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Abstract

We introduce (partially) ordered Grothendieck categories and apply results on their structure
to the study of categories of representations of the Mackey Lie algebra of infinite matrices
glM (V, V∗). Here glM (V, V∗) is the Lie algebra of endomorphisms of a nondegenerate pairing
of countably infinite-dimensional vector spaces V∗ ⊗ V → K, where K is the base field. Tensor
representations of glM (V, V∗) are defined as arbitrary subquotients of finite direct sums of tensor
products (V ∗)⊗m ⊗ (V∗)⊗n ⊗ V ⊗p where V ∗ denotes the algebraic dual of V . The category
T3
glM (V,V∗)

which they comprise, extends a category TglM (V,V∗) previously studied in [5, 15,

20]. Our main result is that T3
glM (V,V∗)

is a finite-length, Koszul self-dual, tensor category

with a certain universal property that makes it into a “categorified algebra” defined by means
of a handful of generators and relations. This result uses essentially the general properties
of ordered Grothendieck categories, which yield also simpler proofs of some facts about the
category TglM (V,V∗) established in [15]. Finally, we discuss the extension of T3

glM (V,V∗)
obtained

by adjoining the algebraic dual (V∗)∗ of V∗.
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Introduction

Despite the fact that matrix Lie algebras belong to the core of classical Lie theory, Lie algebras
of infinite matrices present many challenges concerning their structure and representations. Our
study is motivated by the desire to understand certain natural categories of tensor representations
of an infinite-dimensional matrix Lie algebra. These categories are analogues of the category of
finite-dimensional representations of the Lie algebra sl(n) (or more generally, of any simple finite-
dimensional Lie algebra) but are not semisimple.

A first example of such a category is Tg, the category of tensor modules over a finitary simple
Lie algebra g ∼= sl(∞), o(∞) or sp(∞). This category was introduced independently in [5] and [20]
and has been further studied in [15] (see also [16]). Some of the essential attributes of the category
Tg are that its objects have finite length and that it is a nonrigid Koszul tensor category.

A more elaborate example is the category T̃ensg for g as above, introduced in [14]. It contains
both defining representations of g as well as their algebraic duals, but is no longer a finite-length
category. Notably the objects of T̃ensg have finite Loewy length.

The paper [15] introduces a class of infinite-dimensional, non-locally finite matrix Lie algebras
called Mackey Lie algebras. A first example is the algebra glM (V, V∗) of all endomorphisms of a
countable-dimensional vector space V which preserve a fixed nondegenerate pairing V ⊗V∗ → K (K
is the base field, charK = 0), V∗ being also a countable-dimensional vector space. In matrix terms,
glM (V, V∗) consists of infinite matrices each of whose rows and columns has at most finitely many
nonzero entries. This Lie algebra has two obvious modules: V and V∗. In addition, interestingly,
the algebraic dual V ∗ of V , although not simple over glM (V, V∗), has finite length: the socle of V ∗

as a glM (V, V∗)-module equals V∗, and the quotient V ∗/V∗ is a simple glM (V, V∗)-module. Moreover,
as shown by the first author in [2], the tensor category T3

glM (V,V∗)
generated by V , V∗ and V ∗ is a

finite-length category.
With the categories Tg and T3

glM (V,V∗)
in mind, we introduce in this paper a general notion of

ordered Grothendieck category. These are Grothendieck categories for which the indecomposable
injectives are parametrized by a partially ordered set with finite downward sequences; the precise
definition is given in Section 2 below. Our main result regarding ordered Grothendieck categories
is that they are equivalent to categories of comodules over semiperfect coalgebras, and that they
are universal in a certain sense to be made precise below.

Applied to the Grothendieck closure of Tg for g = sl(∞), o(∞) or sp(∞), this result simplifies
proofs of some main results in [5]. It is also crucial in our study of the category T3

glM (V,V∗)
: we

give an explicit parametrization of the simple objects of T3
glM (V,V∗)

via triples of Young diagrams,

characterize the indecomposable injectives explicitly, find the blocks of T3
glM (V,V∗)

, and, last but not

least, prove the Koszulity of T3
glM (V,V∗)

. Moreover, we show that T3
glM (V,V∗)

is Koszul self-dual. We

also apply our general universality result to show that the category T3
glM (V,V∗)

is universal in a much

stronger sense than a general ordered Grothendieck category.
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Finally, we take a few first steps in studying the abelian tensor category T4
glM

generated by V ,

V∗, V
∗ and (V∗)

∗. We prove that T4
glM (V,V∗)

is a finite-length category and its simple objects are

parametrized by quadruples of Young diagrams. However, the Grothendieck closure of T4
gl(V,V∗)

is

not an ordered Grothendieck category, and therefore we leave a more detailed study of T4
gl(V,V∗)

(e.g. injectives in its Grothendieck closure) to the future.
The formalism of ordered tensor categories, as introduced in this paper, will very likely be

applicable to categories of tensor representations of diagonal infinite-dimensional Lie algebras such
as gl(2∞).

In addition to the intrinsic interest of the formalism of ordered tensor categories, we believe the
investigations conducted in this paper fit into an algebraic framework for studying topics that are
typically the domain of functional analysis. Indeed, V∗ can be regarded as a topological dual to V
for a certain topology on the latter (the Mackey topology determined by the pairing V ⊗ V∗ → K).
In this sense, we are examining the interaction between duals associated to different topologies (i.e.
V∗ and V ∗); this is one of the main themes in the study of locally convex topological vector spaces.
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1 Background

All algebras, Lie algebras, coalgebras, etc. are over a field K fixed throughout. Except in Section 2,
the characteristic of K is assumed to equal 0. The superscript ∗ indicates dual space, i.e., V ∗ =
HomK(V,K) for a vector space V . The sign ⊗ means ⊗K, except in Section 2 where it denotes the
tensor product in an abstract tensor category.

Let p : V ⊗ V∗ → K be a fixed nondegenerate pairing (K-bilinear form) of countably infinite-
dimensional vector spaces V, V∗ over K. G. Mackey studied in his dissertation [13] arbitrary non-
degenerate pairings of infinite-dimensional spaces, and proved that if both V and V∗ are countable
dimensional, such a pairing is unique up to isomorphism. In particular, there is a basis {vα} of V

such that V∗ = span {v∗α}, where v∗α is the dual system of vectors defined by p: p
(
vα ⊗ v∗β

)
= δαβ.

The tensor product V ⊗ V∗ has a natural associative algebra structure defined by

(v ⊗ v∗)(v′ ⊗ v′∗) = p(v′ ⊗ v∗)v ⊗ v′∗.

The associated Lie algebra is denoted by gl(V, V∗). We also set sl(V, V∗) := ker(p).
As pointed out in the introduction, the Mackey Lie algebra glM (V, V∗) associated with the

pairing p is the Lie algebra of endomorphisms of p, i.e., the Lie subalgebra of EndK(V )

glM (V, V∗) =
{
ϕ ∈ EndK(V )

∣∣ϕ∗ (V∗) ⊆ V∗
}
,

where ϕ∗ : V ∗ → V ∗ is the endomorphism dual to ϕ. Clearly, gl(V, V∗) is a Lie subalgebra of
glM (V, V∗). In a basis {vα} as above, glM (V, V∗) consists of infinite matrices each of whose rows
and columns has at most finitely many nonzero entries. More general Mackey Lie algebras have
been introduced in [15].
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Next, TglM (V,V∗)
is the full tensor subcategory of glM (V, V∗) -Mod whose objects are arbitrary

subquotients of finite direct sums of glM -modules of the form (V∗)
⊗m⊗ V ⊗n. A main result of [15]

claims that the category TglM (V,V∗)
is naturally equivalent to the similarly defined category Tsl(V,V∗).

The category Tsl(V,V∗) has been introduced and studied in [5] (and independently also in [20]).
The main features of Tsl(V,V∗) are that it is a finite-length Koszul self-dual category. More precisely,
it is shown in [5] that Tsl(V,V∗) is antiequivalent to a category of finite-dimensional modules over
an associative algebra Asl(V,V∗) which is an inductive limit of finite-dimensional Koszul self-dual
algebras. Indecomposable injectives in Tsl(V,V∗), i.e., injective hulls of simple modules, turn out to

be precisely arbitrary indecomposable direct summands of the modules (V∗)
⊗m ⊗ V ⊗n.

Consider now the Lie algebra EndK(V ) for an arbitrary vector space V . This Lie algebra also
has a natural tensor category of representations TEndK(V ) consisting of all subquotients of finite

direct sums of the form (V ∗)⊗m ⊗ V ⊗n, and as proved in [15], the tensor category TEndK(V ) is
naturally equivalent to Tsl(V,V∗). The equivalence functor TEndK(V )  Tsl(V,V∗) maps V to V and

V ∗ to V∗. However, since glM (V, V∗) is a Lie subalgebra of EndK(V ), it is interesting to ask whether
the tensor category “generated” by the restrictions of modules in TEndK(V ) to glM (V, V∗) has good
properties.

Studying the latter tensor category is a main topic in the present paper. The precise definition
of the category is as follows: T3

glM (V,V∗)
is the full tensor subcategory of glM (V, V∗) -Mod whose

objects are glM (V, V∗)-subquotients of finite direct sums of the form (V ∗)⊗m ⊗ V ⊗n. Some first
results about the category T3

glM (V,V∗)
have been established in [2] by the first author; in particular,

it is shown in [2] that T3
glM (V,V∗)

is a finite-length tensor category.

In what follows, unless the contrary is stated explicitly, we consider V , V∗, V
∗, and glM (V, V∗)

fixed; we write glM instead of glM (V, V∗) for brevity.
In order to state some further results of [2], let us recall that, given any vector space Z and

a Young diagram λ (or, equivalently, a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λk > 0)), any filling of λ
turning λ into a Young tableau λ̄ defines a subspace Zλ ⊂ Z⊗|λ|, for |λ| =

∑k
j=1 λj . This subspace

is the image of the Schur projection Z⊗|λ| → Z⊗|λ| determined by λ̄. If Z is a representation of a
Lie algebra, then any Zλ is also a representation of the same Lie algebra, and Zλ depends up to
isomorphism only on λ and not on λ̄.

Given two Young diagrams µ, ν, it is proved in [5] that the glM -module (V∗)µ ⊗ Vν is indecom-
posable (and injective in TglM )) and has simple socle. We denote this socle by Vµ,ν . Moreover, the
modules Vµ,ν are pairwise nonisomorphic (for distinct pairs of Young diagrams) and exhaust (up
to isomorphism) all simple objects of TglM .

In [2] the simplicity of V ∗/V∗ as a glM -module has been shown. This yields three obvious simple
modules in T3

glM
: V , V∗, and V ∗/V∗. A next important result of [2] is

Theorem 1.1 ([2]) For a triple of Young diagrams λ, µ, ν, the glM -module

Vλ,µ,ν := (V ∗/V∗)λ ⊗ Vµ,ν

is simple.

In addition, the socle filtrations over glM of the simple objects in T2
EndK(V ) are computed in [2].

