Fl(F , E, V ) and Flω(F , E, V ) is given via the identification
with a direct limit

Fl(F , E, V ) = lim
→

Fl(F , En), Flω(F , E, V ) = lim
→

Flω(F , En), (2.3)

where Fl(F , En) and Flω(F , En) are varieties of partial flags of the space Vn :=
〈En〉 defined in the following way. The generalized flag F gives rise to a flag in the
finite-dimensional subspace 〈En〉, namely let F(n) be the collection of subspaces

F(n) := {F ∩ 〈En〉}F∈F . (2.4)

Let d(F , n) denote the corresponding dimension vector

d(F , n) := {d(F , n)F }F∈F where d(F , n)F := dimF ∩ 〈En〉.

The (finite-dimensional) algebraic variety

XF (n) := G(En) · F(n) ∼= G(En)/PF (En)

can be viewed as the set of collections of nested subspaces of 〈En〉

XF (n) = Fl(F , En) :=
{
{MF }F∈F : ∀F ∈ F , dimMF = d(F , n)F

}
in type (A), respectively

XF (n) = Flω(F , En) :=
{
{MF }F∈F ∈ Fl(F , En) : ∀F ∈ F , (MF )⊥ = MF⊥

}
in type (BCD).

For each n ≥ 1, we have the embedding

φF (n) : XF (n) ↪→ XF (n+ 1), {MF }F∈F 7→ {NF }F∈F

given by

NF = MF ⊕ (F ∩ 〈En+1 \ En〉) for all F ∈ F .

Finally, the ind-variety G/PF = G · F = Fl(F , E, V ), respectively Flω(F , E, V ),
is obtained as the limit of the inductive system

XF (1) ↪→ XF (2) ↪→ · · · ↪→ XF (n) ↪→ XF (n+ 1) ↪→ · · · .

This yields (2.3).
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Remark 2.10. In (2.4), F(n) is an a priori infinite collection of subspaces of 〈En〉
with repetitions. If we avoid repetitions, we can also write F(n) as an increasing
sequence of subspaces

{F0 = 0 ( F1 ( · · · ( Fs = 〈En〉}

and the dimension vector d(F , n) as an increasing sequence

d̂(F , n) := {d0 = 0 < d1 < · · · < ds} = {dimFk}sk=0.

Then Fl(F , En) can be identified with the variety of partial flags in Vn = 〈En〉,

Fl(d̂(F , n), Vn) =
{
{M0 ⊂M1 ⊂ · · · ⊂Ms = Vn} : ∀k, dimMk = dk

}
,

while in type (BCD), Flω(F , En) is identified with the variety of isotropic partial
flags

Flω(d̂(F , n), Vn) =
{
{Mk}sk=0 ∈ Fl(d̂(F , n), Vn) : ∀k, (Mk)⊥ = Ms−k

}
.

In type (A), the embedding φF (n) corresponds to an embedding of partial flag
varieties

in : Fl(d̂(F , n), Vn) ↪→ Fl(d̂(F , n+ 1), Vn+1)

obtained in the following way. Assume that En+1 = En∪{e} for simplicity (in the
general case, in is obtained as a composition of mappings of the following type).
Then

F(n+ 1) =



{F0 ⊂ . . . ⊂ Fk ⊂ Fk ⊕ 〈e〉 ⊂ . . . ⊂ Fs ⊕ 〈e〉}
for some k ≤ s, if d̂(F , n+ 1) is a longer sequence than d̂(F , n),

{F0 ⊂ . . . ⊂ Fk ⊂ Fk+1 ⊕ 〈e〉 ⊂ . . . ⊂ Fs ⊕ 〈e〉}
for some k < s, if d̂(F , n+ 1) is a sequence of the same length as

d̂(F , n).

The map in is now defined via the respective formula

in({Mk}sk=0) =

{
{M0 ⊂ . . . ⊂Mk ⊂Mk ⊕ 〈e〉 ⊂ . . . ⊂Ms ⊕ 〈e〉},

{M0 ⊂ . . . ⊂Mk ⊂Mk+1 ⊕ 〈e〉 ⊂ . . . ⊂Ms ⊕ 〈e〉}.

The embeddings in have been introduced in [2] in different notation. In type (BCD)
the construction is similar.

3. A characterization of large splitting parabolic subgroups

Proposition 1.2 is incorporated in the following more complete statement.

Proposition 3.1. Let P be a splitting parabolic subgroup of G. Let F be the unique
generalized flag for which P = StabG(F) (see Proposition 2.7). The following
conditions are equivalent:
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(i) P is large;
(ii) F is weakly E-compatible with every admissible basis E;

(iii) for every admissible basis E, the ind-variety G/P = G · F contains a
generalized flag which is E-compatible;

(iv) for every splitting Cartan subgroup H ⊂ G, there is g ∈ G such that
gHg−1 ⊂ P.

Proof. (i)⇒(ii): Assume that P is a large splitting parabolic subgroup. Then the
generalized flag F has the form

F = {F0 = 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fm = V },

and moreover, there is a unique index k ∈ {1, . . . ,m} for which the space Fk/Fk−1

is infinite-dimensional. The subspace Fk−1 is finite-dimensional and the subspace
Fk is finite-codimensional. Moreover, since the generalized flag F is compatible
with an admissible basis (Proposition 2.7), there is a finite subset Φ ⊂ V∗ such
that Fk =

⋂
φ∈Φ kerφ.

Let E ⊂ V be an admissible basis, hence the dual family E∗ = {φe : e ∈ E}
spans the subspace V∗ ⊂ V ∗. We can find a finite subset I ⊂ E such that

• Fk−1 ⊂ V1 := 〈I〉;
• Φ ⊂ 〈φe : e ∈ I〉, so that V2 := 〈E \ I〉 ⊂ Fk.

In type (BCD), up to choosing I larger if necessary, we may assume that I is stable
by the involution iE : E → E and contains the fixed point of iE if it exists. Hence
the restriction of ω to V1 and V2 is nondegenerate and the decomposition

V = V1 ⊕ V2

is orthogonal in this case.
The sequence

F ′ := {F ′0 ⊂ F ′1 ⊂ F ′2 ⊂ · · · ⊂ F ′m} with F ′j := V1 ∩ Fj

is a flag of the finite-dimensional space V1, and we can find a basis E1 of V1 such
that F ′ is compatible with E1, that is, F ′j is spanned by a subset E1,j ⊂ E1 for all
j. Moreover, in type (BCD) we have

(F ′j)
⊥1 = V1 ∩ (Fj

⊥) = V1 ∩ Fm−j = F ′m−j for all j,

where ⊥1 indicates the orthogonal space with respect to the restriction of ω to V1,
hence we may assume that the basis E1 is isotropic with respect to the restriction
of ω.

We obtain a basis E′ := E1∪ (E \ I) of V which differs from E by finitely many
vectors, and is in addition admissible (see Remark 2.2(a)–(b)). For all j we have

Fj =

{
F ′j = 〈E1,j〉 if j ≤ k − 1,
V2 ⊕ F ′j = 〈(E \ I) ∪ E1,j〉 if j ≥ k,
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hence F is E′-compatible, and therefore weakly E-compatible.
(ii)⇒(iii): Assume that F is weakly E-compatible. This means that there is an

admissible basis E′ which differs from E by finitely many vectors, and such that F
is E′-compatible. The latter fact is equivalent to saying that F is a fixed point of
the splitting Cartan subgroup H(E′). By Lemma 2.1, we can find g ∈ G satisfying
H(E) = gH(E′)g−1. This implies that the generalized flag gF is a fixed point of
H(E), and therefore gF is E-compatible.

