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Abstract

We extend previous work by constructing a universal abelian tensor category Tt gen-
erated by two objects X,Y equipped with finite filtrations 0 ( X0 ( ... ( Xt+1 = X
and 0 ( Y0 ( ... ( Yt+1 = Y , and with a pairing X ⊗ Y → 1, where 1 is the monoidal
unit. This category is modeled as a category of representations of a Mackey Lie algebra
glM (V, V∗) of cardinality 2ℵt , associated to a diagonalizable pairing between two vector
spaces V, V∗ of dimension ℵt over an algebraically closed field K of characteristic 0. As
a preliminary step, we study a tensor category Tt generated by the algebraic duals V ∗

and (V∗)
∗. The injective hull of the trivial module K in Tt is a commutative algebra I,

and the category Tt consists of all free I-modules in Tt. An essential novelty in our work
is the explicit computation of Ext-spaces between simples in both categories Tt and Tt,
which had been an open problem already for t = 0. This provides a direct link from the
theory of universal tensor categories to Littlewood-Richardson-type combinatorics.

MSC 2020: 17B65; 17B10; 18M05; 18E10; 16S37.

1 Introduction

Fix an algebraically closed field K of characteristic 0. For us, a tensor category is a K-linear,
not necessarily rigid, symmetric monoidal abelian category. In this paper we construct a tensor
category Tt, generated by two objects X and Y , equipped with finite filtrations 0 ( X0 (
... ( Xt+1 = X and 0 ( Y0 ( ... ( Yt+1 = Y , and with a pairing X ⊗ Y → 1 where 1 is the
monoidal unit, such that the category Tt is universal in the following sense: for every other
tensor category equipped with objects X ′, Y ′, a morphism X ′ ⊗ Y ′ → 1

′, and finite filtrations
0 ( X ′0 ( ... ( X ′t′+1 = X ′ and 0 ( Y ′0 ( ... ( Y ′t′+1 = Y ′ with t′ ≤ t, there is a left exact
monoidal functor from the category Tt to this other category such that

F (X) = X ′ , F (Y ) = Y ′ , F (Xα) = X ′s(α) , F (Yα) = Y ′s(α) ,

for some order preserving surjection s : {0, ..., t+ 1} → {0, ..., t′ + 1}.
Our work extends several previous works [PS2014], [SS2015], [ChP2019], [ChP2017], [ChP2021].

The most recent of them is the paper [ChP2021] where the filtrations of X and Y are just of
length two, i.e., amount to fixed subobjects X0 ⊂ X and Y0 ⊂ Y . This case has many features
of the general case, and we follow the main idea of [ChP2021]. Namely, we first construct a ten-
sor category Tt which consists of tensor modules over the Mackey Lie algebra glM = glM(V, V∗)
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of a diagonalizable pairing p : V ⊗V∗ → K. Here V is a vector space of dimension ℵt over K and
V∗ is the span within V ∗ := Hom(V,K) of a system of vectors {xb} dual to a basis {vb} of V .
The Lie algebra glM consists of all linear operators ϕ : V → V such that ϕ∗(V∗) ⊂ V∗, where ϕ∗

stands for the dual operator. We recall that the glM -modules V ∗ and V̄ := (V∗)
∗ = Hom(V∗,K)

have finite filtrations V∗ = V ∗0 ( ... ( V ∗t+1 = V ∗ and V = V̄0 ( ... ( V̄t+1 = V̄ with irreducible
successive quotients. Using these filtrations we compute the socle and radical filtrations of the
adjoint glM -module, and also describe all ideals of the Lie algebra glM . The latter result is not
necessarily needed for our study of the category Tt and is of interest on its own.

The category Tt is defined as the full tensor subcategory of the category of glM -modules,
generated by the two modules V ∗ and V̄ , and closed under arbitrary direct sums. This category
is not yet our desired universal tensor category, but is a natural and interesting tensor category.
We classify the simple objects in Tt. It turns out that they are parametrized by pairs λ•, µ•
where λ• and µ• are finite sequences of length t + 2 with elements arbitrary Young diagrams.
We then describe the indecomposable injective objects in Tt (equivalently, the injective hulls
of the simple objects) and compute explicitly the layers of their socle filtrations. The simple
objects of Tt have infinite injective length and the injective hull I of the trivial 1-dimensional
glM -module K plays a special role. In particular, the glM -module I has also the structure of a
commutative associative algebra.

An essential novelty going beyond the ideas of [ChP2021] is that we write down an explicit
injective resolution of any simple object, and hence obtain explicit formulas for all Exts between
simple modules in Tt.

Finally, following again [ChP2021], we define the desired universal category Tt. This is the
category of (glM , I)-modules, whose objects are the objects of Tt which are free as I-modules
(in particular, I ∈ Tt) and whose morphisms are morphisms of glM -modules as well as of I-
modules. The tensor product in Tt is ⊗I and the simple objects in the new category are nothing
but simple objects of Tt tensored by I. These new simple objects have finite injective length
in Tt. Moreover, as an object of Tt the module I is both simple and injective. We compute
explicitly all Exts between simple objects in Tt by writing down canonical injective resolutions
of simples. In the case of T0 studied in [ChP2021], this yields a new formula for the dimension of
ExtqT0

(I⊗Lκ1,κ0;ν0,ν1 , I⊗Lλ1,λ0;µ0,µ1) as the multiplicity of I⊗Lκ⊥1 ,κ0;ν⊥0 ,ν1
in the q-th layer of the

socle filtration of the injective hull of the module I ⊗ Lλ⊥1 ,λ0;µ⊥0 ,µ1
, where Lκ1,κ0;ν0,ν1 , Lλ1,λ0;µ0,µ1

are arbitrary simple objects in T0 and ⊥ stands for conjugate Young diagram.
A brief outline of the contents is as follows. In §2 we define Mackey Lie algebras and de-

termine their ideals. In §3 we introduce the module I. In §4 we collect necessary notions from
category theory. In §5 and §6, which contain the technical bulk of the paper, we study the
categories Tt and Tt, respectively. We exhibit some unexpected combinatorial symmetries of
these categories in §7. In §8 we prove the universality property of Tt.

Acknowledgement: Both authors are supported in part by DFG grants PE 980/8-1 and PE
980/9-1. V.Ts. is also supported by the Bulgarian Ministry of Education and Science, Scientific
Programme “Enhancing the Research Capacity in Mathematical Sciences (PIKOM)”, No. DO1-
67/05.05.2022. Some initial inspiration for our work came from a set of examples of injective
resolutions and a conjecture on the injective length of modules in a subcategory of T1 due to
T. Pham, [Ph2022]. We thank a referee for several thoughtful suggestions.
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2 Basic notions

The ground field for all vector spaces and tensor products is an algebraically closed field K
of characteristic 0, unless stated otherwise. We set ⊗ := ⊗K. If V is a vector space, then
V ∗ := Hom(V,K) stands for the dual vector space and gl(V ) denotes the Lie algebra of all
linear operators on V . By N we denote the natural numbers (including 0), and |A| stands for
the cardinality of a set A. We assume the Axiom of Choice, hence the class of cardinals is well
ordered. By definition, ℵ0 is the smallest infinite cardinal (the cardinal of a countable set),
ℵ1 is the successor of ℵ0, and ℵt is the successor of ℵt−1 for t − 1 ∈ N. We do not assume
the Continuum Hypothesis (or the Generalized Continuum Hypothesis), which means that the
equality ℵ1 = 2ℵ0 does not necessarily hold.

Let V be a vector space. For any subset A ⊆ V , we write spanA ⊆ V for the set of all
(finite) linear combinations of elements of A. A subset B ⊆ V is a basis of V , if spanB = V and
B is minimal with this property. The Axiom of Choice implies that every vector space admits
a basis. The dimension of a vector space is the cardinality of a basis.

The space of linear operators on a vector space V , considered as a Lie algebra, will be
denoted by gl(V ).

If M is a module over a Lie algebra, or an associative algebra, the socle of M , socM is
the semisimple submodule of M . The socle filtration of M is defined inductively by setting
soc1M := socM , socqM := π−1

q−1(soc(M/socq−1M)), where πq−1 : M → M/socq−1M is the
canonical projection. The layers of the socle filtration are defined as socqM := socqM/socq−1M .
The socle filtration of a module M is exhaustive if M = lim

→
socqM . The socle filtration of a

module of finite length is always exhaustive.
The radical of a M is the joint kernel of all homomorphisms from M to simple quotients.

Setting rad1M := radM and radqM := rad(radq−1M) we obtain the radical filtration of M .
In the main body of the paper we quote extensively results from previous works in which

the ground field is the field of complex numbers. We have ensured that all necessary results
hold over a general field K as above, and we do not mention this explicitly below.

2.1 Mackey Lie algebra and its structure

Let V,W be fixed vector spaces and

p : V ⊗W → K

be a fixed nondegenerate pairing (nondegenerate bilinear form). This determines embeddings
W ⊂ V ∗ and V ⊂ W ∗. The Mackey Lie algebra associated to the pairing p is

glM(V,W ) := {ϕ ∈ gl(V ) : ϕ∗(W ) ⊂ W} ,

where ϕ∗ stands for the endomorphism of V ∗ dual to ϕ. We consider glM(V,W ) as a Lie
subalgebra of gl(V ), but it can also be considered as an associative subalgebra of EndV .