We will recall the result in Subsection 3.2.
We conclude this background section by a diagram of categories which helps to better understand

our object of study. Let T1
glM

denote the finite-length tensor category with single generator V : its

objects are finite direct sums of simples of the form Vλ for arbitrary Young diagrams λ. By T2
glM
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we denote the category TglM , and by T2
EndK(V ) we denote the category TEndK(V ) [15]. We then have

the following natural diagram of inclusions and a restriction functor

T1
glM

T2
glM

T3
glM

T4
glM

T2
EndK(V ) ,

⊂ ⊂ ⊂

r

(1)

where the category T4
glM

is defined by adjoining the glM -module (V∗)
∗ to T3

glM
, see Section 4. All

categories (1) are finite-length tensor categories. The structure of the categories T1
glM

, T2
glM

, and

T2
EndK(V ) is well understood, in particular, the latter two categories are canonically equivalent to

the category Tsl(V,V∗) studied in [5, 20]. In the present paper we investigate mainly the category
T3
glM

. For T4
glM

, we only establish preparatory results: we prove that T4
glM

is a finite-length category

and we classify its simple objects.

2 Ordered Grothendieck categories

2.1 Definition and characterization of indecomposable injectives

We now define a class of Grothendieck categories which we study throughout Section 2.
Let C be a K-linear Grothendieck category (for the notion of Grothendieck category we refer

the reader to [18]). Unless specified otherwise, all additive categories are assumed K-linear and
all functors between K-linear categories are understood to be K-linear. The sign ⊂ denotes a
monomorphism in C, or a not necessarily strict set-theoretic inclusion. If Z is an object of C, then
Z⊕q stands for the direct sum of q copies of Z.

Let Xi ∈ C, i ∈ I be objects indexed by a partially ordered set (I,≤) with the property that
every element dominates finitely many others; in other words, for every i ∈ I the down-set

I≤i := {j ∈ I | j ≤ i}

is finite. For each i ∈ I, we fix a finite set Θi of morphisms from Xi into various objects Xj for
j < i. Denote

Yi :=
⋂
f∈Θi

ker f.

We further assume that

(1) every object of C is a sum of subquotients of finite direct sums of Xi;

(2) Yi has finite length, and Yi = socXi; write Yi =
⊕
S∈Si

S⊕p(S), where Si is the set of isomorphism

classes of distinct simple direct summands of Yi, and p(S) is the multiplicity of S in Yi;

(3) the sets Si are disjoint;

(4) Xi decomposes as
⊕
S∈Si

S̃⊕p(S) for modules S̃ with socle S.
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In the sequel we will sometimes refer to a simple object as belonging to Si; by this we mean that
its isomorphism class belongs to that set.

Definition 2.1 An ordered Grothendieck category is a category C satisfying all above assump-
tions. �

Remark 2.2 Conditions (1) – (4), together with the down-finiteness of I, ensure that all Xi have
finite length, and hence so do subquotients of finite direct sums of Xi. In particular, we can freely
use the Jordan-Hölder Theorem for such objects. �

The definition of ordered Grothendieck category allows the following quick characterization of
indecomposable injectives.

Proposition 2.3 If C is an ordered Grothendieck category then S̃ is an injective hull of S in C for
any i ∈ I and any simple S ∈ Si.

It suffices to show that a subquotient J of a finite direct sum of Xi admitting an essential
extension S ⊂ J in fact embeds into S̃. The following lemma deals with a particular case of this
situation.

Lemma 2.4 Let S ⊂ J be an essential extension for S ∈ Si for a fixed i. If J is a subquotient of
a direct sum X⊕qi for some q, then J is isomorphic to a subobject of S̃.

Proof Subquotient means subobject of a quotient. So let π : X⊕qi → Z be an epimorphism such
that J ⊂ Z. We regard S as a subobject of socZ by means of the monomorphisms S ⊂ J ⊂ Z,
and there is a decomposition socZ = T ⊕ S. Since the extension S ⊂ J is essential, T intersects J
trivially, and hence, after factoring out T , we can (and will) assume that Z has simple socle S.

Now, the socle Y ⊕qi of X⊕qi can be decomposed as U ⊕ S in such a manner that π|Y ⊕qi
is the

projection on the second direct summand. By condition (4) above, this decomposition can be lifted
to a decomposition of X⊕qi as Ũ ⊕ S̃. The socle U of Ũ is already in the kernel of π, and all other

simple constituents of Ũ belong to the set
⋃
j<i Sj which does not contain S. It follows that π(Ũ)

intersects S trivially, and hence also J . Consequently, J admits a monomorphism into Z/π(Ũ).
But Z/π(Ũ) is a quotient of S̃, and it can only be isomorphic to S̃ as the restriction of π to the
simple socle S of S̃ is a monomorphism. We are done. �

Proof of Proposition 2.3 Let π : X → J be an epimorphism, for some subobject X ⊂
⊕
j∈I

X
⊕qj
j

of a finite direct sum. Any simple subobject T of X belonging to Sj for j 6= i will automatically
lie in the kernel of π (by condition (3) above), so we may as well assume that X is a subobject of
X⊕qii . Then we apply Lemma 2.4. �

Proposition 2.5 Any simple object of C belongs to Si for some i ∈ I.

Proof Let S ∈ C be a simple object. Condition (1) in our definition of an ordered Grothendieck
category ensures that S is a subquotient of an object Xi. If S is in the socle of Xi, we are done.
Otherwise, consider a morphism of the form

f : Xi → X :=
⊕
j

X
pj
j (2)

where each index j appearing in the (finite) sum on the right is smaller than i, and the kernel of
f is the socle of Xi. f realizes S as a subquotient of X, and we can repeat the procedure with
Xj (for some j in (2)) instead of Xi. The finiteness of the down-set I≤i ensures that this process
terminates. �
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Corollary 2.6 The indecomposable injective objects in C are isomorphic to arbitrary indecompos-
able direct summands of the objects Xi.

2.2 Bounds on non-vanishing ext functors

For i ≤ j ∈ I define the defect d(i, j) to be the number of links (i.e. symbols ‘<’) in a longest chain
i < · · · < j. Note that, by convention, d(i, j) is not defined unless i ≤ j.

Remark 2.7 It follows easily from the definition that, for triples i ≤ j ≤ k, the function d satisfies
the opposite of the triangle inequality, i.e. d(i, k) ≥ d(i, j) + d(j, k). �

Let S ∈ Ss and T ∈ St be simple objects in an ordered Grothendieck category C.

Lemma 2.8 If Extp(S, T ) 6= 0 then s ≤ t.

Proof We proceed by induction on p, the base case p = 0 being immediate.
Suppose p > 0 and the statement holds for all smaller p. Let T̃ be an injective hull of T . The

long exact sequence

Extp−1(S, T )→ Extp−1(S, T̃ )→ Extp−1(S, T̃ /T )→ Extp(S, T )→ Extp(S, T̃ )→ · · ·

identifies Extp(S, T ) with Extp−1(S, T̃ /T ). Indeed, this is clear if p > 1 because then both the
second and fifth terms in the sequence are zero. On the other hand, when p = 1 the leftmost arrow
is an epimorphism because T is the socle of T̃ , and hence the second leftmost arrow is zero.

The conclusion follows from the induction hypothesis and the fact that the quotient T̃ /T has a
filtration whose successive quotients belong to sets St′ for t′ < t. �

We can now improve on this somewhat, leading to the main result of this subsection. Recall
that d(i, j) was only defined for i ≤ j, so Lemma 2.8 is necessary for the statement below to make
sense.

Proposition 2.9 Extp(S, T ) 6= 0 implies d(s, t) ≥ p.

Proof To prove the inequality for all p we can once more perform induction on p with the case
p = 0 being obvious. Assume now that p is positive and that the induction hypothesis is in place.

The same long exact sequence that we used in the proof of Lemma 2.8 implies

Extp(S, T ) ∼= Extp−1(S, T̃ /T ).

This means that Extp−1(S, T ′) is nonzero for some simple T ′ ∈ St′ , t′ < t, and the induction
hypothesis then ensures that d(s, t) > d(s, t′) ≥ p− 1. �

We will later need the following variant of Proposition 2.9 for Ext1. Before we state it, a bit of
terminology.

Definition 2.10 A morphism f : Xi → Xj in C is short if d(j, i) = 1. �

Lemma 2.11 Assume furthermore that all morphisms f ∈ Θi are short. In that case, Ext1(S, T ) 6=
0 implies d(s, t) = 1.

Proof We already know from Lemma 2.8 and Proposition 2.9 that s ≤ t and d(s, t) ≥ 1. The fact
that the strict inequality d(s, t) > 1 is impossible follows from the observation that all nontrivial
extensions of a simple object by T are subobjects of the injective hull T̃ of T , and by assumption
the socle of T̃ /T is a direct sum of simples T ′ ∈ St′ with t′ < t and d(t′, t) = 1. �
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2.3 C as a comodule category

We are now ready to characterize ordered Grothendieck categories as certain categories of comod-
ules. First, recall that an additive subcategory D of an abelian category C is thick (‘épaisse’ in [6,
Section III.1]) if, given an exact sequence

0→M ′ →M →M ′′ → 0

in C, M is an object of D if and only if M ′ and M ′′ are. Given an ordered Grothendieck category
C we denote by Cfin, the full, thick abelian subcategory of C generated by Xi (i.e. the minimal such
category containing Xi for i ∈ I).

Definition 2.12 A coalgebra C is left semiperfect if every indecomposable injective right C-
comodule is finite dimensional. �

Remark 2.13 This is not quite the standard definition. By analogy with the dual notion for
algebras, the requirement is that every finite-dimensional left C-comodule have a projective cover.
However, [11, Theorem 10] ensures that the two conditions are equivalent. �

For a coalgebra C we denote by MC the category of right C-comodules, and by MC
fin the

category of finite-dimensional right comodules.

Theorem 2.14 Suppose C is an ordered Grothendieck category such that the endomorphism ring
of any simple object is finite dimensional over K. Then there is a K-coalgebra C and an equivalence
C ∼ MC of K-linear categories.

Moreover, any such coalgebra C is left semiperfect, and any such equivalence identifies Cfin and
MC

fin.

Proof According to [22, Definitions 4.1 and 4.4, Theorem 5.1], in order to prove the first assertion
it suffices to check that C has a set of generators of finite length. This is immediate: simply take
the set consisting of all subquotients of finite direct sums of Xis.

The existence of a K-linear equivalence of categories C ∼ MC forces C to be left semiperfect,
as the indecomposable injectives of C are of finite length (Proposition 2.3) and hence correspond
to finite-dimensional C-comodules.

We now prove the last assertion that any K-linear equivalence C ∼ MC automatically iden-
tifies Cfin and MC

fin. Note first that Cfin consists of those objects that are subquotients of finite
direct sums of Xis. By Corollary 2.6, the indecomposable direct summands of the Xis are (up to
isomorphism) precisely the indecomposable injectives in C. In general, comodule categories admit
injective hulls, and an object is of finite length if and only if its injective hull is a finite direct sum of
indecomposable injectives. It follows from this that the objects of Cfin are the finite-length objects
in C. In turn, for C-comodules, being of finite length is equivalent to being finite dimensional. �

In the course of the proof of Theorem 2.14 we have obtained the following result in passing.

Corollary 2.15 The category Cfin consists of all objects of finite length in C.