(iii)⇒(iv): Every splitting Cartan subgroup of G is of the form H(E) for an
admissible basis E. By (iii) we can find g ∈ G so that gF is E-compatible, that
is, fixed by H(E). This yields g−1H(E)g ⊂ StabG(F) = P.

(iv)⇒(i): Assume that P is not large. This implies that one of the following
cases occurs.

(a) F contains a subspace F0 that is both infinite-dimensional and infinite-
codimensional, or

(b) F contains infinitely many subspaces, in particular, an increasing chain
F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · or a decreasing chain F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ · · · .

Moreover, in type (BCD), since we have F⊥ ∈ F whenever F ∈ F , we may assume
that F0 is an isotropic subspace of V in case (a), and that {Fk}k≥1 is a chain of
isotropic subspaces of V in case (b).

Let E be an admissible basis of V such that the generalized flag F is E-
compatible. We claim that there is a double-infinite sequence

{en, e′n}n≥1 ⊂ E (3.1)

such that
∀n ≥ 1, ∃F ∈ F such that en ∈ F and e′n /∈ F (3.2)

and moreover

{en, e′n}n≥1 span an isotropic subspace of V (in type (BCD)). (3.3)

The construction of the double sequence {en, e′n}n≥1 can be done as follows. In
case (b), for each k ≥ 2 we take a vector εk ∈ E lying in Fk \ Fk−1 in the case
of an increasing chain, respectively in Fk−1 \ Fk in the case of a decreasing chain.
Then we set (en, e

′
n) := (ε2n, ε2n+1), respectively (en, e

′
n) := (ε2n+1, ε2n), and we

have (3.2). In type (BCD), since each subspace Fk is isotropic, we get (3.3).
In case (a), in type (A), relying on the fact that F0 is infinite-dimensional and

infinite-codimensional, we take an infinite subset {en}n≥1 ⊂ E of vectors which
belong to F0 and an infinite subset {e′n}n≥1 ⊂ E of vectors which do not belong
to F0. The so-obtained double sequence clearly satisfies (3.2). In type (BCD), we
first take an infinite subset {εk}k≥1 ⊂ E of vectors which belong to F0, then we
set en := ε2n and e′n := iE(ε2n+1). Since the subspace F0 is isotropic, the vectors
e′n do not belong to F0, hence (3.2) holds. Finally (3.3) holds due to the definition
of the involution iE . This completes the construction of the double sequence of
(3.1).

Let H′ ⊂ G be the splitting Cartan subgroup associated to the double sequence
{en, e′n}n≥1 as in Example 2.3. For every g ∈ G, since we have g(e) 6= e for only
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finitely many e ∈ E, there is n ≥ 1 such that g(en) = en and g(e′n) = e′n. Then
(2.2) and (3.2) yield a subspace F ∈ F and an element h ∈ H′ such that

en ∈ F and ghg−1(en) = e′n /∈ F, hence ghg−1(F ) 6= F.

This establishes that, for all g ∈ G, we have gH′g−1 6⊂ StabG(F) = P. The proof
of the proposition is complete. �

4. Exhaustion of X and a key lemma

In this section we consider an ind-variety X of the form (1.1). Our analysis is
based on the following assumption:

the splitting parabolic subgroups P1, . . . ,P`−1 are large. (4.1)

4.1. Exhaustion

Here we explain how to construct a natural exhaustion of the ind-variety X. The
notation introduced here is used in the subsequent sections.

For every i ∈ {1, . . . , `} there is a generalized flag Fi such that Pi = StabG(Fi)
(see Proposition 2.7), hence Xi := G/Pi = G · Fi. Let E be an admissible basis
of V such that F` is E-compatible. By Proposition 3.1, for every i ∈ {1, . . . , `− 1}
we can find an element hi ∈ G such that hiFi is E-compatible. In view of the
isomorphisms

G/Pi
∼→ G/hiPih

−1
i for 1 ≤ i ≤ `− 1,

up to replacing Pi by hiPih
−1
i = StabG(hiFi), we may assume that

F1, . . . ,F` are E-compatible,

that is,

the splitting Cartan subgroup H(E) is contained in P1, . . . ,P`.

Take a filtration of the basis

E =
⋃
n≥1

En

by finite subsets (stabilized by iE in type (BCD)). As in Sections 1.1 and 1.2, we
let

G(En) := G ∩GL(〈En〉) and Pi(En) := Pi ∩GL(〈En〉)

which are respectively a classical algebraic group and a parabolic subgroup. In
fact, since we are dealing with a single admissible basis E, it is harmless to avoid
the reference to E in the notation; we set for simplicity G(n) := G(En) and
Pi(n) := Pi(En).

For each i ∈ {1, . . . , `}, we follow the construction made in Section 2.3: the
generalized flag Fi gives rise to a flag in the finite-dimensional subspace 〈En〉,
namely let Fi(n) be the collection of subspaces

Fi(n) := {F ∩ 〈En〉}F∈Fi
.
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The (finite-dimensional) algebraic variety

Xi(n) := G(n)/Pi(n) = G(n) · Fi(n)

can be viewed as the set XFi(n) of collections of subspaces of 〈En〉 described in
Section 2.3. (It is isomorphic in a natural way to a partial flag variety of the space
〈En〉; see Remark 2.10.)

For each n ≥ 1, we have the embedding

φi(n) : Xi(n) ↪→ Xi(n+ 1), {MF }F∈Fi 7→ {NF }F∈Fi

given by
NF = MF ⊕ (F ∩ 〈En+1 \ En〉) for all F ∈ Fi.

Finally, for each i ∈ {1, . . . , `}, the ind-variety Xi = G/Pi = G · Fi is obtained as
the limit of the inductive system

Xi(1) ↪→ Xi(2) ↪→ · · · ↪→ Xi(n) ↪→ Xi(n+ 1) ↪→ · · · ,

thus we have an exhaustion
Xi =

⋃
n≥1

Xi(n).

Altogether, we have the following exhaustion of the ind-variety X:

X =
⋃
n≥1

X(n), X(n) := X1(n)× · · · ×X`(n),

where for each n we consider the embedding

φ(n) :=
∏̀
i=1

φi(n) : X(n) ↪→ X(n+ 1). (4.2)

Remark 4.1. The construction presented in this section is only possible in the case
where the ind-varieties X1, . . . ,X` have points F1, . . . ,F` which admit a common
compatible basis. Assumption (4.1) (combined with Proposition 3.1) is crucial in
this respect.

4.2. Key lemma

We still assume (4.1). Our key lemma is as follows.

Lemma 4.2. Let φ(n) : X(n) ↪→ X(n + 1) be the embedding (4.2). Let F ,F ′ ∈
X(n). Assume that φ(n)(F) and φ(n)(F ′) belong to the same G(n+1)-orbit. Then
F and F ′ belong to the same G(n)-orbit.