We shall focus on the case where the vector spaces V and W are isomorphic and the pairing
is diagonalizable. The latter means that there exist bases {vb : b ∈ B} of V and {wb : b ∈ B},
parametrized by the same set B, so that, for v =

∑
b∈B

v(b)vb ∈ V and w =
∑
b∈B

w(b)wb ∈ W , we

have
p(v, w) =

∑
b∈B

v(b)w(b) .
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Recall that, by a classical theorem of G. Mackey [M1945], every nondegenerate pairing of
countable-dimensional vector spaces is diagonalizable. This result does not generalize to higher
dimensions, and we take the diagonalizability of p as an assumption. In this situation, W is
referred to as the restricted dual V∗ of V . Since W = V∗ and p are fixed, we shall use the short
notation glM for the Lie algebra glM(V, V∗). Also, we denote V̄ := (V∗)

∗ and assume that V is
embedded in V̄ by use of the pairing p.

From now on, we suppose that the dimension of V is an infinite cardinal number of the
form ℵt with a fixed t ∈ N. Let B be the index set for a fixed pair of dual bases of V and V∗
as above. We have |B| = ℵt. Since a pair of dual bases is fixed, both vector spaces V ∗ and
V̄ can be identified with the space Maps(B,K). For s ≤ t + 1 we define V ∗s and V̄s to be the
respective subspaces of V ∗ and V̄ , identified with the subspace {x ∈ Maps(B,K) : |supp(x)| <
ℵs} ⊂ Maps(B,K), where supp(x) := {b ∈ B : x(b) 6= 0}. Thus V∗ = V ∗0 , V = V̄0, V ∗ = V ∗t+1

and V̄ = V̄t+1.
Using [J1956, Theorem 4.1], the reader can check that the cardinalities and the dimensions

of the vector spaces V ∗, V̄ , glM , EndV are all equal to |K|ℵt . The dimensions of V and V∗ equal
ℵt by definition, but the cardinalities |V | and |V∗| equal max{ℵt, |K|}. In addition, when |K| =
|K|ℵt we have |V | = |V∗| = |V ∗| = |V̄ | = |K|, while dimV ∗ = dim V̄ > ℵt = dimV = dimV∗.

The notion of support is extended from vectors in V ∗ to vectors in tensor powers (V ∗)⊗q as

follows. Any v ∈ (V ∗)⊗q can be written as a finite sum v =
n∑
j=1

vj1 ⊗ v
j
2 ⊗ ...⊗ vjq with vji ∈ V ∗.

We put

supp(v) :=
⋃
i,j

supp(vji ) .

Clearly |supp(v)| = max
i,j
{|supp(vji )|}. The notion of cardinality of support is well defined also

for elements of the quotient spaces V ∗/V ∗s by use of representatives. Analogous definitions are
valid for elements of V̄ and V̄ /V̄s.

The Mackey Lie algebra can be expressed as

glM = {ϕ ∈ gl(V ) : ∀b ∈ B, |supp(ϕ∗(xb))| <∞}
∼= {ϕ ∈ KB×B : ∀b ∈ B, |supp(ϕb,.)| <∞ , |supp(ϕ.,b)| <∞} ,

where, as customary, ϕa,b denotes the value of ϕ at (a, b) ∈ B×B. After choosing a linear order
on B, the Mackey Lie algebra can be identified with the space of B × B-matrices with finitely
many nonzero entries in each row and each column, with commutator the Lie bracket. The
support of an element ϕ ∈ glM , with respect to the fixed basis, is defined as

supp(ϕ) := {(a, b) ∈ B × B : ϕa,b 6= 0} .

The subalgebra gl(V, V∗) := V ⊗ V∗ ⊂ glM is an ideal and consists of all elements in glM

of finite rank. We put sl(V, V∗) := kerp. This is also an ideal of glM . The set of elementary
matrices {ea,b := va ⊗ xb : a, b ∈ B} is a basis of gl(V, V∗).

Proposition 2.1. ([ChP2017])
The filtration of length t+ 2

V∗ = V ∗0 ⊂ V ∗1 ⊂ V ∗2 ⊂ ... ⊂ V ∗t+1 = V ∗

is the socle filtration of the glM -modules V ∗. The layers V ∗s+1/V
∗
s are irreducible. Analogous

statements hold for the filtration

V = V̄0 ⊂ V̄1 ⊂ V̄2 ⊂ ... ⊂ V̄t+1 = V̄ .
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Consequently, the above filtrations of V ∗ and V̄ depend only on the pairing p and not on
the chosen basis of V used in their definition.

Our goal in the rest of this section is to determine all ideals of the Lie algebra glM . We also
compute the socle and radical filtrations of the adjoint glM -module. We start with

Lemma 2.2. (i) The center of the Mackey Lie algebra consists of the scalar transformations
KidV of V .

(ii) For 0 ≤ s ≤ t+ 1, there is an ideal glMs ⊂ glM given by

glMs := {ϕ ∈ glM : ϕ∗(V ∗) ⊂ V ∗s } .

Proof. The proof is straightforward.

Remark 2.1. Note that glM0 = gl(V, V∗) and glMt+1 = glM . Furthermore, if glM is considered as
a subalgebra of gl(V∗) instead of gl(V ), then the ideal glMs is given by {ψ ∈ glM : ψ∗(V̄ ) ⊂ V̄s}.

For any subset A ⊂ B we denote by gA the subalgebra whose elements are supported on
A× A. In particular, glM = gB. If |A| = n is finite, then gA is a copy of gln. If |A| is infinite,
then gA is a Mackey Lie algebra for the obvious restriction of the pairing p. If A,B ⊂ B are
disjoint then gA and gB commute, and we have a subalgebra of the form gA⊕ gB ⊂ glM , which
is block-diagonal if an order on B is chosen so that A < B.

Lemma 2.3. Let ϕ ∈ glM . There exists a partition of B into a disjoint union of countable
(possibly finite) sets B =

⊔
b∈B′

Cb such that

ϕ ∈ lϕ :=
⊕
b∈B′

gCb , i.e., supp(ϕ) ⊂
⊔
b∈B′

C×2
b , (1)

where B′ is an arbitrarily chosen set of representatives of the sets partitioning B. Each set Cb
admits a partition into a disjoint union of finite sets Cb =

⊔
n∈N

Cn
b (possibly with finitely many

parts) so that

supp(ϕ) ⊂
⊔
b∈B′

(⋃
n∈N

(Cn
b ∪ Cn+1

b )×2

)
. (2)

Moreover, there exists a well-order on B, with respect to which the matrix of ϕ is block-diagonal
with blocks of (possibly finite) countable dimensions. Within each block there is a block structure
with finite blocks, such that all nonzero entries of the matrix of ϕ lie within the main block-
diagonal and the two adjacent block-diagonals.

Proof. For b ∈ B we set Aϕ(b) := {a ∈ B : ϕa,b 6= 0 or ϕb,a 6= 0}, and note that Aϕ(b) is a finite
subset of B since ϕ ∈ glM . We define an equivalence relation on B by declaring two elements
a, b ∈ B equivalent if either a = b or there is a finite sequence b = b0, b1, ..., bn = a such that
bj ∈ Aϕ(bj−1) for j = 1, ..., n. Each equivalence class is at most countable. Let Cb denote the
equivalence class of b ∈ B and let Cn

b denote the (finite) set of elements a for which a sequence
b0, ..., bn as above exists, but a shorter sequence does not exist. Also let C0

b := {b}. We fix a
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set of representatives B′ for the equivalence classes. Thus we obtain a decomposition of B into
finite subsets:

B =
⊔
b∈B′

(⊔
n∈N

Cn
b

)
. (3)

Now formula (2) follows by construction and implies formula (1). The asserted order is
defined as follows. For b ∈ B′, we define a well-order on Cb by declaring b to be the minimal
element, ordering each Cn

b well, and setting Cn
b < Cn+1

b . These orders are combined into a
well-order of B through an arbitrarily well-order of B′. Moreover, the subalgebra lϕ ⊂ glM

containing ϕ takes the form of a block-diagonal subalgebra with blocks of countable dimension,
and the remaining statements concerning the countable blocks of ϕ are easy to verify.

Remark 2.2. The block structure of the matrix of ϕ constructed in Lemma 2.3 can be made
transparent as follows. Let D ∈ glM be the diagonal element with Da,a = n+ 1 if a ∈ Cn

b where
b ∈ B′ is the unique element such that a ∈ Cb. Then ϕ can be decomposed as ϕ = ϕ−1 +ϕ0 +ϕ1

with [D,ϕj] = jϕj. Hence ϕ−1, ϕ0, ϕ1 belong to any ideal of glM containing ϕ.
The matrix of ϕ0 is block-diagonal with respect to the decomposition (3), while the matrices of

ϕ−1 and ϕ1 are supported respectively on the first block-diagonal below and above the main block-
diagonal. We observe that ϕ = ϕ0 if and only if ϕ is diagonal, i.e., if B′ = B. Furthermore, if
ϕ is not diagonal and a block of ϕ±1 vanishes, then the transposed block of ϕ∓1 is nonzero, i.e.,
for every b ∈ B′ and every n ∈ N such that Cn+1

b is nonempty, we have

supp(ϕ) ∩ ((Cn
b × Cn+1

b ) ∪ (Cn+1
b × Cn

b ))) 6= ∅ . (4)

Lemma 2.4. Let the matrix of ϕ ∈ glM have an infinite support, i.e., |supp(ϕ)| = ℵs with
s ∈ {0, ..., t}. In case s = t, suppose furthermore ϕ /∈ KidV ⊕ glMt . Then the ideal Jϕ ⊂ glM

generated by ϕ is equal to glMs+1.

Proof. For dimV = ℵ0 and ϕ /∈ gl(V, V∗)⊕KidV , the statement is proven in [PS2014, Corollary
6.6] and the result is Jϕ = glM . We shall use Lemma 2.3 to reduce the general case to the case
dimV = ℵ0. In what follows, we identify the elements of glM with their matrices.