2.4 C as a highest weight category

We show next that an ordered Grothendieck category is a highest weight category in the sense of
[3, Definition 3.1]. First, recall the definition from loc. cit.
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Definition 2.16 A K-linear category C is a highest weight category if it is locally Artinian and
there exists an interval-finite partially ordered set Λ such that

(1) There exists a complete collection {S(λ)}λ∈Λ of simple objects in C.

(2) There is a collection {A(λ)}λ∈Λ of objects (referred to as the standard objects) admitting
embeddings S(λ) ⊂ A(λ) such that all composition factors S(µ) of A(λ)/S(λ) satisfy µ < λ.
Moreover, for all λ, µ ∈ Λ both dimK HomC(A(λ), A(µ)) and the multiplicity [A(λ) : S(µ)]
are finite.

(3) Each simple object S(λ) has an injective hull I(λ), and the latter has a good filtration
0 = F0(λ) ⊂ F1(λ) ⊂ · · · . �

We will not recall the definition of good filtration here. We just mention that in a good filtration
one requires that F1(λ) ∼= A(λ) and that the other successive subquotients Fn+1(λ)/Fn(λ) be
isomorphic to various A(µ), µ > λ.

Proposition 2.17 An ordered Grothendieck category is a highest weight category.

Proof Let C be an ordered Grothendieck K-linear category, and I, Xi, Yi, Si be as in Subsec-
tion 2.1. It is well known that comodule categories are locally Artinian, so C is locally Artinian by
Theorem 2.14.

Set Λ :=
⋃
i∈I Si, and regard it as a partially ordered set by declaring λ < µ precisely when

λ ∈ Si and µ ∈ Sj with i < j. Because I has finite down-sets, (Λ,≤) clearly has finite intervals.
By definition, the poset Λ indexes the complete set

⋃
Si of isomorphism classes of simple objects

in C, taking care of part (1) of Definition 2.16.
Now take A(λ) to be the injective hull of the simple object S(λ) (hence, according to Corol-

lary 2.6, A(λ) is a summand of Xi if λ ∈ Si). The finiteness conditions in part (2) are satisfied
because the objects Xi have finite length. The condition that A(λ)/S(λ) admits a filtration with
subquotients S(µ), µ < λ follows from the fact that S(λ) ⊂ A(λ) is the kernel of a map of A(λ) into
a sum of A(µ) for µ < λ. This latter fact is a direct corollary of Proposition 2.3 and the definition
of Yi.

Finally, the sought-after good filtration of the injective hull I(λ) ⊃ S(λ) is as small as possible:
0 = F0(λ) ⊂ A(λ) = I(λ). In other words, in our case the standard objects A(λ) are injective.
Because of this, the other properties required of good filtrations hold vacuously. �

We end this brief subsection by noting that our main motivation for introducing the formalism
of ordered Grothendieck categories was that it allows a relatively quick explicit characterization
of the indecomposable injective objects in the category. In a general highest weight category the
indecomposable injectives are not even required to have finite length, so ordered Grothendieck
categories are a rather special class of highest weight categories.

2.5 Universal properties for C and CFIN

We henceforth assume that all endomorphism rings of simple objects in C are equal to K. Together
with our already standing assumptions, this ensures that the categories C and Cfin are universal in
a certain sense which we will make precise shortly.

Denote by CX the smallest subcategory of C containing the Xi as objects and the Θi as sets of
morphisms, and closed under taking K-linear combinations, compositions, finite direct sums and
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direct summands of morphisms. This last condition means that if f : x → y and f ′ : x′ → y′ are
morphisms in C

f ⊕ f ′ : x⊕ x′ → y ⊕ y′

is a morphism of CX , then so are f and f ′.

Theorem 2.18 Let D be an abelian category and F : CX  D be a K-linear functor.

(a) F extends to a left-exact functor Cfin  D uniquely up to natural isomorphism.

(b) If in addition D has arbitrary coproducts, F extends uniquely (up to natural isomorphism) to
a left-exact, coproduct-preserving functor C  D.

We first need the following observation.

Lemma 2.19 The subcategory CX ⊂ C is full on the finite direct sums of indecomposable injectives
in C.

Proof Let S̃i ⊂ Xi and S̃j ⊂ Xj be two indecomposable injectives for i, j ∈ I, and f : S̃i → S̃j be
a morphism in C. We will prove that f is a morphism in CX by induction on the defect d(i, j),with
the convention that if d(i, j) = 0 then this assumption is true vacuously.

If f is a monomorphism, then it is an isomorphism. Moreover, f is unique up to scaling by
our assumption that the C-endomorphism rings of simple objects equal K, so f must indeed be a
morphism in CX as defined above.

Now suppose f is not a monomorphism. Then f annihilates the socle Si of S̃i, and hence
can be thought of as a morphism from the quotient S̃i/Si to S̃j . By assumption, this quotient

admits a monomorphism into a finite direct sum of S̃k (with k < i in I) via morphisms in Θi, and
f : S̃i/Si → S̃j extends to the direct sum of the S̃k by the injectivity of S̃j . Since all k are less than
i, the conclusion follows from the induction hypothesis. �

Remark 2.20 Note that the above proof shows that there are no nonzero morphisms Xi → Xj

for i < j. �

Proof of Theorem 2.18 (a) By Lemma 2.19 we know that CX is the full subcategory of Cfin on
the injective objects in Cfin. Since the left-bounded derived category D+(Cfin) can be built out of
complexes of injectives (see e.g. [7, Chapter III, §2]), F extends to a functor DF : D+(Cfin)  
D+(D) of triangulated categories.

Now consider the standard t-structures (D≤0, D≥0) for both D = D+(Cfin) and D = D+(D).
Since DF is clearly left t-exact in the sense that DF (D+(Cfin)≥0) ⊂ D+(D)≥0, the functor restric-
tion of H0(DF ) : D+(Cfin) D to the heart Cfin of the standard t-structure will be left exact (see
e.g. [8, Proposition 8.1.15]). It is moreover easily seen to extend F .

(b) F extends uniquely in a coproduct-preserving fashion to the full subcategory of C on ar-
bitrary direct sums of indecomposable injectives. Since these are all of the injectives in C (a
consequence of the fact that C is a comodule category by Theorem 2.14), the argument from part
(a) then extends F uniquely as a left exact, coproduct-preserving functor into D as desired. �

2.6 The monoidal case

Recall that all of our additive categories are assumed K-linear.
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Definition 2.21 An additive category is monoidal if it has a monoidal structure such that all
functors of the form x⊗ • and • ⊗ x are exact.

An additive tensor category (or just tensor category for short) is an additive category that is
monoidal in the above sense and for which in addition its monoidal structure is symmetric.

A tensor functor is a symmetric monoidal K-linear functor between tensor categories. �

Now, in the setting of Theorem 2.18, suppose C is a tensor category. Suppose furthermore that
the set {Xi} and the linear span of

⋃
Θi are closed under tensor products. Then Cfin is a tensor

category.
Finally, denote by CX,⊗ the smallest tensor subcategory containing Xi, Θi, and closed under

direct summands. Adapting the proof of Theorem 2.18 in a routine fashion we get

Theorem 2.22 Let D be a tensor abelian category and F : CX,⊗  D a K-linear tensor functor.

(a) F extends to a left exact tensor functor Cfin  D uniquely up to the obvious notion of tensor
natural isomorphism.

(b) If in addition D has arbitrary coproducts, F extends uniquely to a left exact, coproduct-
preserving tensor functor C  D. �

2.7 An application: the category T2
glM

We illustrate the usefulness of the preceding material with an application to the category T2
glM

introduced in Section 1. The setup for doing so is as follows.
We regard T2

glM
as Cfin, where C is the Grothendieck category consisting of objects that are

(possibly infinite) sums of objects in T2
glM

. The poset I is the set of ordered pairs (m,n) of

nonnegative integers, and the order on I is the smallest partial order such that (m,n) ≥ (m−1, n−1)
for positive integers m and n. The object Xi corresponding to the element i ∈ (m,n) in I is by
definition (V∗)

⊗m ⊗ V ⊗n.
Next, for i = (m,n), we define Θi to be the set of contractions

pm,nr,s : (V∗)
⊗m ⊗ V ⊗n → (V∗)

⊗(m−1) ⊗ V ⊗(n−1) ,

where

pm,nr,s (y1 ⊗ · · · ⊗ ym ⊗ x1 ⊗ · · · ⊗ xn)

= p (yr ⊗ xs) y1 ⊗ · · · ⊗ yr−1 ⊗ yr+1 ⊗ · · · ⊗ ym ⊗ x1 ⊗ · · · ⊗ xs−1 ⊗ xs+1 ⊗ · · · ⊗ xn .

The fact that conditions (1) – (4) from the definition of an ordered Grothendieck category for this
choice of Xi and Θi hold follows from results of [16]. Note also that the contractions pm,nr,s are short
morphisms in the sense of Definition 2.10.

With this in place, Proposition 2.3 gives now an alternate proof for the injectivity of the objects
(V∗)

⊗m ⊗ V ⊗n in T2
glM

. Cf. [5, 20] for different approaches to injectivity.

3 The three-diagram category

3.1 Simple objects

We now begin our study of the category T3
glM

, see Section 1 for the definition. The aim of this

subsection is to describe the simple objects of T3
glM

. We first show that the simple gM -modules
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(V ∗/V∗)λ ⊗ Vµ,ν from Theorem 1.1 are mutually nonisomorphic as (λ, µ, ν) ranges over all ordered
triples of Young diagrams.

We start with the following variant of [2, Lemma 3]. Before stating it, recall that a Lie subalgebra
I of a Lie algebra g acts densely on a g-module W if for any finite set {wi}ni=1 ⊂W and any g ∈ g
there is some g′ ∈ I such that

g′wi = gwi for any i, 1 ≤ i ≤ n.

Lemma 3.1 Let G be a Lie algebra and I ⊆ G be an ideal. Let U and U ′ be G/I-modules, and W
be a G-module on which I acts densely and irreducibly with EndI(W ) = K. Then

HomG(U ⊗W,U ′ ⊗W ) = HomG(U,U ′).

Proof Let f ∈ HomG(U ⊗W,U ′ ⊗W ). We will show that there is g ∈ HomG(U,U ′) such that
f = g ⊗ idW .

Fix u⊗ w ∈ U ⊗W and let

f(u⊗ w) =
n∑
i=1

u′i ⊗ wi, u′i ∈ U ′, wi ∈W.

As f is a homomorphism of I-modules and I annihilates U , f maps u⊗W ∼= W to the direct sum

n⊕
i=1

u′i ⊗W ∼= W⊕n.

Furthermore, f composed with the projection to a fixed direct summand of W⊕n is an endomor-
phism of W sending u⊗ w ∈ u⊗W ∼= W to u′i ⊗ wi. But since EndI(W ) = K, each wi must be a
scalar multiple tiw of w. This shows that

g : u 7→
∑

tiu
′
i

is a well-defined linear map U → U ′ with f = g ⊗ idW .
It remains to show that g is a G-module homomorphism; we do this by following the part of

the proof of [2, Lemma 3] that uses the density condition.
Let h ∈ G be an arbitrary element, and let k ∈ I be such that hw = kw (this is possible by

density). We have

(h− k)(u⊗ w) = hu⊗ w + u⊗ hw − u⊗ kw = hu⊗ w

because ku = 0. This implies

g(hu)⊗ w = f((h− k)(u⊗ w)) = (h− k)f(u⊗ w) = (h− k)(g(u)⊗ w) = hg(u)⊗ w.