Consequently, for every n ≥ 1, the embedding X(n) ↪→ X induces an injection
of orbit sets X(n)/G(n) ↪→ X/G.

In type (A), we may suppose that

En+1 = En ∪ {e}.
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Hence M := 〈En〉 is a hyperplane of N := 〈En+1〉 = M⊕〈e〉. Every element of the
variety X(n) (respectively, X(n+ 1)) consists of a collection of subspaces {Mi}i∈I
of M (respectively, {Ni}i∈I of N), and the map φ(n) : X(n)→ X(n+ 1) is of the
form

φ(n) : {Mi} 7→ {Ni} with Ni =

{
Mi if i ∈ I0,
Mi ⊕ 〈e〉 if i ∈ I \ I0,

for some subset I0 ⊂ I. Therefore, in type (A) Lemma 4.2 follows from the following
lemma from linear algebra.

Lemma 4.3. Let N be a finite-dimensional complex vector space, M ⊂ N a
hyperplane, L ⊂ N a line such that N = M ⊕ L. Let {Mi}i∈I and {M ′i}i∈I be
two collections of subspaces of M , indexed by an arbitrary set I. Given a subset
I0 ⊂ I, assume that there exists g ∈ GL(N) such that

g(Mi) = M ′i ∀i ∈ I0 and g(Mi ⊕ L) = M ′i ⊕ L ∀i ∈ I \ I0.

Then there is h ∈ GL(M) satisfying

h(Mi) = M ′i ∀i ∈ I.

Proof of Lemma 4.3. Let p : N = M ⊕L→M denote the linear projection. First,
assume that g(L) = L. Then the linear map

h := p ◦ g|M

is an element of GL(M). For i ∈ I0 we have

M ′i = p(M ′i) = p(g(Mi)) = h(Mi),

and for i ∈ I \ I0 we have

M ′i = p(M ′i ⊕ L) = p(g(Mi ⊕ L)) = p(g(Mi)⊕ L) = p(g(Mi)) = h(Mi).

The lemma is proved in this case.
Thus it remains to consider the case where

g(L) 6= L.

Then K := L+ g(L) is a 2-dimensional subspace of N .
The sums

M0 :=
∑
i∈I0

Mi and M ′0 :=
∑
i∈I0

M ′i

are subspaces of M , and by the properties of g we have g(M0) = M ′0, so dimM0 =
dimM ′0. Hence we can find h0 ∈ GL(M) such that h0(M ′0) = M0. Let h′ :=
h0 ⊕ idL ∈ GL(M ⊕ L) = GL(N). For every i ∈ I we set M ′′i := h0(M ′i). Then

h′(g(Mi)) = h′(M ′i) = M ′′i ∀i ∈ I0
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and
h′(g(Mi ⊕ L)) = h′(M ′i ⊕ L) = M ′′i ⊕ L ∀i ∈ I \ I0.

Moreover, h′(g(M0)) = M0. Therefore, by dealing with {M ′′i }i∈I instead of
{M ′i}i∈I , we can assume that

M0 = M ′0, i.e., g(M0) = M0.

Let e ∈ L, e 6= 0. We distinguish two cases.

Case 1: K ∩M0 = 0.
Let {e1, . . . , er} be a basis of M0. Then the vectors e1, . . . , er, e, g(e) are linearly

independent, and we can find vectors er+3, . . . , ed such that

{e1, . . . , er, e, g(e), er+3, . . . , ed} is a basis of N .

Let η ∈ GL(N) satisfy η(ek) = ek for all k ∈ {1, . . . , r, r + 3, . . . , d}, η(e) = g(e),
and η(g(e)) = e. In particular, η|M0 = idM0 , hence

η(g(Mi)) = η(M ′i) = M ′i

for all i ∈ I0. Note also that

N = K ⊕ 〈e1, . . . , er, er+3, . . . , ed〉 = K + ker(η − idN ). (4.3)

For all i ∈ I \ I0, we have M ′i ⊕ L = g(Mi ⊕ L), therefore the subspace M ′i ⊕ L
contains L + g(L) = K. By (4.3), and since η(K) = K, this implies that the
subspace M ′i ⊕ L is η-stable. Hence,

η(g(Mi ⊕ L)) = η(M ′i ⊕ L) = M ′i ⊕ L.

Since η(g(e)) = e, i.e., η ◦ g(L) = L, this brings us back to the situation treated
at the beginning of the proof.

Case 2: K ∩M0 6= 0.
As L 6⊂ M0, we have K 6⊂ M0, and consequently dimK ∩M0 = 1 in this case.

Note also that g(e) /∈ g(M0) = M0. Hence K ∩M0 = 〈e1〉 for some vector e1 which
also satisfies K = 〈e, e1〉 = 〈g(e), e1〉. Let {e1, . . . , er} be a basis of M0 containing
the vector e1. Then {e1, . . . , er, e} and {e1, . . . , er, g(e)} are two bases of M0 +K.
We extend them into bases of N by adding a common set of vectors er+2, . . . , ed.
Let η ∈ GL(N) satisfy η(ek) = ek for all k and η(g(e)) = e. Then η|M0

= idM0
,

and this implies
η(g(Mi)) = η(M ′i) = M ′i ∀i ∈ I0.

Moreover, η satisfies

N = K ⊕ 〈e2, . . . , er, er+2, . . . , ed〉 = K + ker(η − idN ). (4.4)

For every i ∈ I \ I0, we have K ⊂M ′i ⊕L = g(Mi⊕L). In view of (4.4), and since
η(K) = K, we deduce that the subspace M ′i ⊕ L is η-stable, hence

η(g(Mi ⊕ L)) = η(M ′i ⊕ L) = M ′i ⊕ L ∀i ∈ I \ I0.

Since η(g(L)) = L, again we are brought back to the situation already treated at
the beginning of the proof. The proof of the lemma is now complete. �
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In type (BCD), with the notation of Lemma 4.2, we have already the implica-
tions

φ(n)(F) and φ(n)(F ′) belong to the same G(n+ 1)-orbit

⇒ φ(n)(F) and φ(n)(F ′) belong to the same GL(〈En+1〉)-orbit

⇒ F and F ′ belong to the same GL(〈En〉)-orbit,

where the last implication is valid since we have already proved Lemma 4.2 in type
(A). For completing the proof of Lemma 4.2 in type (BCD), we have to show that
F and F ′ belong to the same G(n)-orbit. This conclusion is deduced from the
following general fact.

Lemma 4.4. Let M be a finite-dimensional linear space, endowed with a nondege-
nerate orthogonal or symplectic bilinear form ω. We consider the group

G(M,ω) = {g ∈ GL(M) : g preserves ω}.

Let I be a set equipped with an involution i 7→ i∗, and let F = {Mi}i∈I and
F ′ = {M ′i}i∈I be two collections of subspaces satisfying

di := dimMi = dimM ′i for all i ∈ I,
M⊥i = Mi∗ ∈ F and M ′⊥i = M ′i∗ ∈ F ′ for all i ∈ I.

Assume that there is g ∈ GL(M) with g(Mi) = M ′i for all i. Then there is h ∈
G(M,ω) with h(Mi) = M ′i for all i.