The first step is to show that the ideal Jϕ contains a diagonal matrix whose support has
the cardinality of the support of ϕ. Let lϕ ⊂ glM be the subalgebra containing ϕ provided by
Lemma 2.3 and let ϕ =

∑
b∈B′

ϕ(b) be resulting the decomposition, ϕ(b) being the projection of

ϕ to gCb . For each b ∈ B′ there are two possibilities: Cb is either finite, or infinite countable.
If Cb is finite, then the ideal generated by ϕ(b) within gCb ∼= gl|Cb| contains diagonal matrices

by [PS2014, Lemma 6.5] (there exists x, y, z ∈ gCb such that [x, [y, [z, ϕ(b)]]] is diagonal). If
Cb is infinite countable, we can apply the aforementioned statement [PS2014, Corollary 6.6] to
ϕ(b) ∈ gCb because ϕ(b) is not equal to the sum of a scalar matrix and a finite matrix by (4).
We deduce that the ideal of gCb generated by ϕ(b) is the entire gCb and contains, in particular,
the diagonal subalgebra of gCb .

Now suppose that ϕ is diagonal and either s < t or ϕ /∈ KidV ⊕ glMt . For the next step we
will need a certain family of diagonal matrices ϕ(g) belonging to Jϕ. Consider a splitting of B
in two parts, B = B1 t B2, such that B1 ⊂ supp(ϕ), |B1| = |supp(ϕ)|, and there is an injection
f : B1 → B2 with ϕb,b 6= ϕf(b),f(b) for all b ∈ B1. Put

x :=
∑
b∈B1

1

ϕb,b − ϕf(b),f(b)

eb,f(b) , y :=
∑
b∈B1

g(b)ef(b),b ,
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where g : B1 → K is arbitrary. Then

ϕ(g) := [y, [x, ϕ]] =
∑
b∈B1

g(b)eb,b − g(b)ef(b),f(b)

is a diagonal matrix with support contained in B1 t f(B1) and determined by the function g.
Next, using suitable matrices ϕ(g) we will show that any matrix in glMs+1 with zeros on its

diagonal actually belongs to Jϕ. Let (glM)diag=0 be the set of matrices with zeros on the diagonal
and ψ ∈ (glM)diag=0 be an arbitrary matrix with |supp(ψ)| = |supp(ϕ)|. Let B =

⊔
b∈B′′

C̃b be the

partition of B defined by ψ as in Lemma 2.3. Note that

supp(ψ) ⊂
⊔

b∈B′′:|Cb|>1

C̃×2
b .

Hence the set B′′′ = {b ∈ B′′ : |Cb| > 1} has cardinality |supp(ϕ)|. There is a surjective map

supp(ϕ)→
⊔
b∈B′′′

C̃b =: B3 .

Let B1 ⊂ supp(ϕ) be any subset such that |B1| = |supp(ϕ)| and |B\B1| = |B|. Put B2 := B\B1.
Let f : B1 → B2 be an injection such that ϕb,b 6= ϕf(b),f(b) and B3 ⊂ B1∪f(B1). Then g : B1 → K
can be selected so that ϕ

(g)
a,a 6= ϕ

(g)
a′,a′ whenever a, a′ ∈ C̃b for some b and a 6= a′. The matrix ϕ(g)

satisfies
[ϕ(g), (glM)diag=0 ∩ lψ] = (glM)diag=0 ∩ lψ .

In particular ψ ∈ Jϕ. We conclude that (glM)diag=0 ∩ glMs+1 ⊂ Jϕ, which in turn implies
glMs+1 ⊂ Jϕ. Since ϕ ∈ glMs+1, we get glMs+1 = Jϕ.

Corollary 2.5. The nonzero ideals of glM contained in glMt are exactly sl(V, V∗) and glMs
for s ∈ {0, ..., t}. There is a single proper ideal of glM strictly containing glMt , and this is
KidV ⊕ glMt .

Proof. Both statements follow immediately from Lemma 2.4.

We are now in a position to describe the socle filtration of the Lie algebra glM .

Theorem 2.6. The adjoint glM -module is indecomposable, has length t + 4, and its socle
filtration is given by

soc1glM = KidV ⊕ sl(V, V∗) ,
soc2glM = KidV ⊕ gl(V, V∗) , soc2glM = q ∼= K
socs+3glM = KidV ⊕ glMs+1 , socs+3glM = glMs+1/gl

M
s , s = 0, ..., t− 1,

soct+3glM = glM , soct+3glM = glM/(KidV ⊕ glMt ) .

Moreover, for s ≥ 1 the layer socs+1glM is a simple glM -module.

Proof. The submodules of the adjoint glM -module are the ideals of the Lie algebra glM . We
begin with the chain of ideals obtained in Lemma 2.2, with added initial term sl(V, V∗), i.e.,

sl(V, V∗) ⊂ gl(V, V∗) = glM0 ⊂ glM1 ⊂ ... ⊂ glMt ⊂ glMt+1 = glM . (5)
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The Lie algebra sl(V, V∗) is simple, being a direct limit of simple Lie algebras, and there are no
ideals of glM between sl(V, V∗) and gl(V, V∗) because the quotient is 1-dimensional. Moreover,
Corollary 2.5 implies that all inclusions in (5) are essential, and that all quotients glMs+1/gl

M
s for

s = 0, ..., t − 1, as well as the quotient glM/(KidV ⊕ glMt ), are simple. Since KidV ⊂ soc1glM ,
the statement about the socle filtration follows.

The fact that all inclusions in (5) are essential implies that in order to establish the inde-
composability of glM it suffices to show that the ideal KidV does not split off. This is a direct
corollary of the famous assertion of Heisenberg that the equation [x, y] = idV has a solution in
infinite three-diagonal matrices. Classically this statement is known for t = 0, but it holds for
any t since one easily constructs block-diagonal matrices x, y in glM \glMt such that [x, y] = idV .
It is essential that each diagonal block, being a three-diagonal Heisenberg matrix of countable
size, has finite rows and columns, which ensures that x, y lie in glM and not just in gl(V ).

Corollary 2.7. The radical filtration of the adjoint glM -module is the following modification
of filtration (5):

sl(V, V∗) ⊂ gl(V, V∗) = glM0 ⊂ glM1 ⊂ ... ⊂ glMt−1 ⊂ KidV ⊕ glMt ⊂ glMt+1 = glM .

In other words,

rad1glM = KidV ⊕ glMt , rads+1glM = glMt−s for s = 1, ..., t, radt+2glM = sl(V, V∗) .

Proof. The statement follows immediately from the properties of the chain (5), and from the
fact that the direct sum KidV ⊕ glMt−1 is a direct sum of ideals.

Theorem 2.8. The following is a complete list of nonzero proper ideals in the Mackey Lie
algebra glM :

(i) the center KidV ;

(ii) sl(V, V∗);

(iii) KidV ⊕ sl(V, V∗) = soc1glM ;

(iv) K(zidV +eb,b)+sl(V, V∗) ⊂ soc2glM for arbitrary z ∈ K\{0} and b ∈ B; this ideal depends
only on z and not on b;

(v) glMs ⊂ socs+2glM for s = 0, ..., t (recall that glM0 = gl(V, V∗));

(vi) KidV ⊕ glMs = socs+2glM for s = 0, ..., t.

Proof. Let J ⊂ glM be a nonzero proper ideal of glM and let r be the minimal integer such
that J ⊂ socrglM . Then r ≤ t + 2 since any ϕ ∈ glM which lies in the preimage of a nonzero
element of the simple quotient glM/soct+2glM generates glM . If r = 1 then J is one of the ideals
(i),(ii),(iii). Assume 2 ≤ r ≤ t+ 2. The minimality of r ensures that J projects nontrivially to
the layer socrglM , which is a simple module. We consider two cases, r = 2 and r > 2. If r > 2,
then the layer socrglM = glMr−2/gl

M
r−3 is a nontrivial simple glM -module. Hence, the projection

of J to glMr−2 is the entire glMr−2. Since KidV is central, we conclude that glMr−2 ⊂ J. So the
possibilities are J = glMr−2 or J = KidV ⊕ glMr−2, which account for items (v) and (vi) in our list
with r−2 = s > 0. The case r = 2 is covered by (v) and (vi) for s = 0, along with the remaining
item (iv). Indeed, if J ⊂ Kid ⊕ gl(V, V∗) projects nontrivially to soc2glM ∼= K, we have either
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socJ = KidV ⊕ sl(V, V∗) or socJ = sl(V, V∗). In the former case, we get J = Kid ⊕ gl(V, V∗)
covering item (vi), s = 0. In the latter case, since soc2glM/sl(V, V∗) ∼= K⊕K, we conclude that
soc2J ∼= K and J is generated by an element of the form ϕ = zidV + eb,b with a suitable z ∈ K
and any b ∈ B (it is clear that all b ∈ B yield the same ideal for a fixed z). For z = 0 we obtain
J = gl(V, V∗) covering item (v) with s = 0. For z 6= 0 we obtain item (iv).

Corollary 2.9. The only ideal of glM which is not principal, i.e., is not generated by one
element, is KidV ⊕ gl(V, V∗).

Proof. The result follows from the above proof and Lemma 2.4.

Remark 2.3. The ideals of item (iv) in Theorem 2.8 are very similar to certain ideals of the
Lie algebra gl(V ) found in [S1972], see also [BHO2023].

2.2 Tensor algebras and Schur functors

Let us recall some general results for decompositions of tensor powers.
We denote by T (X) the tensor algebra generated by a vector space X. For any Young

diagram λ and any vector space X, we denote by Xλ the image of X under the Schur functor
corresponding to λ: Xλ ⊂ X⊗|λ|. Here |λ| denotes the number of boxes in λ. Also, we denote
by Λ the set of Young diagrams, by ∅ the empty diagram, and by λ⊥ the transposed Young
diagram (the corresponding partition is called conjugate). Standard Schur-Weyl duality yields
the following decomposition in our context

X⊗m =
⊕
|λ|=m

Kλ ⊗Xλ , T (X) =
⊕
λ

Kλ ⊗Xλ ,

where Kλ is the irreducible module of the symmetric group on |λ| letters determined by the par-
tition λ. The m-the symmetric and skew-symmetric tensor powers SmX and ΛmX correspond
to λ = (m) and λ = (1, ..., 1), respectively.