Since w is arbitrary, we get the desired conclusion hg(u) = g(hu) for all u ∈ U , h ∈ G, i.e., g is a
G-module homomorphism. �

We also need the following complement to [2, Proposition 1]; its proof is based on some of the
same ideas as in loc. cit.

Proposition 3.2 The endomorphism algebra of the gM -module (V ∗/V∗)
⊗m is isomorphic to the

group algebra K [Sm] of the symmetric group Sm.
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Proof The infinite dimensionality of V ∗/V∗ makes it clear that the different permutations from
Sm are linearly independent as endomorphisms of (V ∗/V∗)

⊗m, so it remains to show that there are
no other gM -endomorphisms of (V ∗/V∗)

⊗m. For this, it suffices to show that for diagrams λ and
λ′ we have

Hom((V ∗/V∗)λ, (V
∗/V∗)λ′) 6= 0⇒ λ = λ′

and in that case all morphisms are scalars. To this end, suppose we have a nonzero morphism

f : (V ∗/V∗)λ → (V ∗/V∗)λ′ ,

which must necessarily be an embedding because its domain is simple. Fix a finite-dimensional
subspace X ⊂ V ∗/V∗ large enough to contain the tensorands of some non-zero

x ∈ cλ(V ∗/V∗)
⊗m ∼= (V ∗/V∗)λ

(where cλ ∈ KSm is the Young symmetrizer attached to the diagram λ), as well as those of

f(x) ∈ cλ′(V ∗/V∗)⊗m ∼= (V ∗/V∗)λ′ .

Setting k = dim(X), we can find an embedding gl(k) ⊂ glM operating on X in the usual fashion,
as matrices with respect to some cardinality-k basis for X. f then restricts to an isomorphism of
gl(k)-modules from Xλ onto some module intersecting Xλ′ nontrivially. Since both Xλ and X ′λ are
simple over gl(k) if k is sufficiently large (which we assume it is), we must have

λ = λ′, f(Xλ) = Xλ = Xλ′ ,

and f restricts to a scalar on Xλ by the usual Schur-Weyl duality for gl(k).
The desired conclusion follows by noting that V ∗/V∗ can be exhausted with subspaces X as

above, and hence the scalars obtained in this manner must be compatible: f is a scalar on the
entirety of

(V ∗/V∗)λ =
⋃
X

Xλ,

as desired. �

As a consequence, we get

Corollary 3.3 The simple gM -modules (V ∗/V∗)λ are mutually nonisomorphic as λ ranges over all
Young diagrams.

Proof Suppose there is an isomorphism (V ∗/V∗)λ ∼= (V ∗/V∗)λ′ for Young diagrams λ and λ′. The
two modules are direct summands of (V ∗/V∗)

⊗|λ| and (V ∗/V∗)
⊗|λ′| respectively. Since the identity

matrix (which is in gM ) acts on (V ∗/V∗)
⊗m as multiplication by m, the Young diagrams λ and λ′

must have an equal number of boxes. Then the isomorphism

(V ∗/V∗)λ ∼= (V ∗/V∗)λ′

can be extended to an endomorphism of (V ∗/V∗)
⊗m for m = |λ| = |λ′| that does not belong to

K [Sm], contradicting Proposition 3.2. �

Corollary 3.4 For all ordered triples (λ, µ, ν), the simple gM -modules (V ∗/V∗)λ⊗Vµ,ν are mutually
nonisomorphic.
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Proof Let (V ∗/V∗)λ ⊗ Vµ,ν and (V ∗/V∗)λ′ ⊗ Vµ′,ν′ be two isomorphic simple modules. Note that
V ∗/V∗ is a trivial sl (V, V∗)-module. Hence, after restricting to sl (V, V∗) ⊂ gM , the two modules
become isomorphic to direct sums of copies of Vµ,ν and Vµ′,ν′ respectively. This implies (µ, ν) =
(µ′, ν ′).

Next, apply Lemma 3.1 to U = (V ∗/V∗)λ and U ′ = (V ∗/V∗)λ′ with I = sl (V, V∗). The
hypotheses are easily seen to be satisfied, and the conclusion is that an isomorphism (V ∗/V∗)λ ⊗
Vµ,ν ∼= (V ∗/V∗)λ′⊗Vµ′,ν′ must be of the form g⊗id for some isomorphism g : (V ∗/V∗)λ → (V ∗/V∗)λ′ .
The equality λ = λ′ now follows from Corollary 3.3. �

Finally, we have

Theorem 3.5 The simple objects in T3
glM

are (up to isomorphism) the tensor products

Vλ,µ,ν = (V ∗/V∗)λ ⊗ Vµ,ν ,

and they are mutually nonisomorphic for different choices of ordered triples (λ, µ, ν).

Proof We have already proved that the objects in the statement are mutually nonisomorphic. To
prove that they exhaust the simple objects of T3

glM
it suffices to check that every object (V ∗)⊗m ⊗

V ⊗n has a finite filtration whose successive quotients are isomorphic to Vλ,µ,ν for various λ, µ and
ν. To see this, notice that the exact sequence

0→ V∗ → V ∗ → V ∗/V∗ → 0

implies the existence of a finite filtration of (V ∗)⊗m with successive quotients of the form (V∗)
⊗p⊗

(V ∗/V∗)
⊗q for p + q = m. Consequently, the simple constituents of (V ∗)⊗m are of the form Vλ,µ′∅

for various λ, µ′. Furthermore, the tensor product Vλ,µ′,∅⊗ V ⊗n admits a filtration with successive
quotients of the form (V ∗/V∗)λ ⊗ (V∗)µ′ ⊗ Vν′ which in turn admits a filtration whose successive
quotients are of the form (V ∗/V∗)λ ⊗ (V∗)µ ⊗ Vν for various µ, ν. Since all filtrations we have
mentioned are finite, we are done. �

3.2 Indecomposable injectives

Corollary 2.6 provides a description of the indecomposable injective objects of the category T3
glM

.

In order to be able to apply it, we first introduce the Grothendieck closure T3
glM of T3

glM
. By

definition, T3
glM is the smallest thick, exact Grothendieck subcategory of glM -Mod containing the

tensor products of copies of V , V∗ and V ∗. The category T3
glM can be made into an ordered

Grothendieck category, with Xi and Θi defined as follows.
The objects Xi are of the form (V ∗/V∗)

⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p, where the indexing set I 3 i
consists of ordered triples (m,n, p) of nonnegative integers. The morphisms in Θi are the various
contractions

(V ∗/V∗)
⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p → (V ∗/V∗)

⊗m ⊗ (V ∗)⊗(n−1) ⊗ V ⊗(p−1) (3)

and all maps

(V ∗/V∗)
⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p → (V ∗/V∗)

⊗(m+1) ⊗ (V ∗)⊗(n−1) ⊗ V ⊗p (4)

that send one V ∗-tensorand onto one V ∗/V∗-tensorand. Finally, in the partial order on I, a triple
(m,n, p) is smaller than (m′, n′, p′) if

m ≥ m′, m+ n ≤ m′ + n′, n ≤ n′, p ≤ p′, and m+ n− p = m′ + n′ − p′ (5)

14



(note that the first inequality is reversed). Clearly, this partial order on I satisfies the finiteness
condition in Section 2 (every element dominates finitely many others). It is routine to check that
conditions (1) – (4) from Section 2 hold in this case (Corollary 3.4 is needed for condition (3)).
Moreover, we have the following observation.

Lemma 3.6 The morphisms in the sets Θi described above are short in the sense of Definition 2.10.

Proof For morphisms of the type displayed in (3) this amounts to showing that no element of I
can be larger than (m,n− 1, p− 1) and smaller than (m,n, p). For those in (4), on the other hand,
we must prove that no element of I is larger than (m+ 1, n− 1, p) and smaller than (m,n, p). We
will carry out the first of these two tasks, the other one being entirely analogous.

Suppose we have
(m,n− 1, p− 1) ≤ (a, b, c) ≤ (m,n, p) (6)

in our partially ordered set I for some triple (a, b, c) of nonnegative integers. Then, first off, we must
have a = m. Secondly, b equals either n or n−1. In the first case, the condition a+b−c = m+n−p
from (5) forces c = p. In the other case, it forces c = p− 1. Either way, (a, b, c) must coincide with
the leftmost or rightmost ordered triple in (6). �

Proposition 3.7 The inclusion functor T3
glM
⊂ T3

glM identifies T3
glM

with
(
T3
glM

)
fin

.

Proof This follows immediately from the definition of Cfin for an ordered Grothendieck category

C: it is simply the full, thick abelian subcategory on the objects Xi. In the case of T3
glM , Xi =

(V ∗/V∗)
⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p for i = (m,n, p), and the definition of

(
T3
glM

)
fin

coincides with the

definition of T3
glM

given in Section 1. �

Now let Sym be the ring of symmetric functions on countably many variables (see e.g. [12],
which will be our reference for symmetric functions). The ring Sym is well known to be a Hopf
algebra (over Z), and we will use its distinguished Z-basis {λ} of Schur functions labeled by Young
diagrams.

As in [2], denote by λ 7→ λ(1)⊗λ(2) the comultiplication on Sym. The tensor λ(1)⊗λ(2) is not a
decomposable tensor, but we suppress the summation symbol as is customary in the Hopf algebra
literature (using so-called Sweedler notation; cf. [21]). Similarly, we write λ 7→ λ(1) ⊗ λ(2) ⊗ λ(3)

for (∆⊗ id) ◦∆, etc.
For a generic tensor

∑
i µi ⊗ νi in the tensor square Sym⊗2 and nonnegative integers k, `, let∑

i µ
k
i ⊗ ν`i denote the sum of only those summands µi ⊗ νi for which µi and νi have k and ` boxes

respectively.
We write

0 = soc0M ⊂ socM = soc1M ⊂ soc2M ⊂ · · ·
for the socle filtration of a finite-length object M , and denote the semisimple quotient soci / soci−1

by soci.
Finally, let Wµ,ν be the simple object in T2

End(V ) corresponding to the Young diagrams µ, ν.

According to [2, Corollary 5], the socle filtration of Wµ,ν over glM can be written as follows:

sock(Wµ,ν) ∼= (V ∗/V∗)µk−1
(1)
⊗ V

µ
|µ|−k+1
(2)

,ν
.

The proof of [2, Corollary 5] can be adapted to obtain the socle filtration of (V ∗/V∗)λ ⊗Wµ,ν in
T3
glM

: it is obtained from that of Wµ,ν by simply tensoring with (V ∗/V∗)λ. In conclusion, if

M = (V ∗/V∗)λ ⊗Wµ,ν
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then the semisimple subquotient sockM is isomorphic to

(V ∗/V∗)λ ⊗ (V ∗/V∗)µk−1
(1)
⊗ V

µ
|µ|−k+1
(2)

,ν
. (7)

We end this section with a description of the indecomposable injective objects in T3
glM

and of

their socle filtrations. This will be needed below, when we describe the higher ext-groups in T3
glM

.