Proof. We define X to be the set of collections of subspaces {Mi}i∈I with dimMi =
di for all i, and we consider the action of G := GL(M) on X given by

g · {Mi}i∈I = {g(Mi)}i∈I .

Note that X is endowed with the involution

σ : X → X, {Mi}i∈I 7→ {M⊥i∗}i∈I .

Let Xσ be the fixed point set of this involution. Then F and F ′ are elements of
Xσ.

Let u∗ denote the adjoint morphism of an endomorphism u ∈ End(M) with
respect to the form ω. Thus G is also endowed with an involution given by

G→ G, g 7→ gσ := (g∗)−1,

and G(M,ω) coincides with the subgroup Gσ of fixed points of this involution.
Then the claim made in the statement follows once we show that two elements of
Xσ are Gσ-conjugate whenever they are G-conjugate. This is exactly [8, Prop. 2.1]
(conditions (1)–(3) of [8, Prop. 2.1] are clearly verified). �



MULTIPLE FLAG IND-VARIETIES WITH FINITELY MANY ORBITS

5. Proof of the direct implication in Theorem 1.4

Arguing indirectly, assume that (P1,P2) is a pair of splitting parabolic sub-
groups which does not satisfy the condition of Theorem 1.4, namely, up to exchang-
ing the roles of P1 and P2, we may assume that

Case 1: P1 is not semilarge, or
Case 2: P1,P2 are semilarge but not large.

Considering generalized flags F1, F2 such that P1 = StabG(F1), P2 = StabG(F2),
the condition of Case 1 means that

F1 has an infinite number of subspaces. (5.1)

The condition of Case 2 implies that

in each generalized flag F1 and F2, there is at least one subspace
which is both infinite-dimensional and infinite-codimensional.

(5.2)

We will show that X = G/P1 ×G/P2 has infinitely many G-orbits. Since the
map

P1 · (gP2) 7→ G · (P1, gP2)

is a bijection between the set of P1-orbits on G/P2 and the set of G-orbits on X,
it suffices to show that G/P2 has infinitely many P1-orbits.

Let F2 ∈ F2 be such that 0 ( F2 ( V . In Case 2, by virtue of (5.2), we
assume that F2 is infinite-dimensional and infinite-codimensional. In type (BCD)
we assume that F2 ⊂ F⊥2 . Recall from Example 2.6(b) that the generalized flag
associated to F2 is given by

FF2
=

{
{0 ⊂ F2 ⊂ V } in type (A),
{0 ⊂ F2 ⊂ F⊥2 ⊂ V } in type (BCD).

By replacing the parabolic subgroup P2 by the larger splitting parabolic subgroup
P̂2 := StabG(FF2), we may assume that F2 = FF2 .

We fix an admissible basis E such that F2 is E-compatible. Then the ind-variety
G/P2 = G · F2 consists of generalized flags which are E-commensurable with F2,
in particular are of the form FF for F ⊂ V . Our aim is to construct an infinite
sequence of such generalized flags which belong to pairwise distinct P1-orbits. By
a slight abuse of terminology, we say that a subspace F is weakly E-compatible if
its associated generalized flag FF is weakly E-compatible. Also, we say that F ′ is
E-commensurable with F if FF ′ is E-commensurable with FF .

Lemma 5.1. Let F be weakly E-compatible (with F ⊂ F⊥ in type (BCD)). Let
φ ∈ V∗ satisfy F 6⊂ kerφ. Fix v ∈ V \F . In type (BCD) we assume in addition that
the vector v is isotropic and belongs to (F ∩ kerφ)⊥. Then F ′ := (F ∩ kerφ)⊕Cv
is E-commensurable with F .

Proof. Clearly, a subspace is weakly E-compatible if and only if it has a finite-
codimensional subspace spanned by a subset of E. Let I ⊂ E be such that F
contains 〈I〉 as a finite-codimensional subspace. There is a finite set J ⊂ E with
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φ ∈ 〈φe : e ∈ J〉. Then F ′ contains 〈I \ J〉 as a finite-codimensional subspace.
Hence F ′ is weakly E-compatible.

Let a vector v′ satisfy F = (F ∩ kerφ) ⊕ Cv′. Then, we see that FF and FF ′
are E-commensurable by considering any finite-dimensional subspace U ⊂ V such
that v, v′ ∈ U in type (A) and which satisfies in addition (F ∩ kerφ)⊥ ∩U 6⊂ 〈v〉⊥
and (F ∩ kerφ)⊥ ∩ U 6⊂ 〈v′〉⊥ in type (BCD). �

Lemma 5.2. Let L ( M and F 6= 0 be subspaces of V , with F weakly E-
compatible. In type (BCD) we assume that these subspaces are isotropic. In type
(A) we assume that L,M are of the form

L =
⋂
φ∈Φ

kerφ (M =
⋂
φ∈Ψ

kerφ

for subsets Ψ ( Φ ⊂ V∗.
(a) If M 6⊂ F and F 6⊂ M , then there is a subspace F ′ ⊂ V which is E-

commensurable with F , isotropic in type (BCD), and such that

F ∩M is a hyperplane of F ′ ∩M
and F ′/F ′ ∩M embeds as a hyperplane in F/F ∩M .

(b) If F ∩M 6⊂ L and F + M 6= V , then there is a subspace F ′ ⊂ V which is
E-commensurable with F , isotropic in type (BCD), and such that

F ′ ∩ L = F ∩ L, F ′ ∩M is a hyperplane of F ∩M .

(c) If F ⊂ L, then there is a subspace F ′ ⊂ V which is E-commensurable with
Fand such that F ′ 6⊂ L, F ′ ⊂M .

Proof. (a) Since M 6⊂ F we can find a vector v ∈M \F . In type (A), since F 6⊂M ,
we can find φ ∈ Ψ such that F 6⊂ kerφ. In type (BCD), either v /∈ F⊥ and we take
φ = ω(v, ·), or v ∈ F⊥ and we take φ = ω(v′, ·) for any v′ ∈ M⊥ \ F⊥. In all the
cases, it follows from Lemma 5.1 that the subspace

F ′ := (F ∩ kerφ)⊕ 〈v〉

is E-commensurable, isotropic in type (BCD), and satisfies

F ′ ∩M = F ∩M ⊕ 〈v〉.

Moreover, the linear projection F ′ → F∩kerφ yields an isomorphism F ′/F ′∩M ∼→
F ∩ kerφ/F ∩M .

(b) In type (A) we take a vector v ∈ V \ (F +M) and we find φ ∈ Φ such that
F ∩M 6⊂ kerφ. By Lemma 5.1, the subspace

F ′ := (F ∩ kerφ)⊕ 〈v〉 (5.3)

is E-commensurable and satisfies

F ′ ∩ L = F ∩ L, F ′ ∩M = (F ∩M) ∩ kerφ.
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In type (BCD) the construction is adapted as follows. Since F ∩M 6⊂ L, there
is a vector v′ ∈ L⊥ such that v′ /∈ (F ∩M)⊥, that is, F ∩M 6⊂ 〈v′〉⊥. We take
φ := ω(v′, ·). The fact that F ∩M 6⊂ 〈v′〉⊥ also implies that there is an isotropic
vector of the form v = v′ + w with w ∈ F ∩M . Since F ∩M ⊂ (F + M)⊥, we
have v′ /∈ F +M , and hence v /∈ F +M . Moreover, v ∈ F⊥ + 〈v′〉 = (F ∩ kerφ)⊥.
By Lemma 5.1, the subspace F ′ of (5.3) corresponding to this choice of φ and v is
isotropic and fulfills the required conditions.