We denote by cλ : X⊗|λ| → Xλ the projection associated to a standard Young tableau of
shape λ, which we fix once and for all to be the tableau where the numbers 1, ..., |λ| fill the
boxes of λ in their initial order.

Proposition 2.10. ([ChP2021, Proposition 2.2]; [PS2014, § 4])
Let X, Y be two objects in a tensor category. Then the following hold.

1. For m,n ≥ 0, X⊗m ⊗ Y ⊗n =
⊕

|λ|=m,|µ|=n
Kλ ⊗Kµ ⊗Xλ ⊗ Yµ.

2. For m ≥ 0, Sm(X ⊗ Y ) =
⊕
|λ|=m

Xλ ⊗ Yλ.

3. For m ≥ 0, Λm(X ⊗ Y ) =
⊕
|λ|=m

Xλ ⊗ Yλ⊥.

2.3 Dense subalgebras

Definition 2.1. Let G be a Lie algebra, R be a G-module, and H ⊂ G a subalgebra. The
subalgebra H is said to act densely on R, if for any finite subset of vectors r1, ..., rn ∈ R and
any g ∈ G, there exists h ∈ H such that g · rj = h · rj for j = 1, ..., n.
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Proposition 2.11. Let G be a Lie algebra and R be a G-module.

(a) If a subalgebra H ⊂ G acts densely on R, then H acts densely on the tensor algebra T (R)
and on all its subquotients.

(b) If G acts densely on R as a subalgebra of gl(R) (R considered as a vector space), then for
any partition λ the G-module Rλ is simple with EndGRλ

∼= K.

(c) If J is an ideal of G acting densely and irreducibly on R with EndJR = K, then the
functor

• ⊗R : G/J−mod −→ G−mod

is fully faithful; it sends simple modules to simple modules and essential inclusions to
essential inclusions.

Proofs are given in [PS2014, Lemma 7.3] for part (a), [ChP2017, Proposition 4.5] for part
(b), [ChP2017, Lemma 4.4] and [ChP2021, Lemma 3.3] for part (c).

3 The module I

Consider the canonical projection

p̃ : V̄ ⊗ V ∗ −→ V̄ ⊗ V ∗/(sl(V, V ∗) + sl(V̄ , V∗)) =: Q , (6)

where sl(V, V ∗) := ker(V ⊗V ∗ → K) and sl(V̄ , V∗) := ker(V̄ ⊗V∗ → K). Recall that gl(V, V∗) =
V ⊗ V∗ and sl(V, V∗) = ker(p : V ⊗ V∗ → K) are ideals of glM . Hence

q := p̃(V ⊗ V∗) = p̃(V ⊗ V ∗) = p̃(V̄ ⊗ V∗) ⊂ Q

is a 1-dimensional trivial glM -module, generated by p̃(vb ⊗ xb) for an arbitrary b ∈ B. Conse-
quently, there is a short exact sequence of glM -modules

0 −→ K ι−→ Q
π−→ F −→ 0 , (7)

where ι(K) = q with ι(1) = p̃(vb ⊗ xb) for any b ∈ B and F := V̄ /V ⊗ V ∗/V∗.
We define a glM -module by setting

I := lim
−→

SkQ, (8)

where ιk : SkQ ↪→ Sk+1Q is the map generalizing ι0 = ι, given by

SkQ ∼= SkQ⊗K id⊗ι−→ SkQ⊗Q multiply−→ Sk+1Q .

The exact sequence (7) generalizes, for k ∈ N, to

0 −→ SkQ
ιk−→ Sk+1Q

πk−→ Sk+1F −→ 0 . (9)

It follows that the successive quotients (or layers) of the defining filtration of I are SkF for
k = 0, 1, 2, ....

10



Proposition 3.1. ([ChP2021])
The module I carries a commutative algebra structure, made evident by the isomorphism

of glM -modules I ∼= S•Q/〈1 − ι(1)〉, where 〈1 − ι(1)〉 denotes the ideal of S•Q generated by
1− ι(1).

We observe that for every pair of natural numbers r, s ≤ t+ 1 there is a glM -submodule of
Q defined as

Qr,s := p̃(V̄r ⊗ V ∗s ) ⊆ Q .

Since q ⊂ Qr,s the construction of I can be repeated with Qr,s instead of Q, yielding a glM -
module

Ir,s := lim
k→∞

SkQr,s (10)

which is an essential extension of the trivial module q ∼= K. Thus we obtain a family of
glM -submodules and commutative subalgebras of I:

q ⊂ Ir,s ⊂ I t+1,t+1 = I , r, s ≤ t+ 1 .

Note that Ir,s ⊂ Ir
′,s′ if and only if r ≤ r′ and s ≤ s′.

Our next aim is to define a morphism of glM -modules ψ : I → F ⊗ I. Let S•Q =
∞⊕
k=0

SkQ

be the symmetric algebra over Q, and

∆ : S•Q −→ S•Q⊗ S•Q , ∆(v) = v ⊗ 1 + 1⊗ v for v ∈ Q
be the comultiplication which defines a Hopf algebra structure on S•Q. The comultiplication
is a morphism of glM -modules. We denote by

∆k
j : SkQ→ SjQ⊗ Sk−jQ

the composition of the restriction ∆ : SkQ→
k⊕
j=0

SjQ⊗ Sk−jQ with the projection to the j-th

summand.
For k ∈ N we have a morphism ψk = (πk ⊗ id) ◦∆k

1:

ψk : SkQ
∆k

1−→ Q⊗ Sk−1Q
πk⊗id−→ F ⊗ Sk−1Q .

This enables us to define the morphism ψ by setting

ψ := lim
−→

ψk : I −→ F ⊗ I . (11)

Lemma 3.2. We have ψk+1 ◦ ιk = (id⊗ ιk−1) ◦ ψk.

Proof. The argument in [ChP2021, § 3.1] can be repeated in our context without alteration.

Lemma 3.3. The kernel of ψ is 1-dimensional, given by kerψ = q ∼= K.

Proof. Since ker(πk ⊗ id) = (ιk ◦ ... ◦ ι1)(q)⊗ Sk−1Q, we have

kerψk = (∆k
1)−1((ιk ◦ ... ◦ ι1)(q)⊗ Sk−1Q)

= (ιk ◦ ... ◦ ι1)(q) .

The constructions of this subsection can be carried out for Ir,s (see formula (10)) instead
of I. One only needs to replace Q by Qr,s and F by F r,s = V̄r/V ⊗ V ∗s /V∗. The restricted
morphism ψ|Ir,s : Ir,s → F r,s ⊗ Ir,s factors through Ir,s → Ir,s/q.
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4 Background from category theory

4.1 Ordered Grothendieck categories

Definition 4.1. ([ChP2021, Def. 2.3]) Let (P ,�) be a poset. An ordered Grothendieck cate-
gory with underlying order (P ,�) is a Grothendieck category C with a given set of objects Xi,
i ∈ P with the following properties.

(a) The objects Xi have exhaustive socle filtrations.

(b) Every object in C is a subquotient of a direct sum of copies of various Xi.

(c) For every isomorphism type of simple objects in C there exists a unique i ∈ P such that
this type occurs in

Si := {isomorphism types of simples in socXi} .

(d) Simple subquotients of Xi outside socXi are in the socle of some Xj with j ≺ i.

(e) Each Xi is a direct sum of objects with simple socle.

(f) For j ≺ i, the maximal subobject Xi�j ⊂ Xi whose simple constituents belong to various
Sk for i � k � j is the common kernel of a family of morphisms Xi → Xj.

We refer to Xi, i ∈ P as the order-defining objects of the ordered Grothendieck category C.

Proposition 4.1. ([ChP2017, Proposition 2.5, Corollary 2.6])
Let U be a simple subobject in socXi for some i ∈ P and let Û be the direct summand of Xi

such that U = socÛ . Then Û is an injective hull of U .
The indecomposable injective objects in C are, up to isomorphism, precisely the indecompos-

able summands of the objects Xi, i ∈ P.

4.2 Tensor categories

Let C be a tensor category.

Remark 4.1. Let 0→ x′ → x→ x′′ → 0 be a short exact sequence in a tensor category. Then
the symmetric power Skx has a filtration 0 = F−1 ⊂ F0 ⊂ ... ⊂ Fn = Skx with F/Fj−1

∼=
Sk−jx′ ⊗ Sjx′′ for 0 ≤ j ≤ k.

Lemma 4.2. Suppose that the tensor product of any two injective objects in C is again an
injective object. Let

0→ U1 →M0 →M1 →M2 → ...→Mm → 0

0→ U2 → N0 → N1 → N2 → ...→ Nn → 0

be injective resolutions of two objects U1, U2. Then an injective resolution of U1 ⊗ U2 is given
by

0→ U1 ⊗ U2 → R0 → R1 → R2 → ...→ Rm+n → 0 ,

where Rk =
k⊕
j=0

Mk−j⊗N j for k = 0, 1, ...,m+n, and the differential of this complex, restricted

to Mk−j⊗N j, equals the tensor product of the respective differential of the initial two complexes.
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Proof. The exactness of the resulting sequence follows from the Künneth formula. The modules
Rj are injective, by hypothesis, and hence we have and injective resolution.

Definition 4.2. A simple object in a tensor category is called pure, if it is not isomorphic to
the tensor product of two nontrivial simple objects.