Theorem 3.8 The indecomposable injectives in the category T3
glM

are

Iλ,µ,ν = (V ∗/V∗)λ ⊗ (V ∗)µ ⊗ Vν ,

with respective socles Vλ,µ,ν = (V ∗/V∗)λ ⊗ Vµ,ν .
Moreover, the subquotient sock(Iλ,µ,ν) is isomorphic to⊕

`+r=k−1

(
(V ∗/V∗)λ ⊗ (V ∗/V∗)µ`

(1)
⊗ V

µ
|µ|−k+1
(2)

,ν
|ν|−r
(1)

)⊕〈µ(3),ν(2)〉
,

where 〈−,−〉 : Sym⊗ Sym→ C is the pairing making the basis {λ} orthonormal.

Before going into the proof, let us rephrase the statement so as to make it more explicit.
Denoting by Nν

λ,µ the usual Littlewood-Richardson coefficients (i.e. the multiplicity of ν in the
product λµ in Sym), we have

Theorem 3.8 bis The indecomposable injectives in the category T3
glM

are (up to isomorphism)

Iλ,µ,ν = (V ∗/V∗)λ ⊗ (V ∗)µ ⊗ Vν ,

with respective socles Vλ,µ,ν = (V ∗/V∗)λ ⊗ Vµ,ν .
The subquotient sock(Iλ,µ,ν) is isomorphic to⊕

`+r=k−1

⊕
|α|=`

⊕
|δ|=r

⊕
ζ

N ζ
λ,αN

µ
α,βN

β
γ,δN

ν
φ,δ (V ∗/V∗)ζ ⊗ Vγ,φ, (8)

where repeated indices are summed over even if they do not appear under summation signs.

Proof Note first that once we prove the claims about the socle filtrations, the fact that the objects
Iλ,µ,ν are all (up to isomorphism) indecomposable injectives in T3

glM
follows as a direct application

of Proposition 2.3 to C = T3
glM as explained at the beginning of Subsection 3.2.

So we are left having to prove the claimed description of the socle filtration of Iλ,µ,ν . That the
two formulations for it are equivalent is immediate from the definition of the Littlewood-Richardson
coefficients in terms of the multiplication on Sym and fact that the pairing 〈•, •〉 from Theorem 3.8
is a Hopf pairing, in the sense that

〈λ, ν(1)〉 · 〈µ, ν(2)〉 = 〈λµ, ν〉

for all Young diagrams λ, µ and ν.
The fact that a Jordan-Hölder series for Iλ,µ,ν has the subquotients displayed in (8) follows by

splicing together the socle filtrations of the objects (V ∗/V∗)λ ⊗Wµ,ν described above (see (7)) and
the socle filtrations of the indecomposable injectives in T2

End(V ) obtained in [16, Theorem 2.3].

Note that for all simple objects in (8) (that actually appear with nonzero multiplicity) we have
|γ| = |µ| − k. That no such simple object can appear either later or earlier in the socle filtration
(i.e. in soc` for ` 6= k) follows from the fact that

Ext1((V ∗/V∗)ζ ⊗ Vγ,φ, (V ∗/V∗)ζ′ ⊗ Vγ′,φ′)

cannot be nonzero unless |γ′| − |γ| = 1 (see Theorem 3.11 below). �
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3.3 Blocks

We first make our terminology precise following e.g. [4, § 5.1]:

Definition 3.9 The blocks of an abelian category are the classes of the weakest equivalence relation
on the set of indecomposable objects generated by requiring that two objects are equivalent if there
are nonzero morphisms between them. �

In this short subsection we classify the blocks of the category T3
glM

.

Theorem 3.10 The blocks of T3
glM

are indexed by the integers, with the indecomposable injective

object Iλ,µ,ν being contained in the block of index |λ|+ |µ| − |ν|.

Proof It is clear from Theorems 3.5 and 3.8 that indecomposable injectives Iλ,µ,ν and Iλ′,µ′,ν′ with

|λ|+ |µ| − |ν| 6= |λ′|+ |µ′| − |ν ′|

are in different blocks, because they have no isomorphic simple subquotients.
It remains to show that all Iλ,µ,ν that do share the same indexing integer |λ|+ |µ| − |ν| are in

the same block. To see this, note first that (V ∗/V∗)λ and V ∗λ are in the same block. Definition 3.9
then makes it clear that Iλ,µ,ν is in the same block as some indecomposable direct summand of

(V ∗)⊗(|λ|+|µ|) ⊗ V ⊗|ν|.

But the classification of blocks in TEndK(V ) ([5, Corollary 6.6]) implies that all such direct summands
are in the same block as Vµ′,ν′ whenever

|λ|+ |µ| − |ν| = |µ′| − |ν ′|.

This finishes the proof. �

3.4 Koszulity

The goal of this section is to prove that the category T3
glM

is Koszul. We start with the following

Theorem 3.11 If Vλ,µ,ν and Vλ′,µ′,ν′ are simple objects of T3
glM

, then ExtqT3
glM

(Vλ,µ,ν , Vλ′,µ′,ν′) 6= 0

implies |µ′| − |µ| = q.

Before delving into the proof, let us record the following immediate consequence.

Corollary 3.12 If Extq0T3
glM

(Vλ,µ,ν , Vλ′,µ′,ν′) 6= 0 for some q0 6= 0, then ExtqT3
glM

(Vλ′,µ′,ν′ , Vλ,µ,ν) = 0

for all q ≥ 0. �

The proof of Theorem 3.11 follows that of [5, Proposition 5.4], going through an analogue of
Lemma 5.3 in loc. cit. In order to state this preliminary result, let us introduce some notation.

Given three Young diagrams λ, µ and ν, let V +
λ,µ,ν denote the direct sum of the simples of the

form Vλ,µ′,ν as µ′ ranges over all Young diagrams differing from µ only in that they have one extra
box in one of the rows.

Lemma 3.13 For any simple object Vλ,µ,ν in T3
glM

there is an exact sequence

0→ V +
λ,µ,ν → V ∗ ⊗ Vλ,µ,ν →W → 0,

where W is a direct sum of simples of the form Vλ,µ,ν′ with |ν ′| = |ν|−1 and Vλ′,µ,ν with |λ′| = |λ|+1.
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Proof The gM -module V ∗⊗Vλ,µ,ν is an extension of (V ∗/V∗)⊗Vλ,µ,ν by V∗⊗Vλ,µ,ν . By tensoring
the exact sequence from [5, Lemma 5.3] with (V ∗/V∗)λ, we see that the gM -module V∗ ⊗ Vλ,µ,ν fits
into a short exact sequence

0→ V +
λ,µ,ν → V∗ ⊗ Vλ,µ,ν →W ′ → 0

where W ′ is a direct sum of simples of the form Vλ,µ,ν′ with |ν ′| = |ν| − 1. Setting W :=
(V∗ ⊗ Vλ,µ,ν) /V +

λ , we obtain the exact sequence

0→W ′ →W → (V ∗/V∗)⊗ Vλ,µ,ν → 0. (9)

The term (V ∗/V∗)⊗Vλ,µ,ν is a direct sum of simple modules Vλ′,µ,ν′ with |λ′| = |λ|+ 1. Finally, we
can apply Lemmas 2.11 and 3.6 to deduce that there are no nontrivial extensions between any two
simple constituents of W ′ and (V ∗/V∗)⊗ Vλ,µ,ν , and hence (9) splits. This concludes the proof. �

Example 3.14 We illustrate the content of Lemma 3.13 for a particular triple of diagrams. Let

λ = µ = ν = (1) =

Then, the exact sequence from Lemma 3.13 has the form

0→ V +
(1)(1)(1) → V ∗ ⊗ V(1)(1)(1) →W → 0

where

V +
(1)(1)(1) = V(1)(2)(1) ⊕ V(1)(1,1)(1)

W = V(2)(1)(1) ⊕ V(1,1)(1)(1) ⊕ 2V(1)(1)∅

with
(1, 1) = and (2) = �

We are now ready to give the

Proof of Theorem 3.11 We do induction on |µ′|, the case |µ′| = 0 being immediate from the
injectivity of the simple modules of the form Vλ,∅,ν .

Let |µ′| ≥ 1 and assume that the result holds for smaller diagrams µ′. We can find β with
|β| = |µ′|− 1 such that Vλ′,µ′,ν′ is a direct summand of V +

λ′,β,ν′ . Lemma 3.13 then provides an exact
sequence

0→ V +
λ′,β,ν′ → V ∗ ⊗ Vλ′,β,ν′ →W → 0 ,

and the hypothesis ExtqT3
glM

(Vλ,µ,ν , Vλ′,µ′,ν′) 6= 0 leads to one of two possibilities.

Case 1: Extq−1
T3
glM

(Vλ,µ,ν ,W ) 6= 0. In this case, the equality |µ′| − |µ| = q follows from the

induction hypothesis and the equality |µ′|− |β| = 1 since Lemma 3.13 ensures that |µ|− |β| = q− 1
and W is a direct sum of simples of the form Vκ,β,δ.

Case 2: ExtqT3
glM

(Vλ,µ,ν , V
∗ ⊗ Vλ′,β,ν′) 6= 0. Let

0→ Vλ′,β,ν′ → I0 → I1 → · · ·

be a minimal injective resolution. Since V ∗ ⊗ I∗ is an injective resolution of V ∗ ⊗ Vλ′,β,ν′ , we must
have HomT3

glM
(Vλ,µ,ν , V

∗ ⊗ Iq) 6= 0.

The induction hypothesis ensures that the socle of Iq is a direct sum of simples of the form
Vα,β′,γ with |β| − |β′| = q, and hence the socle of V ∗ ⊗ Iq is a direct sum of simples of the form
Vα′,β′′,γ′ with |β′′| = |β| − q + 1 = |µ′| − q.

This finishes the proof. �
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What Theorem 3.11 will eventually ensure is that the coalgebra C from Subsection 2.3 is Koszul
for a certain grading. We elaborate on this below.

Notation 3.15 For a coalgebra C let EC be the N-graded algebra
⊕

j ExtjC(S, T ) for S and T
ranging over all simple comodules of C with multiplication given by Yoneda composition. �

EC is analogous to the ext-algebra
⊕

j ExtjA(K,K) for a N-graded algebra A = K⊕A≥1, and it
similarly controls Koszulity; see e.g. [10], where EC is denoted by E(C). Recall that one possible
characterization of a Koszul algebra is that its ext-algebra be generated in degree one (see e.g. [17,
Definition 1 in § 2.1] and the accompanying discussion). Similarly, as a consequence of Theorem 3.11
we get

Theorem 3.16 For a coalgebra C as in Theorem 2.14, the algebra EC is generated in degree one.

Proof We have to show that for simple objects S, T ∈ T3
glM

the vector space ExtqT3
glM

(S, T ) is

generated by the images of the q-fold Yoneda compositions

Ext1
T3
glM

(T1, T )⊗Ext1
T3
glM

(T2, T1)⊗. . .⊗Ext1
T3
glM

(Tq−1, Tq−2)⊗Ext1
T3
glM

(S, Tq−1)→ ExtqT3
glM

(S, T )

for simple objects T1, . . . , Tq−1 ∈ T3
glM

.