(c) This time the conditions are fulfilled by the subspace F ′ := (F ∩kerφ)⊕〈v〉,
where v ∈M \ L and φ is any element of V∗ such that F 6⊂ kerφ. �

Claim 1: If there is F1 ∈ F1 (isotropic in type (BCD)) such that F1 ∩ F2

has infinite codimension in F1 and F2, then there is a sequence {F (n)}n≥0 of
(respectively, isotropic) subspaces which are E-commensurable with F2 and satisfy

F1 ∩ F (0) ( F1 ∩ F (1) ( · · · ( F1 ∩ F (n) ( · · · .

Proof of Claim 1. The sequence {F (n)}n≥0 is constructed by induction: we let
F (0) = F2 and, once F (n) is defined, we let F (n+1) be the subspace F ′ obtained
by applying Lemma 5.2(a) with F = F (n) and M = F1 (each time F1 ∩ F (n) still
has infinite codimension in F1 and F (n) hence the conditions for applying Lemma
5.2(a) are fulfilled). �

Claim 2: If F1 ∈ F1 (isotropic in type (BCD)) is such that F1 ∩ F2 has finite
codimension in F1 or F2, then there is a (respectively, isotropic) subspace F which
is E-commensurable with F2 and such that F ⊂ F1 or F1 ⊂ F .

Proof of Claim 2. Let mi := codimFiF1∩F2 and m := min{m1,m2}. By applying
m times Lemma 5.2(a) in the same way as in the proof of Claim 1, we obtain a
(respectively, isotropic) subspace F which is E-commensurable with F2 and such
that

codimF1
F1 ∩ F = 0 or codimFF1 ∩ F = 0,

that is, F1 ⊂ F or F ⊂ F1. �

Case 1 can now be addressed as follows. If there is F1 ∈ F1 (respectively,
isotropic) such that F1 ∩ F2 has infinite codimension in F1 and F2, then Claim 1
yields an infinite sequence {FF (n)}n≥0 of elements of G/P2 which belong to
pairwise distinct orbits of P1. Indeed, if there were n < m with g(FF (n)) = FF (m)

for some g ∈ P1 = StabG(F1), then we would have g(F1 ∩ F (n)) = F1 ∩ F (m), in
contradiction with Lemma 2.4 as the inclusion F1 ∩ F (n) ( F1 ∩ F (m) is strict.

It remains to consider the case where F1 ∩ F2 has finite codimension in F1 or
F2 for all (respectively, isotropic) F1 ∈ F1. Invoking Claim 2, and using that F1

contains an infinite number of subspaces (see (5.1)), for all n ≥ 1 we can find a
sequence

F1,0 ( F1,1 ( · · · ( F1,n

of subspaces of F1 such that

∀k ∈ {0, . . . , n}, ∃FF ∈ G/P2 such that F1,k ⊂ F
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or
∀k ∈ {0, . . . , n}, ∃FF ∈ G/P2 such that F ⊂ F1,k.

In the former case, by Lemma 5.2(b), for each k ∈ {1, . . . , n} there is a (respectively,
isotropic) subspace F (k), E-commensurable with F2, such that F1,k−1 ⊂ F (k),
F1,k 6⊂ F (k). In the latter case, invoking Lemma 5.2(c), for each k ∈ {1, . . . , n}
we find this time F (k) such that F (k) ⊂ F1,k, F (k) 6⊂ F1,k−1. In both cases, the
so obtained generalized flags FF (1) , . . . ,FF (n) ∈ G/P2 belong to pairwise distinct
orbits of P1. Since n is arbitrarily large, we conclude that there are infinitely many
P1-orbits in G/P2.

In Case 2, we assume that F2 ∈ F2 has infinite dimension and infinite codimen-
sion in V , and that there is F1 ∈ F1 with the same property (see (5.2)). In type
(BCD) these subspaces are also assumed to be isotropic. In the case where F1∩F2

has infinite codimension in F1 and F2, Claim 1 yields infinitely many elements
FF (n) ∈ G/P2 which belong to pairwise distinct P1-orbits.

It remains to consider the case where F1∩F2 has finite codimension in F1 or F2.
This implies that F1∩F has infinite dimension and F1 +F has infinite codimension
in V whenever F is E-commensurable with F2. By applying Lemma 5.2(b) with
(L,M) = (0, F1), we get a sequence {F (n)}n≥0 of (respectively, isotropic) subspaces
which are E-commensurable with F2 and satisfy

F1 ∩ F (0) ) F1 ∩ F (1) ) · · · ) F1 ∩ F (n) ) · · · .

Therefore, the associated generalized flags FF (n) (for n ≥ 0) are points of G/P2

that belong to pairwise distinct P1-orbits. We again conclude that G/P2 has an
infinite number of P1-orbits. The proof of the direct implication in Theorem 1.4
is now complete.

6. Proof of the inverse implication in Theorem 1.4

We assume that P1 is large and P2 is semilarge. Hence assumption (4.1) is
fulfilled, and we can find an exhaustion

X = G/P1 ×G/P2 =
⋃
n≥1

X(n)

as in Section 4.1. By Lemma 4.2, we have inclusions of orbit sets

X(n)/G(n) ↪→ X(n+ 1)/G(n+ 1) for all n ≥ 1

and the orbit set X/G is the direct limit

X/G = lim
→

X(n)/G(n).

To show that X has a finite number of G-orbits, it is sufficient to estimate
the number sn of G(n)-orbits on X(n) and prove that the sequence {sn}n≥1 is
bounded.
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In type (BCD), X(n) is the set of ordered pairs of isotropic flags of a given type,
in a finite-dimensional space M endowed with the nondegenerate bilinear form ω,
and G(n) is the group G(M,ω) of transformations which preserve ω. According to
Lemma 4.4, we have sn ≤ sA

n where sA
n stands for the number of GL(M)-orbits on

the set of ordered pairs of (not necessarily isotropic) flags of the same type. Thus
for showing that the sequence {sn}n≥1 is bounded, it suffices to show that the
sequence {sA

n}n≥1 is bounded. Therefore, it is enough to deal with the type-(A)
case.

Since P1 is large, the generalized flag F1 is a finite chain

F1 = {F1,0 = 0 ⊂ F1,1 ⊂ · · · ⊂ F1,p0−1 ⊂ F1,p0 ⊂ · · · ⊂ F1,p = V },

such that c1,k := dimF1,k/F1,k−1 is finite for all k 6= p0. The generalized flag F2

is a finite chain as P2 is semilarge. For n ≥ 1 large, X(n) is a double flag variety
of the form

X := Fl(c1, . . . , cp)× Fl(d1, . . . , dq),

whose elements are ordered pairs of flags

(F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fp = 〈En〉, F ′0 = 0 ⊂ F ′1 ⊂ · · · ⊂ F ′q = 〈En〉)

such that dimFk/Fk−1 = ck and dimF ′`/F
′
`−1 = d` for all k, `. We have ck > 0,

d` > 0 and
c1 + · · ·+ cp = d1 + · · ·+ dq = m := dim〈En〉.