5 Categories of tensor modules for Mackey Lie algebras

We denote by Tt the smallest full tensor Grothendieck subcategory of glM -mod that contains
V ∗ and V̄ and is closed under taking subquotients. For any set of objects X, Y, ... in Tt, we
denote by T(X, Y, ...) the smallest full tensor Grothendieck subcategory of Tt containing these
objects and closed under taking subquotients. In particular, Tt = T(V ∗, V̄ ). Since t is fixed in
the discussion, we abbreviate the notation to T = Tt most of the time.

5.1 The category T(V∗, V )

Here we recollect some known results on the category T(V∗, V ) that will serve as building blocks
for some subsequent constructions. As before, Λ stands for the set of Young diagrams and its
elements are usually denoted by λ, µ, etc.

For any pair of nonnegative integers l,m we have a glM -module decomposition

V ⊗l∗ ⊗ V ⊗m =
⊕

|λ|=l,|µ|=m

Kλ ⊗Kµ ⊗ (V∗)λ ⊗ Vµ .

For (i, j) ∈ {1, ..., |µ|} × {1, ..., |ν|} we denote by pi,j : V ⊗l∗ ⊗ V ⊗m → V
⊗(l−1)
∗ ⊗ V ⊗(m−1) the

contraction obtained by applying p : V∗ ⊗ V → K to the i-th tensorand of V ⊗l∗ and the j-th
tensorand of V ⊗m. The submodule annihilated by all these contractions is

Vl;m :=
⋂
i,j

ker(pi,j) ⊂ V ⊗l∗ ⊗ V ⊗m .

For any pair of Young diagrams λ, µ with |λ| = l and |µ| = m, and any fixed copy of (V∗)λ⊗Vµ
inside V ⊗l∗ ⊗ V ⊗m, we denote

Vλ;µ :=
⋂
i,j

ker(pi,j |(V∗)λ⊗Vµ) .

More generally, for a pair of nonnegative integers m,n and a pair of multiindices of the same
size i = {1 ≤ i1 < ... < ik ≤ m}, j = {1 ≤ j1 < ... < jk ≤ n}, we have a morphism of

glM -modules

pi,j :V ⊗m∗ ⊗ V ⊗n → V ⊗(m−k)
∗ ⊗ V ⊗(n−k)

(x1 ⊗ ...⊗ xk)⊗ (v1 ⊗ ...⊗ vk) 7→ (
k∏
l=1

p(xil ⊗ vjl))(⊗i/∈ixi)⊗ (⊗j /∈jvj) .

Proposition 5.1. For any pair of Young diagrams λ, µ, the representation Vλ;µ of glM is
irreducible and the action of the subalgebra gl(V, V∗) ⊂ glM on Vλ;µ is dense in the sense of
Definition 2.1.

13



Proof. In the case where V has countable dimension (i.e., t = 0) the result is proven in [PS2014]
in two steps: first showing that gl(V, V∗) acts densely on V ⊕ V∗ as a subalgebra of glM , and
second, using the fact that Vλ;µ is a glM -submodule of the tensor algebra T (V ⊕V∗) and applying
Proposition 2.11,(a).

The general case can be reduced to the case t = 0 by means of Lemma 2.3. Indeed,
let r1, ..., rn ∈ V ⊕ V∗ and ϕ ∈ glM . By Lemma 2.3 there is a well-order on B such that
the matrix of ϕ is block-diagonal with blocks of countable dimension. Let C ⊂ B be the
union of the index sets of the blocks of ϕ where the supports of r1, ..., rn occur. Then C is
countable and we have r1, ..., rn, ϕr1, ..., ϕrn ∈ U ⊕ U∗, where U := span{vb : b ∈ C} ⊂ V and
U∗ := {xb : b ∈ C}) ⊂ V∗. Now we can apply the argument of [PS2014] outlined above to infer
the existence of ψ ∈ gl(U,U∗) ⊂ gl(V, V∗) such that ϕrj = ψrj for j = 1, ..., n.

Proposition 5.2. ([PS2014, Theorem 4.1])
Let l,m be nonnegative integers. The socle filtration of the sl(V, V∗)-module V ⊗l∗ ⊗ V ⊗m is

given by

sock(V ⊗l∗ ⊗ V ⊗m) =
⋂

#i=#j=k

ker(pi,j) , k = 1, ...,min{l,m} .

In particular,

soc(V ⊗l∗ ⊗ V ⊗m) = Vl;m =
⊕

|λ|=l,|µ|=m

Kλ ⊗Kµ ⊗ Vλ,µ .

Theorem 5.3. ([PSt2011, Th. 2.3], [PS2014, § 4])
Let λ, µ ∈ Λ be Young diagrams. Then the layers of the socle filtration of the sl(V, V∗)-

module (V∗)λ ⊗ Vµ have the following isotypic decompositions

sock+1((V∗)λ ⊗ Vµ) ∼=
⊕

ξ,η∈Λ:|λ|−|ξ|=k

hλ;µ
ξ;η · Vξ;η , where hλ;µ

ξ;η :=
∑
ν∈Λ

Nλ
ξνN

µ
νη . (12)

The same applies for the Mackey Lie algebra glM instead of sl(V, V∗).

It is an elementary but essential observation that hλ;µ
ξ;η 6= 0 implies that there exists a unique

k = kλ;µ
ξ;η := |λ| − |ξ| = |µ| − |η| such that hλ;µ

ξ;η = Hom(Vξ;η, sock+1((V∗)λ ⊗ Vµ)) 6= 0.

Definition 5.1. Let P be the poset with underlying set N2 and the following relation:

(l;m) ≤ (l′;m′) ⇐⇒ l −m = l′ −m′
l ≤ l′ , m ≤ m′

.

Theorem 5.4. ([ChP2017, § 4.2])
The category T(V∗, V ) is an ordered Grothendieck category with order-defining objects (V∗)

⊗l⊗
V ⊗m parametrized by the poset P. The socles of the order-defining objects are

soc((V∗)
⊗l ⊗ V ⊗m) = Vl;m .

The simple objects and the indecomposable injectives of T(V∗, V ) are, up to isomorphism, re-
spectively, Vλ;µ and (V∗)λ ⊗ Vµ with λ, µ ∈ Λ.

The next theorem describes injective resolutions of the simple objects in T(V∗, V ).
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Theorem 5.5. ([PSt2011]; [PS2014]) For any pair of Young diagrams λ, µ, the simple glM -
module Vλ;µ admits the following injective resolution in T(V∗, V ) of length |λ ∩ µ⊥|:

0→ Vλ;µ → I0(Vλ;µ)→ I1(Vλ;µ)→ ...→ I |λ∩µ⊥|(Vλ;µ)→ 0 ,

with Ik(Vλ;µ) =
⊕

ξ,η∈Λ:|λ|−|ξ|=k
mλ;µ
ξ;η · (V∗)ξ ⊗ Vη where mλ;µ

ξ;η :=
∑
ν∈Λ

Nλ
ξνN

µ
ν⊥η

.

Consequently, for k ≥ 0

ExtkT(V∗,V )(Vξ;η, Vλ;µ) ∼= Hom(Vξ;η⊥ , sock+1((V∗)λ ⊗ Vµ⊥)) ,

and ExtkT(V∗,V )(Vξ;η, Vλ;µ) 6= 0 implies k = kλ;µ
ξ;η = |λ| − |ξ| = |µ| − |η|.

In addition we observe that mλ;µ
ξ;η = hλ;µ⊥

ξ;η⊥
.

5.2 Some families of tensor modules

In this section, generalizing constructions of [ChP2017],[ChP2021], we determine the simple
glM -subquotients of the tensor algebra T (V ∗ ⊕ V̄ ). We also define and study several families
of glM -modules relevant for the structure of Tt as an ordered Grothendieck category.

We let
Λ := Λt+1 × Λ× Λ× Λt+1

be the set of 2(t + 2)-tuples of diagrams. We view its elements λ ∈ Λ as pairs of sequences
of length (t + 2), notation-wise separated by semicolon, with indices increasing outwards, and
unindexed initial entries, i.e.,

λ = (λ•, λ;µ, µ•) = (λt, ..., λ0, λ;µ, µ0, ..., µt) .

If the tail of a sequence ν• = (ν0, ..., νt) consists of empty diagrams, we often omit these empty
diagrams if the number t is fixed in the context. The sequence of empty diagrams is denoted
by ∅•.

We define the following four families of modules indexed by the set Λ:

Lλ•,λ;µ,µ• :=

(
t⊗

α=0

(V ∗α+1/V
∗
α )λα

)
⊗ Vλ;µ ⊗

(
t⊗

β=0

(V̄β+1/V̄β)µβ

)
,

Jλ•,λ;µ,µ• :=

(
t⊗

α=0

(V ∗/V ∗α )λα

)
⊗ V ∗λ ⊗ V̄µ ⊗

(
t⊗

β=0

(V̄ /V̄β)µβ

)
,

Iλ•,λ;µ,µ• := I ⊗ Jλ•,λ;µ,µ• ,
Kλ•,λ;µ,µ• := I ⊗ Lλ•,λ;µ,µ• .

(13)

Further, let

P := Nt+1 × N× N× Nt+1 (14)

be the set of (2t + 4)-tuple of nonnegative integers, which we convene notation-wise to split
into two sequences of equal length and write as

l = (l•, l;m,m•) = (lt, ..., l0, l;m,m0, ...,mt) ,
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similarly to the elements of Λ. We define the following families of modules parametrized by P :

Ll•,l;m,m• :=

(
t⊗

α=0

(V ∗α+1/V
∗
α )⊗lα

)
⊗ Vl;m ⊗

(
t⊗

β=0

(V̄β+1/V̄β)⊗mβ

)
,

Jl•,l;m,m• :=

(
t⊗

α=0

(V ∗/V ∗α )⊗lα
)
⊗ (V ∗)⊗l ⊗ (V̄ )⊗m ⊗

(
t⊗

β=0

(V̄ /V̄β)⊗mβ

)
,

Il•,l;m,m• := I ⊗ Jl•,l;m,m• ,
Kl•,l;m,m• := I ⊗ Ll•,l;m,m• .