We proceed by induction on q, the case q = 1 being clear. By Theorem 3.11 we may as well
assume that T = Vλ′,µ′,ν′ and S = Vλ,µ,ν with |µ′| − |µ| = q. Using the long exact sequence
associated to the short exact sequence

0→ T → T̃ → T̃ /T → 0 ,

T̃ being an injective hull of T , we get ExtqT3
glM

(S, T ) ∼= Extq−1
T3
glM

(S, T̃ /T ). Applying Theorem 3.11

again, and using the fact that the socle T ′ of T̃ /T is the direct sum of all simple constituents
R ∼= Vα,β,γ of T̃ /T satisfying |β| = |µ′| − 1, we conclude that ExtqT3

glM
(S, T ) ∼= Extq−1

T3
glM

(S, T ′).

Running through how this identification was made, it follows that ExtqT3
glM

(S, T ) is spanned by the

images of the Yoneda compositions

Ext1
T3
glM

(R, T )⊗ Extq−1
T3
glM

(S,R)→ ExtqT3
glM

(S, T )

for the various simple summands R of T ′. This takes care of the induction step. �

Dualizing one possible definition of Koszulity for algebras, we give

Definition 3.17 An N-graded coalgebra C is Koszul if its degree-zero subcoalgebra is cosemisimple
and the N-graded algebra EC is generated in degree one. �

Remark 3.18 There are other definitions of Koszulity for coalgebras in the literature (see e.g. [19,
§3.3]) and, just as for algebras, they can be shown to be equivalent. �

The conclusion of the preceding discussion is:

Corollary 3.19 The category T3
glM

is equivalent to the category of finite-dimensional comodules

over a Koszul coalgebra.
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Proof In Theorem 2.14 we obtained T3
glM
'MC

fin by applying [22, Theorem 5.1]. That result relies

on constructing an appropriate coalgebra C as the “coendomorphism coalgebra” of an injective

cogenerator of the Grothendieck category T3
glM (this is essentially the dual of the endomorphism

ring in the category T3
glM ; we refer to loc. cit. for details).

Choosing our injective cogenerator to be the tensor algebra T
(
(V ∗/V∗)⊕ V ∗ ⊕ V

)
, we can put

an N-grading on C by setting Cn to be the space of degree-n coendomorphisms of T. With this
grading, C satisfies the requirements of Definition 3.17. �

The result analogous to Corollary 3.19 applies to the tensor subcategory T2
glM

. It is perhaps

worth comparing this comodule approach to T3
glM

and T2
glM

to the description of the latter as a

module category in [5, §5]. The techniques in loc. cit. can be applied to T3
glM

as follows.

Throughout the rest of this and the next subsections, End, Hom, etc. refer to hom-spaces in

T3
glM . We set T := T

(
(V ∗/V∗) ⊕ V ∗ ⊕ V

)
∈ T3

glM , with T≤r denoting its truncation in degrees
≤ r. The associative algebra Ar = End

(
T≤r

)
can then be realized as a direct summand of

Ar+1 = End
(
T≤r+1

)
, and we get a tower of nonunital inclusions of unital algebras. The union A

of this tower is a nonunital algebra.

Definition 3.20 A left A-module is locally unitary if it is unitary over one of the subalgebras
Ar ⊂ A. �

We then have the following analogue of [5, Corollary 5.2], with virtually the same proof.

Theorem 3.21 The functor Hom(•,T) is an antiequivalence between T3
glM

and the category of

finite-dimensional locally unitary left A-modules. �

The relationship between Theorem 3.21 and Corollary 3.19 can be clarified by tracing through
Takeuchi’s constructions in [22, §5]. The coalgebra C in Corollary 3.19 is not unique, it is only
unique up to Morita equivalence. One possible choice would be the inductive limit

lim−→
r

Hom
(
T≤r,T

)∗
, (10)

in which case the functor implementing the equivalence in Corollary 3.19 would be Hom(•,T)∗.
In conclusion, C is a subcoalgebra of the graded dual of A. More precisely, splitting each

inclusion Ar ⊂ Ar+1 naturally as

Ar+1 = Ar ⊕ Br, Br = Hom(T r+1, T≤r)⊕Hom(T≤r, T r+1)⊕ End(T r+1)

the coalgebra C is expressible as

C = (A0)∗ ⊕ (B1)∗ ⊕ · · · ⊕ (Br)∗ ⊕ · · · (11)

(incidentally, the relationship between the coalgebra attached to T2
glM

and the algebra associated

to the same category in [5, §5] can similarly be expressed as (11)).
The category of A-modules in Theorem 3.21 is antiequivalent toMC

fin via the functor that sends
a finite-dimensional vector space to its dual. Henceforth, whenever referring to the coalgebra C we
specifically mean (10).
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3.5 Universality

Now let D be a K-linear tensor category in the sense of Subsection 2.6 (in particular, symmetric
monoidal), with 1D denoting its monoidal unit.

Denote by T′3
glM

the smallest tensor subcategory of T3
glM

that contains V , V ∗, V ∗/V∗, the

surjection V ∗ → V ∗/V∗, the evaluation V ∗ ⊗ V → K, and is closed under taking direct summands.

Then, Theorem 2.22 applied to C = T3
glM allows us to conclude

Proposition 3.22 Let D be a tensor abelian category and F : T′3
glM
 D a K-linear tensor functor.

(a) F extends to a left exact tensor functor T3
glM
 D uniquely up to the obvious notion of natural

tensor isomorphism.

(b) If in addition D has arbitrary coproducts, F extends uniquely to a left-exact, coproduct-

preserving tensor functor T3
glM  D. �

The goal of this subsection is to prove the following strengthening of Proposition 3.22.

Theorem 3.23 Let b : x∗ ⊗ x→ 1D be a pairing in D and x∗ ⊆ x∗ a subobject.

(a) There is a K-linear left exact tensor functor F : T3
glM
 D, unique up to unique natural

tensor isomorphism, sending the pairing V ∗ ⊗ V → K to b and the inclusion V∗ ⊂ V ∗ to
x∗ ⊂ x∗.

(b) If in addition D has arbitrary coproducts, there is a coproduct-preserving functor F : T3
glM  

D as in part (a), unique in the same sense.

We will need some preparation. For nonnegative integersm,n, p we denote by Im,n,p the injective
object (V ∗/V∗)

⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p. If one of the integers m, n or p is negative, we set Im,n,p := 0.
Recall also the notation Iλ,µ,ν from Subsection 3.3 for the indecomposable injectives in T3

glM
.

We have the following immediate consequence of the classification of simple and injective objects
in T3

glM
.

Lemma 3.24 For nonnegative integers m,n, p the algebra End(Im,n,p) is isomorphic to the group
algebra K[Sm × Sn × Sp].

Proof There is an injective homomorphism K[Sm×Sn×Sp]→ End(Im,n,p) arising from permuting
tensorands in Im,n,p. On the other hand, the dimension of End (Im,n,p) is easily seen to equal
dimK [Sm × Sn × Sp] by using the isomorphism End (Iλ,µ,ν) = K for any ordered triple (λ, µ, ν).�

Lemma 3.24 can be thought of as describing the degree-zero part of the Koszul coalgebra C from
Corollary 3.19 (C is the direct sum over all choices of nonnegative m,n, p of the coalgebras dual
to K[Sm × Sn × Sp]). Next, we study those morphisms in T3

glM
that contribute to the degree-one

component.
This degree-one component of C clearly contains the contractions

φi,j : Im,n,p → Im,n−1,p−1

pairing the ith V ∗-tensorand with the jth V for 1 ≤ i ≤ n and 1 ≤ j ≤ p, and also the surjections

πi,j : Im,n,p → Im+1,n−1,p
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which first cyclically permute the first i V ∗-tensorands so that the ith becomes first, then collapse
the first V ∗ onto V ∗/V∗, and then permute the last m− j+1 V ∗/V∗-tensorands (for 1 ≤ j ≤ m+1)
so that the last one becomes jth.

We write Sm,n,p for Sm × Sn × Sp and Sn,p = Sn × Sp for brevity.

Lemma 3.25 For nonnegative integers m,n, r we have the following descriptions of hom-spaces in
T3
glM

.

(a) Hom(Im,n,p, Im,n−1,p−1) is isomorphic to K[Sm,n,p] as a bimodule over

End(Im,n−1,p−1) ∼= K[Sm,n−1,p−1] and End(Im,n,p) ∼= K[Sm,n,p],

where we regard φi,j as the generator of the right Sm,n,p-module structure for some 1 ≤ i ≤ n
and 1 ≤ j ≤ p and Sn−1,p−1 is the subgroup of Sn,p fixing i and j.

(b) Hom(Im,n,p, Im+1,n−1,p) is isomorphic to the induced representation

K[Sm+1,n,p] ∼= Ind
Sm+1

Sm
K[Sm,n,p] = K[Sm+1]⊗K[Sm] K[Sm,n,p]

as a bimodule over

End(Im+1,n−1,p) ∼= K[Sm+1,n−1,p] and End(Im,n,p) ∼= K[Sm,n,p],

where we regard πi,j as a generator of K[Sm,n,p] as a the right Sm,n,p-module, and Sm ⊂ Sm+1

and Sn−1 ⊂ Sn are the subgroups fixing j and i respectively.

Proof (a) Fixing i and j as in the statement, there is a morphism

α : K[Sm,n,p]→ Hom(Im,n,p, Im,n−1,p−1)

of (K[Sm,n−1,p−1],K[Sm,n,p])-bimodules that sends 1 ∈ K[Sm,n,p] to φi,j . The surjectivity of α
follows from Lemma 2.19.

We are now left having to prove that α is injective, or in other words that the compositions
φi,j ◦ σ are linearly independent for σ ∈ Sm,n,p. Suppose some linear combination∑

σ∈Sm,n,p

aσ(φi,j ◦ σ) (12)

vanishes. Then split V as a direct sum V1 ⊕ · · · ⊕ Vq of nontrivial subspaces for q ≥ n+ p and fix
i′ and j′, 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ p. To see that all aσ must vanish, we apply (12) to decomposable
tensors whose (i′)th V ∗-tensorand is v∗ and whose (j′)th V -tensorand v belongs to V1 and satisfies
v∗(v) = 1 while all other V ∗ and V -tensorands lie respectively in V ∗k , V` for distinct k and `. Indeed,
this shows that aσ vanishes when σ(i′) = i and σ(j′) = j. To complete the proof we apply the same
argument to all possible choices of i′ and j′.

(b) The proof is very similar to that of part (a). Once more, we can define a morphism

β : K[Sm+1]⊗K[Sm] K[Sm,n,p]→ Hom(Im,n,p, Im+1,n−1,p)

of (K[Sm+1,n−1,p],K[Sm,n,p])-bimodules sending 1 ∈ K[Sm,n,p] ⊂ K[Sm+1] ⊗K[Sm] K[Sm,n,p] to πi,j
for fixed i and j in the appropriate indexing sets.

We conclude that β is onto just as in part (a). As far as injectivity is concerned, again an
argument analogous to that from (a) will do. �
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Lemma 3.25 is analogous to [5, Lemma 6.1 + part (1) of Lemma 6.2]. The following result, in
turn, is our version of [5, part (2) of Lemma 6.2]; it follows immediately from Lemma 3.25.

Lemma 3.26 The tensor products of hom-spaces from Lemma 3.25 can be described as follows.