In addition, by choosing n large, we may assume that ck = c1,k for all k 6= p0, and
thus cp0 = m−

∑
k 6=p0 c1,k. In particular, ck is independent of n for all k 6= p0. We

must show that the number sn of G := GL(〈En〉)-orbits on X can be bounded by
a constant which depends only on the numbers ck (for k 6= p0), p, and q. By the
Bruhat decomposition, sn is the cardinality of the double coset

Sc1 × · · · ×Scp\Sm/Sd1 × · · · ×Sdq .

An element of the quotient Sm/Sd1 × · · · × Sdq can be viewed as a map τ :
{1, . . . ,m} → {1, . . . , q} such that τ−1(j) has dj elements for all j. Every such
map τ belongs to the Sc1 × · · · × Scp -orbit of a map τ0 which is in addition
nondecreasing on each interval [c̄k−1 + 1, c̄k] with c̄k := c1 + · · ·+ ck. Such a map
τ0 is completely determined by its restriction to {i ∈ [1,m] : i ≤ c̄p0−1 or i > c̄p0}.
This restriction is a map

{1, . . . , c̄p0−1} ∪ {c̄p0 + 1, . . . ,m} → {1, . . . , q}

where the set on the left-hand side has C :=
∑
k 6=p0 ck elements. There are qC

maps between these two sets. Therefore, we conclude that

sn = |Sc1 × · · · ×Scp\Sm/Sd1 × · · · ×Sdq | ≤ qC .

The proof of the theorem is complete. �
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7. Proof of Theorem 1.6

The last assertion in Theorem 1.6 is a consequence of the first part of the
statement combined with the classification of triple flag varieties of finite type for
classical groups established in the references [7], [8], [9], [10]. Details are given in
Appendix A. In this section we prove the first part of the theorem.

Let X = X1×X2×X3, where each factor Xi = G/Pi (i = 1, 2, 3) is the quotient
by a splitting parabolic subgroup Pi ⊂ G and can be viewed as an ind-variety of
generalized flags (Section 2.3). Evidently, X can have a finite number of G-orbits
only if every product of two factors Xi ×Xj (1 ≤ i < j ≤ 3) has a finite number
of G-orbits. In view of Theorem 1.4, this property holds only if all three parabolic
subgroups P1,P2,P3 are semilarge and two of them are large. This justifies the
first claim in Theorem 1.6.

In what follows, we assume that

P1,P2 are large and P3 is semilarge.

In this way, condition (4.1) is satisfied and we may consider the construction of
Section 4.1. Namely, we may choose an admissible basis E such that X1,X2, and
X3 contain an element which is E-compatible. Relying on a filtration E =

⋃
n≥1En

as in Section 4.1, we get exhaustions

G =
⋃
n≥1

G(n) and X =
⋃
n≥1

X1(n)×X2(n)×X3(n)

such that Xi(n) (for i = 1, 2, 3) is a (finite-dimensional) flag variety for the
algebraic group G(n).

We have to show that X has a finite number of G-orbits if and only if X1(n)×
X2(n)×X3(n) has a finite number of G(n)-orbits for all n. The direct implication
follows from Lemma 4.2. In the rest of this section, we assume that

X1(n)×X2(n)×X3(n) has finitely many G(n)-orbits for all n, (7.1)

and we need to show that X has finitely many G-orbits.
For every n ≥ 1, we denote Vn = 〈En〉 and V ′n = 〈E \ En〉. Then

V = Vn ⊕ V ′n.

In type (BCD), the subspaces Vn and V ′n are orthogonal with respect to the form
ω. Note that the restrictions of ω to Vn and V ′n, respectively denoted by ωn and
ω′n, are nondegenerate. Let πn : V → Vn and π′n : V → V ′n be the projections
determined by the above decomposition.

Let G(V ′n) stand for the subgroup of elements g ∈ G such that g(V ′n) = V ′n and
g(e) = e for all e ∈ En. Note that G(V ′n) can be viewed as a subgroup of GL(V ′n),
and it is an ind-group of the same type as G.

We point out two preliminary facts.

Lemma 7.1. Let P ⊂ G be a large splitting parabolic subgroup. Then there is an
integer n0 ≥ 1 such that G(V ′n0

) ⊂ P.
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Proof. Since P is large, it is the stabilizer of a generalized flag

F = {F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fp0−1 ⊂ Fp0 ⊂ · · · ⊂ Fp = V }

such that dimFk/Fk−1 < +∞ for all k 6= p0. In particular, Fp0−1 is finite-dimen-
sional hence there is n1 ≥ 1 with Fp0−1 ⊂ Vn1 . By Proposition 3.1, the generalized
flag F is weakly E-compatible. Since Fp0 is finite-codimensional, we have e ∈ Fp0
for all but finitely many vectors e ∈ E, hence there is n2 ≥ 1 with Fp0 ⊃ V ′n2

.
Then the integer n0 := max{n1, n2} is as required in the statement. �

Lemma 7.2. Let P ⊂ G be a semilarge splitting parabolic subgroup which contains
the splitting Cartan subgroup H(E). For all m ≥ 1, there is an integer n1 ≥ 1 such
that for every m-dimensional subspace M ⊂ V , we can find an element g ∈ P with
g(M) ⊂ Vn1

.

Proof. Being semilarge, P is the stabilizer of a generalized flag

F = {F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fp = V }.

This generalized flag being E-compatible, for all k ∈ {1, . . . , p} we have a subset
E′k ⊂ E with Fk = Fk−1 ⊕ 〈E′k〉. The subgroup

P′ := {g ∈ P : g(〈E′k〉) = 〈E′k〉 for all k ∈ {1, . . . , p}} = P ∩
p∏
k=1

GL(〈E′k〉)

acts on the set of vectors
⋃p
k=1〈E′k〉 with finitely many orbits, hence there is an

integer ϕ(0) ≥ 1 with
p⋃
k=1

〈E′k〉 ⊂ P′ · Vϕ(0).

For all n ≥ 1, by applying the same property to the intersection P∩G(V ′n), which
is a semilarge splitting parabolic subgroup of G(V ′n) that contains H(E \En), we
get an integer ϕ(n) > n satisfying

p⋃
k=1

〈E′k ∩ V ′n〉 ⊂ (P′ ∩G(V ′n)) · Vϕ(n).

By induction, this easily implies that (
⋃p
k=1〈E′k〉)` ⊂ P′ · (Vϕ`(0))

` for all ` ≥ 1.
Hence

V m =
( p⊕
k=1

〈E′k〉
)m
⊂ P′ · (Vn1)m ⊂ P · (Vn1)m

where n1 := ϕmp(0). The lemma ensues. �

By Theorem 1.4, X2 × X3 has a finite number of G-orbits. For showing that
X = X1×X2×X3 has a finite number of G-orbits, it suffices to show that G has
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a finite number of orbits on X1 × O for every G-orbit O ⊂ X2 ×X3. To do this,
we fix an element (F2,F3) ∈ O ⊂ X2 ×X3 and consider its stabilizer

S := {g ∈ G : g(F2) = F2 and g(F3) = F3} = StabG(F2) ∩ StabG(F3).