(15)

Remark 5.1. Notation-wise, it will sometimes be convenient to include l and m into the
indexed sequences l• and m• as l = l−1 and m = m−1, respectively. In other words, P will be
interpreted alternatively as Nt+1 × N × N × Nt+1 or as Nt+2 × Nt+2. Correspondingly, we set
V ∗−1 := 0 ⊂ V ∗ and V̄−1 := 0 ⊂ V̄ . The range of the index will be made clear in the context,
with the initial convention as default. We do similarly for the elements of Λ.

There is a natural map from Λ to P given by component-wise size:

| · | : Λ→ P , (λ•, λ;µ, µ•) 7→ (|λ•|, |λ|; |µ|, |µ•|) .

We use the same notation for the map

| · | : P → N , (l•, l;m,m•) 7→ l +m+
t∑

α=0

(lα +mα) ,

and we denote the composition of these two maps by

|| · || : Λ→ N , (λ•, λ;µ, µ•) 7→ |λ|+ |µ|+
t∑

α=0

|λα|+ |µα| .

We denote the symmetric group on n letters by Sn, and for l = (l•, l;m,m•) ∈ P we let Sl

be the product of 2t symmetric groups of sizes corresponding to the entries of l:

Sl := Slt × ...×Sl0 ×Sl ×Sm ×Sl0 × ...×Smt . (16)

Note that Sl acts naturally on each of the modules (15), and

Ll =
⊕
|λ|=l

Kλ ⊗ Lλ , Jl =
⊕
|λ|=l

Kλ ⊗ Jλ , Il =
⊕
|λ|=l

Kλ ⊗ Iλ , Kl =
⊕
|λ|=l

Kλ ⊗Kλ (17)

(recall that Kλ denotes the irreducible representation of Sl determined by λ ∈ Λ).

5.2.1 Simple tensor modules

Theorem 5.6. Let λ = (λ•, λ;µ, µ•) ∈ Λ and let Lλ, Jλ be as in (13). Then the glM -module
Lλ is simple and Lλ = socJλ. In particular, the inclusion Lλ ⊂ Jλ is essential.

The proof will be given after some technical preparation. Let us note that the case µ• = ∅•
is settled in [ChP2017, Lemma 4.9]. We shall combine this fact with a suitable generalization
of [ChP2019, Proposition 4.1 and Corollary 4.3] to obtain the complete result.
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Lemma 5.7. Let v1, ..., vp, w1, ..., wp ∈ V̄ with v1, ..., vp linearly independent modulo V̄t, and
x1, ..., xq, y1, ..., yq ∈ V ∗ with x1, ..., xq linearly independent modulo V ∗t . Then there exists ϕ ∈
glM such that ϕ(vi) = wi and ϕ∗(xj) = yj for all i = 1, ..., p and j = 1, ..., q.

Proof. The argument is analogous to the proof of [ChP2019, Lemma 4.2], but with transfinite
recursion. Recall that B is the index set for a basis of V , and assume that B is ordered by the
initial ordinal number with cardinality |B| = ℵt. In particular B is well-ordered and, since the
cardinals ℵt for t ∈ N are regular, for every b ∈ B the set B>b := {c ∈ B : b < c} has the same
cardinality ℵt as B while B≤b := {c ∈ B : c ≤ b} has strictly smaller cardinality. Let M be
the matrix of size B × p with columns v1, ..., vp and N be the matrix of size q × B with rows
x1, ..., xq. For b ∈ B, let M(b) and N(b) denote the corresponding row of M and, respectively,
column of N . The set of indices of the rows appearing in a given p×p-minor of M , respectively
q× q-minor of N , will be called the support of that minor. The set of nonsingular p× p-minors
of M has cardinality ℵt. Furthermore, it contains a subset, say M, such that |M| = ℵt and
distinct elements of M are supported on disjoint sets of rows of M . Let B → M, b 7→ Mb

be any injective map. Let M̃b be the ℵt × p-matrix obtained from M by replacing the minor
Mb by its inverse and setting all other rows equal to 0. Similarly, there exists an injection
B → N , b 7→ Nb defined using the matrix N and its q × q-minors. We also use the analogous
notation Ñb for the resulting q × ℵt matrices. The assumption on the order of B guarantees
that the assignments b 7→ Mb and b 7→ Nb can be made so that for every b ∈ B and every
c ∈ supp(Mb) ∪ supp(Nb) we have b < c.

Now we are ready to give a recursive definition of ϕ as a matrix with respect to the chosen
order of B. Let b0 be the minimal element of B. Define the first row of ϕ by setting ϕ(b0,a) := 0
for a /∈ supp(Mb0) and

(ϕ(b0,a1), ..., ϕ(b0,ap)) := (w1(b0), ..., wp(b0))M−1
b0

if supp(Mb0) = {a1, ..., ap}.
The first column has now its first entry ϕ(b0,b0) fixed. Put ϕ(c,b0) := 0 for c /∈ {b0}∪supp(Nb0)

and ϕ(c1,b0)
...

ϕ(cq ,b0)

 := −N−1
b0


y1(b0)

...
yq(b0)

+ ϕ(b0,b0)

x1(b0)
...

xq(b0)




if supp(Nb0) = {c1, ..., cq}.
Let b ∈ B and assume that the rows and columns of ϕ are given for indices strictly smaller

than b. To define the b-th row ϕ(b,·) we extend the given data by setting ϕ(b,d) := 0 if d ≥ b and
d /∈ supp(Mb), and

(ϕ(b,d1), ..., ϕ(b,dp)) := ((w1(b), ..., wp(b))−
∑
a<b

ϕ(b,a)(v1(a), ..., vp(a)))M−1
b

if supp(Mb) = {d1, ..., dp}. Similarly, we extend the b-th column by 0 outside supp(Nb) and putϕ(e1,b)
...

ϕ(eq ,b)

 := −N−1
b


y1(b)

...
yq(b)

+
∑
a≤b

ϕ(b,a)

x1(a)
...

xq(a)




if supp(Nb) = {e1, ..., eq}. The resulting matrix ϕ determines an element of glM which satisfies
the required properties by construction.
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Lemma 5.8. Let 0 ≤ α1 < ... < αn ≤ t be n natural numbers. For m ∈ {1, ..., n}, let
vm1 , ..., v

m
pm , w

m
1 , ..., w

m
pm ∈ V̄αm+1/V̄αm and xm1 , ..., x

m
qm , y

m
1 , ..., y

m
qm ∈ V

∗
αm+1

/V ∗αm be arbitrary pairs
of tuples of vectors in the respective spaces.

If the tuples {vm1 , ..., vmpm} and {xm1 , ..., xmqm} are linearly independent for every m, then there

exists a transformation ϕ ∈ glM such that

ϕ(vmj ) = wmj and ϕ∗(xmj ) = ymj ∀j,∀m .

Proof. We shall reduce the statement to the case of Lemma 5.7. Let ṽmj , w̃mj ∈ V̄ and x̃mj , ỹ
m
j ∈

V ∗ be representatives of the respective elements. We define subsets A1, ..., An of B by setting

Am := ∪j(supp(ṽmj ) ∪ supp(w̃mj )) ∪ (∪j(supp(x̃mj ) ∪ supp(ỹmj )))

Note that |Am| = ℵαm and, by the hypothesis of linear independence, the above representatives
can be chosen so that Am ∩ Al = ∅ if m 6= l. As in the previous lemma, we fix a well-
order of B and work with glM as a matrix algebra. If necessary, we change the order so that
A1 < A2 < ... < An. Let gAm ⊂ glM be the subalgebra consisting of elements with supports in
Am×Am. Note that gAm is isomorphic to the Mackey Lie algebra of the restriction of the pairing
p to KAm ⊗ VAm , where KAm := span{xa : a ∈ Am} ⊂ KB := V∗ and VAm := span{va : a ∈
Am} ⊂ VB := V . Let l = gA1⊕...⊕gAn be the resulting block-diagonal subalgebra of glM , which
is clearly contained in the ideal glMαn+1. Thus it suffices to show that, for every m ∈ {1, ..., n},
there exists ϕm ∈ gAm such that ϕ(vmj ) = wmj and ϕ∗(xmj ) = ymj for all j. Furthermore, the
elements vmj , w

m
j can be seen as elements of the quotient VAm/VAmαm and similarly xmj , y

m
j in

KAm/KAm
αm . Thus we have n occurrences of the situation of Lemma 5.7 in distinct dimensions

ℵα1 , ...,ℵαn , which is the claimed reduction.

Lemma 5.9. The glM -module Lλ•,∅;∅,µ• is simple for λ•, µ• ∈ Λt+1.

Proof. Let L := Lλ•,∅;∅,µ• and note that L ∼= Lλ•,∅;∅,∅• ⊗ L∅•,∅;∅,µ• . We follow the idea of the
proof of [ChP2019, Prop. 4.1] and use the simplicity of Lλ•,∅;∅,∅• (and analogously L∅•,∅;∅,µ•)
established in [ChP2017, Prop. 4.2]. We identify L with the submodule of L|λ•|,∅;∅,|µ•| obtained
as the image of the product of Young symmetrizers cλ• ⊗ cµ• = (⊗αcλα) ⊗ (⊗αcµα), where we
use the convention for cν , ν ∈ Λ, from Section 2.2.