(a) The space

Hom(Im,n−1,p−1, Im,n−2,p−2)⊗End(Im,n−1,p−1) Hom(Im,n,p, Im,n−1,p−1) (13)

is isomorphic to K[Sm,n,p] as an (Sm,n−2,p−2, Sm,n,p)-bimodule.

(b) The spaces

Hom(Im,n−1,p−1, Im+1,n−2,p−1)⊗End(Im,n−1,p−1) Hom(Im,n,p, Im,n−1,p−1) (14)

and
Hom(Im+1,n−1,p, Im+1,n−2,p−1)⊗End(Im+1,n−1,p) Hom(Im,n,p, Im+1,n−1,p) (15)

are both isomorphic to K[Sm+1,n,p] ∼= Ind
Sm+1

Sm
K[Sm,n,p] as (Sm+1,n−2,p−1, Sm,n,p)-bimodules.

(c) The space

Hom(Im+1,n−1,p, Im+2,n−2,p)⊗End(Im+1,n−1,p) Hom(Im,n,p, Im+1,n−1,p) (16)

is isomorphic to K[Sm+2,n,p] ∼= Ind
Sm+2

Sm
K[Sm,n,p] as an (Sm+2,n−2,p, Sm,n,p)-bimodule. �

We now analyze the quadratic part of the graded coalgebra C in Corollary 3.19. Dually, this
means describing the kernels of the composition maps defined on the spaces in Lemma 3.26.

Lemma 3.27 The composition maps defined on the spaces from Lemma 3.26 can be described as
follows.

(a) The map
(13)→ Hom(Im,n,p, Im,n−2,p−2)

is onto, and its kernel is generated by

φn−1,p−1 ⊗ φn,p − (φn−1,p−1 ⊗ φn,p) ◦ (n, n− 1)(p, p− 1)

as an (Sm,n−2,p−2, Sm,n,p)-bimodule, where (n, n − 1) ∈ Sn ⊂ Sm,n,p and (p, p − 1) ∈ Sp ⊂
Sm,n,p.

(b) The map
(14)⊕ (15)→ Hom(Im,n,p, Im+1,n−2,p−1)

is onto, and its kernel is generated by

πm+1,n−1 ⊗ φn,p − (φn−1,p ⊗ πm+1,n) ◦ (n, n− 1)

as an (Sm+1,n−2,p−1, Sm,n,p)-bimodule, where (n, n− 1) ∈ Sn ⊂ Sm,n,p.
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(c) The map
(16)→ Hom(Im,n,p, Im+2,n−2,p) (17)

is onto, and its kernel is generated by

(m+ 2,m+ 1) ◦ (πm+2,n−1 ⊗ πm+1,n)− (πm+2,n−1 ⊗ πm+1,n) ◦ (n, n− 1) (18)

as an (Sm+2,n−2,p, Sm,n,p)-bimodule, where (m+2,m+1) ∈ Sm+2 ⊂ Sm+2,n−2,p and (n, n−1) ∈
Sn ⊂ Sm,n,p.

Proof The surjectivity of the three maps follows, just as in the proof of Lemma 3.25, from the
tensor analogue of Lemma 2.19. The other claims are very similar in nature, so proving part (c)
will be sufficient for illustration purposes.

Identify the two tensorands of (16) with K[Sm+2,n−1,p] and K[Sm+1,n,p] as in part (b) of
Lemma 3.25 by using as generators the maps πm+2,n−1 and πm+1,n respectively. This then identifies
the space (16) with K[Sm+2,n,p] as in part (d) of Lemma 3.26.

With this identification in hand, the element (18) is just

(m+ 2,m+ 1)− (n, n− 1) ∈ (K[Sm+2]⊗K⊗K) + (K⊗K[Sn]⊗K) ⊆ K[Sm+2,n,p].

The (Sm+2,n−2,p, Sm,n,p)-bimodule generated by it coincides with the right Sm+2,n,p-module it gen-
erates; its dimension equals 1

2 dimK [Sm+2,n,p] = 1
2(m + 2)!n!p!. We are trying to show that this

module equals the kernel of the onto composition map (17). It is certainly contained in this kernel,
so it is enough to show that

dim Hom(Im,n,p, Im+2,n−2,p) ≥
1

2
(m+ 2)!n!p! .

This can be seen as follows. Consider a typical element

(x1 · · ·xm)⊗ (y1 · · · yn)⊗ (z1 · · · zp) ∈ (V ∗/V∗)
⊗m ⊗ (V ∗)⊗n ⊗ V ⊗p, (19)

where we have suppressed some tensor product symbols for ease of reading. Assume that the zis
are linearly independent, and similarly the xis are jointly linearly independent with the images of
the yis through V ∗ → V ∗/V∗.

An element of Sm+2,n,p will now permute the zis, permute the yis, permute the xis, and then
insert the classes in V ∗/V∗ of the first two yis (after having permuted the yis) among the xis at
two spots. It is easy to see from our linear independence condition on the vectors that this leads to
linearly independent vectors for different permutations and different points of insertion. There are
m!n!p! choices for the permutations, and

(
m+2

2

)
= (m+2)(m+1)

2 choices for the points of insertion.
This gives the desired bound. �

Proof of Theorem 3.23 In view of Proposition 3.22, it suffices to show that the data of a pairing
x∗ ⊗ x → 1D and a subobject x∗ ⊆ x∗ can be extended to a tensor functor F : T′3

glM
→ D, unique

up to symmetric monoidal natural isomorphism, such that

F (V ∗ ⊗ V → K) ∼= x∗ ⊗ x→ 1D and F (V∗ ⊂ V ∗) ∼= x∗ ⊆ x∗.

The uniqueness is a consequence of the fact that T′3
glM

is generated as a tensor category by V ∗/V∗,

V ∗ and V∗. As for the existence, there is an obvious candidate for the extension that we would
like to show is well defined. In order to do this we need to check that all of the relations between
morphisms in T′3

glM
are satisfied in D.

By Koszulity (Corollary 3.19), it is enough to check this for quadratic relations. The conclusion
now follows from Lemma 3.27 which shows that the only relations are those that hold in any tensor
category. �
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3.6 Split subcategories and derived full faithfulness

We provide here an application of the universality property from Theorem 3.23.
Consider the full tensor subcategory T2

glM
⊂ T3

glM
. Since the embedding functor ι : T2

glM
 T3

glM

is exact, it induces a functor Dι : D+
(
T2
glM

)
 D+

(
T3
glM

)
by applying ι straightforwardly to

complexes.

Theorem 3.28 The derived functor Dι is fully faithful.

Remark 3.29 In other words, the maps ExtiT2
glM

(x, y)→ ExtiT3
glM

(ιx, ιy) induced by ι are isomor-

phisms. �

We postpone the proof briefly in order to make a few remarks.
By Theorem 3.23 the inclusion functor ι is split by a unique left exact tensor functor R : T3

glM
 

T2
glM

sending the pairing V ∗⊗V → K to the pairing p : V∗⊗V → K and turning the exact sequence

0→ V∗ → V ∗ → V ∗/V∗ → 0

into
0→ V∗ → V∗ → 0→ 0.

Here, ‘split’ means that R ◦ ι is naturally isomorphic as a tensor functor to the identity. In fact,
we have

Lemma 3.30 The functor R is right adjoint to ι.

Proof The universality in Theorem 3.23 ensures the existence of isomorphisms of the tensor func-
tors η : idT → R◦ι and ε : ι◦R→ idT3

glM
. While η is the isomorphism referred to above, εV : V → V

is the identity and εV ∗ : V∗ → V ∗ is the inclusion V∗ ⊂ V ∗.
The same universality result then shows that both

ι ι ◦R ◦ ι ι
id ◦η ε ◦ id

and

R R ◦ ι ◦R R
η ◦ id id ◦ε

are identities. This exhibits η and ε as the unit and respectively counit of an adjunction, as
claimed. �

Remark 3.31 More concretely, R can be defined as the functor assigning to a module in T3
glM

its

subspace consisting of those elements invariant under some finite-corank Lie subalgebra of glM in
the sense of [15, §7.3]. The requisite properties (tensoriality, being right adjoint to ι, etc.) are then
not difficult to check directly.

We thank the anonymous referee for this insightful remark. �

Remark 3.32 The splitting by R of the inclusion functor ι : T2
glM
→ T3

glM
also realizes the algebra

attached to T2 in [5, §5] as a summand of the algebra A in Subsection 3.4 above. �
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Proof of Theorem 3.28 We now know by Lemma 3.30 that ι is left adjoint to R. Since ι is also

exact, Dι and DR : D+(T3
glM

) D+
(
T2
glM

)
similarly constitute an adjunction (DR denoting the

right derived functor to R).
The fact that η : idT2

glM
→ R ◦ ι is an isomorphism ensures that the same is true for the unit

Dη : id
D+

(
T2
glM

) → DR ◦Dι. In other words, the left adjoint Dι is fully faithful. �

Incidentally, T2
glM

sits inside T3
glM

as a split subcategory in another way: By Theorem 3.23

again we have a left exact symmetric monoidal functor j : T2
glM
 T3

glM
sending V∗ ⊗ V → K to

V ∗ ⊗ V → K. Similarly, there is a functor S : T3
glM
 T2

glM
with S ◦ j ∼= id and S (V∗) = 0 (unlike

R above which annihilates the quotient V ∗/V∗). In a similar vein to Lemma 3.30 we have

Lemma 3.33 S is right adjoint to j. �

Moreover, the argument in the proof of Theorem 3.28 can be adapted to prove

Theorem 3.34 The derived functor Dj : D+
(
T2
glM

)
 D+

(
T3
glM

)
is fully faithful. �

Remark 3.35 Since T3
glM

is roughly speaking obtained from its subcategory j
(
T2
glM

)
by adding

a subobject V∗ ⊂ V ∗ ∈ j
(
T2
glM

)
, the embedding j : T2

glM
 T3

glM
is superficially similar to the

restriction functor from the category of representations of a linear algebraic group to that of a
parabolic subgroup. For a parabolic subgroup P ⊂ G of a reductive algebraic group there is a
similar derived full faithfulness phenomenon, whereby restriction from rep(G) to rep(P ) induces
isomorphisms between all Exti (see e.g. [9, Corollary II.4.7]). The significance of Theorem 3.34 is
that it confirms this familiar phenomenon in our setting, thus strengthening the analogy. �

3.7 Koszul self-duality

One of the striking results discovered in [5] about the Koszul category T2
glM

generated by V and

V∗ is that it is self-dual, in the sense that the graded algebra that is the T2
glM

-analogue of A from

Theorem 3.21 above is isomorphic to the opposite of its quadratic dual. This result is then used in
[5] in the computation of the exts between simple objects of T2

glM
.

We proceed in a similar way. Our first assertion is that we similarly have self-duality in the
context of T3

glM
.

Theorem 3.36 The Koszul coalgebra C defined by (10) is isomorphic to the opposite of its Koszul
dual.

Proof It suffices to prove the self-duality statement for the truncations Ar of the algebra A in the
discussion at the end of Subsection 3.4. This will come as a consequence of Lemmas 3.24 to 3.27
applied to (m,n, p) with m+ n+ p = r. The proof is similar to that of [5, Lemma 6.4].