It suffices to show that S has a finite number of orbits on X1.
Fix n0 ≥ 1, large enough so that F2 and F3 belong to X2(n0) and X3(n0),

respectively, and such that

G(V ′n0
) ⊂ StabG(F2)

(see Lemma 7.1). Then

S′ := S ∩G(V ′n0
) = StabG(F3) ∩G(V ′n0

).

Since F3 belongs to X3(n0), the chain of subspaces

F3(V ′n0
) := {F ∩ V ′n0

: F ∈ F3}

is an (E \ En0)-compatible generalized flag in the space V ′n0
. Note that in type

(BCD) this generalized flag is ω′n0
-isotropic. Moreover, the fact that F3 belongs to

X3(n0) guarantees that each subspace F ∈ F3 satisfies F = (F ∩Vn0
)⊕ (F ∩V ′n0

).
We deduce that

S′ = StabG(F3) ∩G(V ′n0
)

= {g ∈ G(V ′n0
) : g(F ) = F for all F ∈ F3}

= {g ∈ G(V ′n0
) : g(F ) = F for all F ∈ F3(V ′n0

)}
= StabG(V ′n0

)(F3(V ′n0
)).

Consequently, S′ is a semilarge splitting parabolic subgroup of G(V ′n0
) that con-

tains the splitting Cartan subgroup H(E \ En0
). This key observation is used in

the proof of Claims 2 and 3 below.
By (7.1) we know that for every n ≥ n0, the (finite-dimensional) subvariety

X1(n) intersects only finitely many S-orbits. For completing the proof of Theorem
1.6, it suffices to prove the following claim.

Claim 1: There is n1 ≥ n0 such that, for all F ∈ X1, there is g ∈ S with
gF ∈ X1(n1).

The combination of Claims 2 and 3 below yields Claim 1, and will make the
proof of the theorem complete.

Since P1 is a large parabolic subgroup, every point F ∈ X1 is a finite flag of
the form

F = {F0 = 0 ⊂ F1 ⊂ . . . ⊂ Fp0−1 ⊂ Fp0 ⊂ . . . ⊂ Fp = V }

with dimFk = dk < +∞ for 0 ≤ k ≤ p0 − 1 and dimV/Fk = d′k < +∞ for
p0 ≤ k ≤ p.

Claim 2: There exists n1 ≥ n0 such that, for all F = {F0, . . . , Fp} ∈ X1, there
is g ∈ S ∩G(V ′n0

) with g(Fp0−1) ⊂ Vn1 .

Claim 3: There exists n2 ≥ n1 such that, for all F = {F0, . . . , Fp} ∈ X1

satisfying the condition Fp0−1 ⊂ Vn1
, there is g ∈ S ∩G(V ′n1

) with g(Fk) ⊃ V ′n2

for p0 ≤ k ≤ p. This implies that gF ∈ X1(n2).
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Proof of Claim 2. If F ∈ X1, then π′n0
(Fp0−1) is a subspace of V ′n0

whose dimen-
sion is at most dp0−1. We have noted that S′ = S∩G(V ′n0

) is a semilarge splitting
parabolic subgroup of G(V ′n0

) which contains H(E\En0
). Hence, Lemma 7.2 yields

an integer n1 ≥ n0 such that for every F ∈ X1 there is an element g ∈ S′ with
g(π′n0

(Fp0−1)) ⊂ Vn1 . Since g ◦π′n0
= π′n0

◦ g, we obtain that π′n0
(g(Fp0−1)) ⊂ Vn1 ,

and hence that g(Fp0−1) ⊂ Vn1
. This establishes Claim 2. �

Proof of Claim 3. Let X̃1 be the subset of generalized flags F = {Fk}pk=0 ∈ X1

such that Fp0−1 ⊂ Vn1
. For F = {Fk}pk=0 ∈ X̃1 we define

F(V ′n1
) := {F0 ∩ V ′n1

⊂ F1 ∩ V ′n1
⊂ · · · ⊂ Fp ∩ V ′n1

}.
This is a weakly (E \ En1

)-compatible generalized flag in the space V ′n1
, that is

ω′n1
-isotropic in type (BCD). Moreover, we have

dimFk ∩ V ′n1
≤ dimFp0−1 = dp0−1 < +∞

for 0 ≤ k ≤ p0 − 1 and

dimV ′n1
/Fk ∩ V ′n1

≤ dimV/Fp0 = d′p0 < +∞

for p0 ≤ k ≤ p. These observations show that the image of the map F ∈ X̃1 7→
F(V ′n1

) is contained in a union X̃′1 ∪ . . . ∪ X̃′r where each X̃′j is an ind-variety
of generalized flags in the space V ′n1

corresponding to a large splitting parabolic
subgroup of G(V ′n1

).
Since n1 ≥ n0, arguing in the same way as for S′, we see that the subgroup

S̃′ := S ∩G(V ′n1
)

is a semilarge splitting parabolic subgroup of G(V ′n1
). By Theorem 1.4, S̃′ has a

finite number of orbits on every X̃′j . It follows that the set

{F(V ′n1
) : F ∈ X̃1}

intersects finitely many S̃′-orbits. Hence we can find n2 ≥ n1 such that for every
F = {F0, . . . , Fp} ∈ X̃1, there is g ∈ S̃′ with g(Fp0 ∩V ′n1

) ⊃ V ′n2
. Whence g(Fp0) ⊃

V ′n2
.

The conclusion that gF = {g(Fk)}pk=0 belongs to X1(n2) is obtained by observ-
ing that

g(Fk) =

{
Fk ⊂ Vn2

if 0 ≤ k ≤ p0 − 1,
(g(Fk) ∩ Vn2)⊕ V ′n2

if p0 ≤ k ≤ p.
The proof of Claim 3 is complete. �

8. Proof of Theorem 1.7

Let ` ≥ 4. Theorem 1.4 implies that X has infinitely many G-orbits whenever at
least two of the splitting parabolic subgroups P1, . . . ,P` are not large. Hence we
may assume that P1, . . . ,P`−1 are large and consider the construction of Section
4.1.

Since ` ≥ 4, it follows from the results in [7, 8, 9, 10] that every (finite-
dimensional) multiple flag variety X(n) has infinitely many G(n)-orbits whenever
n ≥ 1 is large enough. By Lemma 4.2 we infer that X has infinitely many G-orbits,
completing the proof of Theorem 1.7.



LUCAS FRESSE, IVAN PENKOV

A. Appendix: On the classification given in Table 1

In this appendix we go over the details of the classification of triples of (proper)
splitting parabolic subgroups (P1,P2,P3) of G such that the ind-variety

X = G/P1 ×G/P2 ×G/P3

has a finite number of G-orbits, stated in the last part of Theorem 1.6 and explicitly
listed in Table 1. The first part of Theorem 1.6 reduces this classification to the
finite-dimensional case. This enables us to use the classification results for triple
flag varieties of finite type in [7], [8], [9], [10]. Note that these latter results are not
used elsewhere in our paper.