Let Mw ⊂ L be the glM -submodule generated by a fixed w ∈ L \ {0}. The decomposition
L ∼= Lλ•,∅;∅,∅• ⊗ L∅•,∅;∅,µ• enables us to express w as a finite sum of decomposable tensors,
w =

∑
j x

j ⊗ vj. By the argument of [Ch2014, Prop. 1], we can assume (up to applying a

suitable sequence of elements of glM) that the sets A1 = ∪jsupp(xj) and A2 = ∪jsupp(vj) are
two disjoint infinite subsets of B, and there exist subsets B1, B2 ⊂ B with Aj ⊂ Bj, B1∩B2 = ∅
and |B1| = |B2| = |B| = ℵt. Let l = gB1 ⊕ gB2 ⊂ gB = glM be the corresponding block-diagonal
subalgebra; note that there are isomorphisms gB1 ∼= gB2 ∼= glM . The Lie algebra l acts on
the space LB1

λ•,∅;∅,∅• of vectors in Lλ•,∅;∅,∅• supported on B1, as well as on the space LB2

∅•,∅;∅,µ•
of vectors in L∅•,∅;∅,µ• supported on B2. Furthermore, LB1

λ•,∅;∅,∅• and LB2

∅•,∅;∅,µ• are irreducible

l-modules since they are irreducible respectively over gB1 and gB2 by [ChP2017, Prop. 4.2].
Hence

LB1

λ•,∅;∅,∅• ⊗ L
B2

∅•,∅;∅,µ• ⊂Mw

is an irreducible l-submodule of Mw. This l-submodule is spanned by the vectors of the form
cλ•x⊗ cµ•v, with x ∈ LB1

|λ•|,0;0,0•
and v ∈ LB2

0•,0;0,|µ•| supported respectively on B1 and B2.
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To show that LB1

λ•,∅;∅,∅•⊗L
B2

∅•,∅;∅,µ• generates the entire Lλ•,∅;∅,µ• over glM we will apply Lemma

5.8. To connect to the setting of the lemma we note that: the l-th tensor power U⊗l of a vector
space U is spanned by the set of decomposable tensors u = u1⊗...⊗ul with linearly independent
tensorands u1, ..., ul, the Schur projection cλ(u) of such u is non-zero for any λ ∈ Λ of size l,
and Uλ is spanned by the set of such cλ(u). Thus, our proof will be complete if we show that
(cλ• ⊗ cµ•)(w′) ∈Mw for any fixed w′ ∈ L|λ•|,∅;∅,|µ•| of the form

w′ =

(
t⊗

α=0

(yα1 ⊗ ...⊗ yα|λα|)

)
⊗

(
t⊗

α=0

(uα1 ⊗ ...⊗ uα|λα|)

)
with yα1 , ..., y

α
|λα| ∈ V

∗
α+1/V

∗
α linearly independent and uα1 , ..., u

α
|µα| ∈ V̄α+1/V̄α linearly indepen-

dent. By the first part of the proof we may assume that w = (cλ• ⊗ cµ•)(w̃) for

w̃ =

(
t⊗

α=0

(xα1 ⊗ ...⊗ xα|λα|)

)
⊗

(
t⊗

α=0

(vα1 ⊗ ...⊗ vα|λα|)

)
∈ L|λ•|,∅;∅,|µ•|

with xα1 , ..., x
α
|λα| ∈ V ∗α+1/V

∗
α supported on B1 and linearly independent, and vα1 , ..., v

α
|µα| ∈

V̄α+1/V̄α supported on B2 and linearly independent. Then we apply Lemma 5.8, several times
if necessary, to obtain a sequence of elements ϕ1, ..., ϕr ∈ glM such that

ϕr ◦ ... ◦ ϕ1(w̃) = w′ .

Hence Mw 3 ϕr ◦ ... ◦ ϕ1(w) = (cλ• ⊗ cµ•)(ϕr ◦ ... ◦ ϕ1(w̃)) = (cλ• ⊗ cµ•)(w
′), which implies

Mw = L as desired.

Proof of Theorem 5.6. To verify the simplicity of Lλ•,λ;µ,µ• we start with the decomposition
Lλ•,λ;µ,µ•

∼= Lλ•,∅;∅,µ• ⊗Lλ;µ, where both tensorands are simple due to Lemma 5.9 and Theorem
5.4. Now, Proposition 5.1 allows us to invoke Proposition 2.11,(c) for G = glM , J = gl(V, V∗),
R = Lλ;µ = Vλ;µ, and apply the functor • ⊗ R to the simple module Lλ•,∅;∅,µ• . This confirms
that Lλ•,λ;µ,µ• is simple. Finally, the inclusion Lλ•,λ;µ,µ• ⊂ Jλ•,λ;µ,µ• is essential as a consequence
of Lemma 5.8 and the fact that Vλ;µ is essential in V ∗λ ⊗ V̄µ.

Theorem 5.10. The simple modules Lλ for λ = (λ•, λ;µ, µ•) ∈ Λ are pairwise nonisomorphic
and have scalar endomorphism algebras, EndLλ ∼= K.

Proof. There are known cases of the theorem, as follows. The case µ• = ∅• (and by analogy the
case λ• = ∅•) is proven in [ChP2017, Proposition 4.2]. The case t = 0 is proven in [ChP2021,
Theorem 3.6]. A combination of the two methods of proof yields the general result.

5.2.2 Tensor products of simple tensor modules

Here we study the socle filtration of a tensor product Lλ⊗Lλ′ of two simple tensor modules for
λ = (λ•, λ;µ, µ•) and λ′ = (λ′•, λ

′;µ′, µ′•) in Λ. It turns out that the difficulty is concentrated
in the tensor product Vλ;µ ⊗ Vλ′;µ′ of simple modules in T(V∗, V ). We handle this case in the
following lemma.

Lemma 5.11. Let λ, µ, λ′, µ′ ∈ Λ be four Young diagrams. The layers of the socle filtration of
the tensor product of the simple modules Vλ;µ and Vλ′;µ′ are

socq+1(Vλ;µ ⊗ Vλ′;µ′) ∼=
⊕

κ,ν∈Λ:|λ|+|λ′|−|κ|=q

n
(λ;µ),(λ′;µ′)
(κ;ν) · Vκ;ν
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where the multiplicities can be expressed as

n
(λ;µ),(λ′;µ′)
(κ;ν) =

∑
ζ,θ∈Λ

N ζ
λλ′N

θ
µµ′h

ζ;θ
κ;ν −

−
∑

0≤r<|λ|+|λ′|−|κ|
(−1)r

∑
ξ0, ..., ξr,
η0, ..., ηr,
ξ′0, ..., ξ

′
r,

η′0, ..., η
′
r,

ζ, θ ∈ Λ

|ξ0|+|ξ′0|<|λ|+|λ′|

|ξj |+|ξ′j |<|ξj−1|+|ξ′j−1|

0<j≤r

hλ;µ
ξ0;η0

hλ
′;µ′

ξ′0;η′0
(
∏

0<j≤r
h
ξj−1;ηj−1

ξj ;ηj
h
ξ′j−1;η′j−1

ξ′j ;η
′
j

)N ζ
ξrξ′r

N θ
ηrη′r

hζ;θκ;ν ,

with the numbers h∗;∗∗;∗ defined in (12). (Note that the sum over r is empty if |λ|+ |λ′|− |κ| = 0,
and the product over j is empty if r = 0.)

Proof. First recall that the tensor products (V∗)λ ⊗ (V∗)λ′ and Vµ ⊗ Vµ′ are semisimple, and
that the socle filtration of (V∗)λ ⊗ Vµ′ , i.e., the case µ = ∅ = λ′, is known from Theorem 5.3.
Since Vλ;µ = soc((V∗)λ ⊗ Vµ) and Vλ′;µ′ = soc((V∗)λ′ ⊗ Vµ′) we have an inclusion of the module

W := Vλ;µ⊗Vλ′;µ′ in the module W̃ := (V∗)λ⊗Vµ⊗ (V∗)λ′⊗Vµ′ . The module W̃ decomposes as

W̃ = (V∗)λ ⊗ Vµ ⊗ (V∗)λ′ ⊗ Vµ′ ∼=
⊕
ζ,θ∈Λ

N ζ
λλ′N

θ
µµ′ · (V∗)ζ ⊗ Vθ

and, by Theorem 5.3, the layers of its socle filtration are

socq+1(W̃ ) ∼=
⊕

κ,ν∈Λ:|λ|+|λ′|−|κ|=q

(∑
ζ,θ∈Λ

N ζ
λλ′N

θ
µµ′h

ζ;θ
κ;ν

)
· Vκ;ν .

On the other hand, we can express the above layers as

socq+1(W̃ ) ∼=
⊕

i+j+p=q

socp+1 (soci+1((V∗)λ ⊗ Vµ)⊗ socj+1((V∗)λ′ ⊗ Vµ′))

∼=
⊕

i+j+p=q

socp+1


⊕

ξ, η, ξ′, η′ ∈ Λ
|λ| − |ξ| = i
|λ′| − |ξ′| = j

hλ;µ
ξ;η h

λ′;µ′

ξ′;η′ · Vξ;η ⊗ Vξ′;η′


.

We observe that
soc(W ) = soc(W̃ ) ∼=

⊕
κ,ν∈Λ

Nκ
λλ′N

ν
µµ′ · Vκ;ν

and, more generally, socq+1(W ) occurs as the summand corresponding to i = j = 0, p = q in

socq+1(W̃ ). Hence

socq+1(W ) ∼= socq+1(W̃ )/(
⊕

0<i+j≤q

socq−i−j+1(soci+1((V∗)λ ⊗ Vµ)⊗ socj+1((V∗)λ′ ⊗ Vµ′)) .
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We derive the following recursive formula for the multiplicities n
(λ;µ),(λ′;µ′)
(κ;ν) :

n
(λ;µ),(λ′;µ′)
(κ;ν) =

∑
ζ,θ∈Λ

N ζ
λλ′N

θ
µµ′h

ζ;θ
κ;ν −

∑
ξ,η,ξ′,η′∈Λ:|ξ|+|ξ′|<|λ|+|λ′|

hλ;µ
ξ;η h

λ′;µ′

ξ′;η′ n
(ξ;η),(ξ′;η′)
(κ;ν) .