Following the discussion on quadratic duals in [1, §2.8], denote by S the semisimple degree-zero
component of Ar and by U the degree-one component. Moreover, A = T(U)/(R), where R is
the space of quadratic relations, i.e. the direct sum of the spaces described in Lemma 3.27 for
m+ n+ p = r, and T(U) denotes the tensor algebra of U as an S-bimodule.
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The quadratic dual (Ar)! is then T(U∗)/(R⊥), where R⊥ ⊂ U∗ ⊗ U∗ is the annihilator of
R ⊂ U⊗U . First, identify the direct summands K[Sm′,n′,p′ ] ⊂ U from Lemma 3.25 with their duals
by making the elements of Sm′,n′,p′ self-dual. It is now easy to see that the map

d : Sm′,n′,p′ = Sm′ × Sn′ × Sp′ → U ∼= U∗, σ = (σ1, σ2, σ3) 7→ sgn(σ2)σ (20)

will intertwine the multiplication on Ar and the opposite multiplication on (Ar)! provided the map
d respects the relations. We once more argue this last point just in case (c) of Lemma 3.27, as the
other two cases are analogous.

Following the proof of Lemma 3.27, identify Hom(Im+1,n−1,p, Im+2,n−2,p) and Hom(Im,n,p, Im+1,n−1,p)
with K[Sm+2,n−1,p] and K[Sm+1,n,p] as in part (b) of Lemma 3.25, using πm+2,n−1 and πm+1,n as
generators respectively. The generator (18) of the relevant summand of R is then identified with
(m+ 2,m+ 1)− (n, n− 1), whose annihilator in U ∼= U∗ is generated by (m+ 2,m+ 1) + (n, n− 1).
This concludes the argument. �

As a consequence of this, we now have the dimensions of the higher extension groups between
simple objects of T3

glM
. The following result is analogous to [5, Corollary 6.5] and [20, Proposition

3.3.3].

Corollary 3.37 For any two simple objects in T3
glM

and any q ≥ 0 we have

dim Extq(Vλ,µ,ν , Vλ′,µ′,ν′) = multiplicity of Vλ,µ⊥,ν in socq+1(Iλ′,(µ′)⊥,ν′), (21)

where ⊥ denotes the transpose of a Young diagram.

Proof The left-hand side of (21) is a summand of the degree-q component ECq of the algebra EC
from Notation 3.15. On the other hand, [1, Theorem 2.10.1] claims that EC is the opposite of the
Koszul dual of A, which in turn is equal to A by Theorem 3.36.

The proof can now proceed as in [5, Corollary 6.5], using the fact that the right hand side of
(21) is the dimension of pλ,µ⊥,νApλ′,(µ′)⊥,ν′ where p•,•,• are the idempotents in A corresponding

to the respective indecomposable injectives in T3
glM

, and the observation that the identification

(A!)opp ∼= EC from the proof of Theorem 3.36 matches the idempotent of EC corresponding to
Vλ,µ,ν to that of A corresponding to Vλ,µ⊥,ν because of the sign in (20). �

As a consequence of Theorem 3.8, we can rephrase the result as follows.

Corollary 3.37 bis The dimension of Extq(Vλ,µ,ν , Vλ′,µ′,ν′) equals∑
`+r=q

∑
|α|=`

∑
|δ|=r

Nλ
λ′,αN

(µ′)⊥

α,β Nβ
µ⊥,δ

Nν′
ν,δ,

where repeated indices are summed over even if they do not appear under summation signs. �

We illustrate the contents of this subsection with an example.

Example 3.38 In Corollary 3.37, let λ = (2) = , µ = ∅, and ν = (1) = , and also

λ′ = µ′ = ν ′ = (1).

Then, since the injective hull Iλ′,(µ′)⊥,ν′ equals (V ∗/V∗)⊗ V ∗ ⊗ V , Corollary 3.37 says that

Extq
(
V(2),∅,(1), V(1),(1),(1)

)
= 0
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for all q 6= 1, and that dim Ext1
(
V(2),∅,(1), V(1),(1),(1)

)
= 1. In other words, a nonzero vector in

Ext1
(
V(2),∅,(1), V(1),(1),(1)

)
arises from the exact sequence

0→ V(1),(1),(1) → I(1),(1),(1) → V(2),∅,(1) ⊕ V(1,1),∅,(1) ⊕ V(1),∅,∅ → 0

where (1, 1) = , and there are no higher extensions between V(2),∅,(1) = S2(V ∗/V∗) ⊗ V and

V(1),(1),(1) = (V ∗/V∗)⊗ (ker p) (p : V∗ ⊗ V → K is our original pairing).

Similarly, the nonzero vectors in Ext1
(
V(1,1),∅,(1), V(1),(1),(1)

)
and Ext1

(
V(1),∅,∅, V(1),(1),(1)

)
arise

from the same exact sequence, and Extq
(
V(1,1),∅,(1), V(1),(1),(1)

)
= Extq

(
V(1),∅,∅, V(1),(1),(1)

)
= 0 for

q 6= 1. �

4 The four-diagram category

It is interesting to study the full, thick, tensor category T4
glM

of gM -modules obtained by adjoining

V = (V∗)
∗ to T3

glM
. This category is not an ordered tensor category in the sense of Subsection 2.6.

One way to see this is to show that the indecomposable injective objects in the Grothendieck closure
of T4

glM
have infinite length. We will possibly provide the proof of the latter fact elsewhere.

In this paper, we restrict ourselves to showing that T4
glM

is a finite-length category and to

describing its simple objects. We begin by proving the following

Proposition 4.1 For any two Young diagrams λ and µ, the gM -module (V ∗/V∗)λ ⊗
(
V /V

)
µ

is
simple.

As before, we think of gM as consisting of Z>0×Z>0 matrices with finitely many nonzero entries
in each row and column, and of V ∗/V∗ as the space of infinite row vectors modulo those with finitely
many nonzero entries, the action of gM on V ∗/V∗ being given by the formula gv = −vg. In the
same spirit, V /V consists of Z>0-indexed column vectors that are regarded as equivalent up to
changing finitely many entries; the action of gM on V /V is usual left multiplication.

We need the following auxiliary result.

Lemma 4.2 For any choice of n-tuples vi, v
′
i ∈ V ∗/V∗ and wi, w

′
i ∈ V /V , 1 ≤ i ≤ n, if the vi and

wi are linearly independent then there is an element g ∈ gM such that

gvi = v′i, gwi = w′i, ∀i.

Proof The fact that our matrices are infinite allows enough freedom to construct such a g by
recursion. Throughout the proof we will conflate elements of V ∗/V∗ and representatives in V ∗ (and
similarly for V /V and V respectively).

First, fix the first column of g so as to ensure that, for every i, the first entry of gvi equals the
first entry of v′i; this is possible by the linear independence assumption. Now the first entry of the
first row is fixed, but we can still fill in the first row so as to ensure that the first entries of gwi
equal those of w′i respectively.

Now repeat the procedure, completing the second column appropriately and then the second
row, etc. At every step we are ensuring by construction that our rows and columns have finitely
many non-zero entries, hence g ∈ gM as desired. �

As in [2, § 2], for any subset I ⊆ Z>0 we say that an element of V ∗/V∗ or V /V is concentrated
in I or I-concentrated if the indices of all but finitely many of its nonzero entries are in I.
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We also say that an element of some tensor power (V ∗/V∗)
⊗n is I-concentrated if it is a sum of

decomposable tensors whose individual tensorands are I-concentrated. This also applies to images
of Schur functors like (V ∗/V∗)λ, which we think of as subspaces of a tensor power.

Finally, a matrix in gM is I-concentrated if all of its nonzero entries are indexed by I × I.

Proof of Proposition 4.1 Denote M = V ∗/V∗, N = V /V and let x ∈ Mλ ⊗ Nµ be a nonzero
element.

Following the same strategy as in the proof of [2, Proposition 1], we can assume that x can be
written as a sum of decomposable tensors xi ⊗ yi with xi ∈ Mλ and yi ∈ Nµ concentrated in two
disjoint infinite subsets I and J respectively of Z>0.

The Lie subalgebra of gM consisting of block-diagonal matrices with blocks concentrated in I
and J is isomorphic to gM⊕gM , and the two summands act separately on the I- and J-concentrated
parts of Mλ and Nµ respectively. The simplicity of these latter modules over gM ([2, Proposition 1])
implies that the submodule of Mλ⊗Nµ generated by x contains all elements of the form cλm⊗ cµn
where cλ and cµ are the Young symmetrizers corresponding to λ and µ respectively, and m ∈M⊗|λ|
and n ∈ N⊗|µ| range over the I- and J-concentrated elements respectively.

If m⊗ n ∈M⊗|λ| ⊗N⊗|µ| is such that the individual tensorands of m are linearly independent,
we can apply Lemma 4.2 repeatedly to m ⊗ n to get any other m′ ⊗ n. Similarly, we can change
the n tensorand at will.

Applying this to elements cλm⊗ cµn as above, which we know are contained in the submodule
of Mλ ⊗Nµ, shows that indeed all of

Mλ ⊗Nµ = cλM
⊗|λ| ⊗ cµN⊗|µ|

is contained in this submodule. �

As a consequence of [2, Lemma 3] this implies

Corollary 4.3 For any four Young diagrams λ, µ, ν, η, the glM -module

(V ∗/V∗)λ ⊗
(
V /V

)
µ
⊗ Vν,η ∈ T4

glM

is simple. �

Finally, as announced above, we show that we have found all of the simple objects and that
T4
glM

is a finite-length category.

Proposition 4.4 All objects in T4
glM

have finite length and the objects from Corollary 4.3 exhaust

its simple objects.

Proof This is immediate from Corollary 4.3 and the observation that all tensor products of copies of
V , V∗, V

∗ and V admit finite filtrations whose quotients are of the form described in Corollary 4.3.�
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Math., pages 127–150. Birkhäuser Boston Inc., Boston, MA, 2011.

[17] Alexander Polishchuk and Leonid Positselski. Quadratic algebras, volume 37 of University
Lecture Series. American Mathematical Society, Providence, RI, 2005.

[18] N. Popescu. Abelian categories with applications to rings and modules. Academic Press,
London-New York, 1973. London Mathematical Society Monographs, No. 3.

[19] Leonid Positselski. Koszul property and Bogomolov’s conjecture. Int. Math. Res. Not.,
(31):1901–1936, 2005.

30



[20] Steven V. Sam and Andrew Snowden. Stability patterns in representation theory. Forum
Math. Sigma, 3:e11, 108, 2015.

[21] Moss E. Sweedler. Hopf algebras. Mathematics Lecture Note Series. W. A. Benjamin, Inc.,
New York, 1969.

[22] Mitsuhiro Takeuchi. Morita theorems for categories of comodules. J. Fac. Sci. Univ. Tokyo
Sect. IA Math., 24(3):629–644, 1977.

Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA
E-mail address: achirvas@buffalo.edu

Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany

E-mail address: i.penkov@jacobs-university.de

31


	Background
	Ordered Grothendieck categories
	Definition and characterization of indecomposable injectives
	Bounds on non-vanishing ext functors
	C as a comodule category
	C as a highest weight category
	Universal properties for C and CFIN
	The monoidal case
	An application: the category T2glM

	The three-diagram category
	Simple objects
	Indecomposable injectives
	Blocks
	Koszulity
	Universality
	Split subcategories and derived full faithfulness
	Koszul self-duality

	The four-diagram category
	References