According to the first claim in Theorem 1.6, we assume that for each i ∈ {1, 2, 3},
Pi is a semilarge parabolic subgroup obtained as the stabilizer of a generalized flag

Fi = {Fi,0 = 0 ( Fi,1 ( · · · ( Fi,mi−1 ( Fi,mi
= V }

(such that F⊥i,k = Fi,mi−k in type (BCD)). In the notation of Table 1 we have |Pi| =
mi, while Λ(Pi) is the list of the dimensions dimFi,k/Fi,k−1 (for k ∈ {1, . . . ,mi})
written in nonincreasing order. Some of these dimensions may be infinite, in which
case the sequence Λ(Pi) takes the form

Λ(Pi) = (∞`i , ci,`i+1, . . . , ci,mi)

with `i ∈ {1, . . . ,mi} and a nonincreasing sequence of integers ci,`i+1 ≥ · · · ≥ ci,mi .
Moreover, by the first claim in Theorem 1.6, we assume that at least two of the
parabolic subgroups are large, i.e., `i = 1 for at least two i ∈ {1, 2, 3}.

In the setting of Theorem 1.6, the ind-variety X is exhausted by finite-dimen-
sional triple flag varieties X(n) := X(En) =

∏3
i=1 G(En)/Pi(En), where G(n) :=

G(En) is a finite-dimensional classical algebraic group of the same type as G and
Pi(n) := Pi(En) is the stabilizer of a flag

Fi(n) = {Fi,0(n) = 0 ⊂ Fi,1(n) ⊂ · · · ⊂ Fi,mi−1(n) ⊂ Fi,mi
(n) = Vn}

of the finite-dimensional space Vn = 〈En〉. When n is large enough, the list of
dimensions dimFi,k(n)/Fi,k−1(n) arranged in nonincreasing order is of the form

Λ(Pi(n)) = (di,1(n), . . . , di,`i(n), ci,`i+1, . . . , ci,mi
)

where, for all k ∈ {1, . . . , `i}, {di,k(n)}n is a sequence tending to infinity.

The first part of Theorem 1.6 asserts that X has a finite number of G-orbits if
and only if X(n) has a finite number of G(n)-orbits for all n (in fact, by Lemma
4.2 we may assume that n is large). The latter condition can be characterized in
terms of the sequences Λ(Pi(n)) by using results from [7], [8], [9], [10]. We now
complete the verification of Table 1 case by case.
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A.1. G = GL(∞)

In type (A), it is shown in [7, Thm. 2.2] that X(n) has a finite number of G(n)-
orbits if and only if one of the following conditions holds up to permutation within
the triple (P1,P2,P3):

• m1 = m2 = 2 (referred to as type (Dr+2) in [7, Thm. 2.2]);
• m1 = 2, m2 = 3, m3 ∈ {3, 4, 5} (types (E6), (E7), (E8));

• m1 = 2, m2 = 3, and c1,2 = 2 (type (E
(a)
r+3));

• m1 = 2, m2 = 3, and c2,3 = 1 (type (E
(b)
r+3));

• m1 = 2 and c1,2 = 1 (type (Sq,r)).

Note that type (Aq,r) of [7, Thm. 2.2] does not occur in our setting since we assume
that P1,P2,P3 are proper subgroups of G, and hence m1,m2,m3 ≥ 2. The above
list of conditions yields the part of Table 1 concerning GL(∞).

A.2. G = Sp(∞)

In this case the requirement F⊥i,k = Fi,mi−k for all k ∈ {1, . . . ,mi} implies that,
if mi is even then the generalized flag Fi contains a Lagrangian subspace Fi,mi

2

which is both infinite-dimensional and infinite-codimensional. Hence,

if mi is even, then Pi is not large. (A.1)

Since we assume that at least two of the parabolic subgroups P1,P2,P3 are large,
at least two of the numbers m1,m2,m3 must be odd. Taking this observation into
account, it follows from [8, Thm. 1.2] that X(n) has a finite number of G(n)-
orbits if and only if one of the following cases occurs (up to permutation within
(P1,P2,P3)):

• m1 = 2, m2 = 3, m3 ∈ {3, 5} (types (SpE6) and (SpE8) in [8, Thm. 1.2]);

• m1 = 2, m2 = 3, and c2,2 = c2,3 = 1 (type (SpE
(b)
r+3));

• m1 = m2 = 3, and c1,2 = c1,3 = 1 (type (SpYr+4)).

This corresponds to the part of Table 1 concerning Sp(∞).

A.3. G = O(∞)

Similarly to the case of Sp(∞), the parabolic subgroup Pi is large only if mi is
odd, and the fact that at least two of the subgroups P1,P2,P3 are large implies
that at least two of the numbers m1,m2,m3 are odd. Note that, if some mi is even
then the finite-dimensional space Vn = 〈En〉 has even dimension since it contains
a Lagrangian subspace.

If dimVn is odd, say dimVn = 2m+1, then [9, Thm. 1.6] implies that X(n) has
a finite number of G(n)-orbits if and only if one of the following situations occurs
(up to permutation within (P1,P2,P3)):

• m1 = m2 = 3 and c1,2 = c1,3 = 1 (this corresponds to (II) in [9, Thm. 1.6]);
• m1 = m2 = 3, m3 ∈ {3, 5}, and Λ(P2(n)) = (m,m, 1), which means that

Λ(P2) = (∞,∞, 1) (cases (III) and (IV) of [9, Thm. 1.6]).

In the second situation P2 is not large, hence P1,P3 have to be large, in particular
Λ(P1) = (∞, b, b) for some positive integer b. Note that condition (I) of [9, Thm.
1.6] cannot be fulfilled here because P1 or P2 must be large.
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If dimVn is even, say dimVn = 2m, then we get from [10, Thm. 1.7] that
G(n) has a finite number of orbits on X(n) precisely in the following cases (up to
permutation within (P1,P2,P3)):

• m1 = 3, m2 ∈ {2, 3, 4}, and c1,2 = c1,3 = 1 (cases (I-1) and (I-2) of [10, Thm.
1.7]);

• m1 = 2 and Λ(P2(n)) is one of the sequences (2m − 2, 12), (2m − 4, 22),
(2m − 6, 32), (2m − 4, 14), which equivalently means that Λ(P2) is (∞, b2)
with b ∈ {1, 2, 3} or (∞, 14) (case (II) of [10, Thm. 1.7]);
• m1 = 2, m2 = 3 with Λ(P2(n)) = (2m − 2b, b2) for an integer b ≥ 4, which

means that Λ(P2) = (∞, b2), and m3 ∈ {3, 5} (cases (III-1) and (III-2) of [10,
Thm. 1.7]);
• m1 = 2, m2 = 3 with Λ(P2(n)) = (2m − 2b, b2) for an integer b ≥ 4, which

means that Λ(P2) = (∞, b2), and Λ(P3(n)) is (2m− 2c− 4, c2, 14) with c ≥ 1
or (2m−8, 18), which means that Λ(P3) is (∞, c2, 14) or (∞, 18) (cases (III-3)
and (III-4) of [10, Thm. 1.7]).

Note that [10, Thm. 1.7] contains more cases, but we disregard the cases which
prevent two of the subgroups P1,P2,P3 from being large.

Altogether, the conditions listed in this subsection yield the part of Table 1
concerning O(∞).
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