Now, the formula for n
(λ;µ),(λ′;µ′)
(κ;ν) claimed in the lemma follows by induction on |λ|+ |λ′|.

Proposition 5.12. Let (λ•, λ;µ, µ•), (λ
′
•, λ
′;µ′, µ′•) ∈ Λ.

(a) The simple module Lλ•,λ;µ,µ• is pure if and only if either just the two inner diagrams λ, µ
are nonempty, or all diagrams except at most one are empty.

(b) For the layers of the socle filtration of the tensor product Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′• we have

socq+1(Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′•) ∼= Lλ•,∅;∅,µ• ⊗ Lλ′•,∅;∅,µ′• ⊗ socq+1(Vλ;µ ⊗ Vλ′;µ′)
∼=

⊕
(κ•,κ,ν,ν•)∈Λ:|λ|+|λ′|−|κ|=q

(
Nκ•
λ•λ′•

Nν•
µ•µ′•

n
(λ;µ),(λ′;µ′)
(κ;ν)

)
· Lκ•,κ;ν,ν•

where Nζ•
ξ•η•

:=
t∏

α=0

N ζα
ξαηα

for ξ•, η•, ζ• ∈ Λt+1.

(c) The socle of Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′• decomposes as

soc(Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′•) ∼=
⊕

(κ•,κ;ν,ν•)∈Λ

Nκ•
λ•λ′•

Nκ
λλ′N

ν
µµ′N

ν•
µ•µ′•
· Lκ•,κ;ν,ν• .

(d) The tensor product Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′• is a semisimple module if and only if at least
one of the following four conditions holds:

λ = µ = ∅;λ = λ′ = ∅;λ′ = µ′ = ∅;µ = µ′ = ∅ .

(e) The tensor product Lλ•,λ;∅,∅• ⊗ L∅•,∅;µ,µ• has socle filtration of length |λ ∩ µ| with layers

socq+1(Lλ•,λ;∅,∅• ⊗ L∅•,∅;µ,µ•) ∼=
⊕

κ,ν∈Λ:|λ|−|κ|=q

hλ;µ
κ;ν · Lλ•,κ;ν,µ• .

Proof. Part (a) follows immediately from the classification of simple modules. Part (b) im-
plies parts (c),(d) and (e) as special cases. To prove part (b) we begin with the following
decomposition:

Lλ•,∅;∅,µ• ⊗ Lλ′•,∅;∅,µ′• ∼=
⊕

(κ•;ν•)∈Λt+1×Λt+1

Nκ•
λ•λ′•

Nν•
µ•µ′•
· Lκ•,∅;∅,ν• .

Indeed, this decomposition holds over the Lie algebra

(
t⊕

α=0

gl(V ∗α+1/V
∗
α ))⊕ (

t⊕
β=0

gl(V̄β+1/V̄β))
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and, by Theorem 5.6, remains unchanged after restriction to glM . Hence the module Lλ•,∅;∅,µ•⊗
Lλ′•,∅;∅,µ′• is semisimple. Furthermore, again by Theorem 5.6, the tensor product Lκ•,∅;∅,ν• ⊗ Vξ;η
is isomorphic to Lκ•,ξ;η,ν• and remains simple.

Next, observe that essential extensions between submodules of V ⊗l∗ ⊗ V ⊗m remain essential
after tensoring by Lκ•,∅;∅,ν• , because this holds for the restriction of these representations to
gl(V, V∗) which acts trivially on Lκ•,∅;∅,ν• . From these observations we deduce that

socq+1(Lλ•,λ;µ,µ• ⊗ Lλ′•,λ′;µ′,µ′•) ∼= Lλ•,∅;∅,µ• ⊗ Lλ′•,∅;∅,µ′• ⊗ socq+1(Vλ;µ ⊗ Vλ′;µ′) .

Now the full the statement of part (b) follows from Lemma 5.11.

The semisimplicity of the tensor products of “one-sided” simple modules, i.e., Lλ•,λ;∅⊗L•µ,µ;∅
or L∅;λ,λ• ⊗ L∅;µ,µ• , as well as the obvious symmetry between the two cases, prompts us to

introduce the following notation for any λ•, µ
(1)
• , ..., µ

(m)
• ∈ Λt+1:

Nλ•

µ
(1)
• ...µ

(m)
•

:= dim Hom(Vλ•,∅;∅, Vµ(1)
• ,∅;∅ ⊗ · · · ⊗ Vµ(m)

• ,∅;∅)

= dim Hom(V∅;∅,λ• , V∅;∅,µ(1)
•
⊗ · · · ⊗ V∅;∅,µ(m)

•
)

=
∑

σ
(1)
• ,...,σ

(m−2)
• ∈Λt+1

∏
α

Nλα

µ
(1)
α σ

(1)
α

(
m−2∏
r=2

Nσ
(r−1)
α

µ
(r)
α σ

(r)
α

)Nσ
(m−2)
α

µ
(m−1)
α µ

(m)
α

.

(18)

5.2.3 Two orders and a family of morphisms

Here we introduce two partial orders on the set P defined in (14). For l• = (l0, ..., lt) ∈ Nt+1,

we denote |l•| :=
t∑

α=0

lα and |l•≥β | :=
∑

β≤α≤t
lα.

Definition 5.2. Let � be the partial order on P defined by

(l•, l;m,m•) � (l′•, l;m,m
′
•) ⇐⇒

l −m+ |l•| − |m•| = l′ −m′ + |l′•| − |m′•|
l ≤ l′ , m ≤ m′

|l•≥β | ≥ |l′•≥β | for β ∈ {0, ..., t}
|m•≥β | ≥ |m′•≥β |

.

From now on, (P ,�) denotes the resulting poset.

Definition 5.3. We define a partial order
P

� on the set P by strengthening the relation � with
the additional requirements l + |l•| ≤ l′ + |l′•|, m + |m•| ≤ m′ + |m′•|, and denote the resulting
poset by P.

Next, we define several attributes of a fixed element l = (l•, l;m,m•) of the set P . There

are two parallel constructions corresponding to the partial orders � and
P

�. We begin with the
notation

P(l) := {k ∈ P : k � l} , P(l) := {k ∈ P : k
P

� l} .

Remark 5.2. 1. Both posets P(l) and P(l) have the following property: every strictly as-
cending sequence is finite.
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2. The common underlying set N2(t+2) of the posets P and P is a monoid under component-
wise addition. If l � k and l′ � k′ then l + l′ � k + k′. The same property holds for
P

�.

Lemma 5.13. For l = (l•, l;m,m•) ∈ P let P1(l) be the set of elements obtained from l by
one of the following elementary alterations:

(i) if l > 0 (resp., lα > 0), subtract 1 from l (resp., from lα) and add 1 to l0 (resp., lα+1);

(ii) if m > 0 (resp., mα > 0), subtract 1 from m (resp., from mα) and add 1 to m0 (resp.,
mα+1);

(iii) if both l and m are positive, subtract 1 from each of them;

(iv) add 1 to both l0 and m0.

Then P1(l) is the set of maximal elements of the poset P(l) \ {l}.
Let P1(l) be the subset of P1(l) obtained using only (i), (ii) and (iii). Then P1(l) is the set

of maximal elements of the poset P(l) \ {l}.

Proof. For any k ≺ l it is straightforward to construct an element k′ obtained from l by using
one of the alterations (i)-(iv) and satisfying k � k′ ≺ l. This proves the statement for P1(l).
The statement for P1(l) is proven analogously.

Definition 5.4. For q ≥ 1 let Pq(l) ⊂ P(l) be the set of maximal elements of the set

{k ∈ P : k ≺ l} \

(⋃
j<q

Pj(l)

)
,

with the convention P0(l) = {l}. We define Pq(l) analogously.

To any element l = (l•, l;m,m•) we associate the number

q(l) := (l +m)(t+ 1) +
t∑

j=0

(lj +mj)(t− j). (19)

Note that q(l) = 0 if and only if l has the form l = (lt, 0, ..., 0; 0, ...0,mt). Lemma 5.13 and
Remark 5.2 imply that P(l) and P(l) split as disjoint unions:

P(l) =
⊔

0≤q≤q(l)

Pq(l) , P(l) =
⊔
q∈N

Pq(l) . (20)

This structure behaves well with respect to addition in the underlying monoid, i.e.,

Pq(l) + Pq′(l′) ⊂ Pq+q′(l + l′) , for l, l′ ∈ P, q, q′ ∈ N. (21)

Furthermore, if l = (l•, l;m,m•) then

Pq(l) =
⋃

i+j+k=q

Pi(l•, 0; 0•) + Pj(l;m) + Pk(0•; 0,m•)

=
⋃

|i•|+j+|k•|=q

(
Pj(l;m) +

t∑
α=0

(Piαlα(1α, 0; 0•) + Pkαmα(0•; 0, 1α))

)
(22)
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where (1α, 0; 0•) denotes the element (l•, 0; 0•) ∈ P with l• having a single nonzero term equal
to 1 at position α, and (0•; 0, 1α) is the obvious analogue.

Properties (21) and (22) hold as well for the poset P instead of P.
We now move our attention to morphisms f : Il → Ik. The notation below refers to

subtraction of elements in the monoid P , and we automatically assume that the parameters
satisfy the inequalities ensuring that the results are in P .

Definition 5.5. For l = (l•, l;m,m•) ∈ P we let Ξ1(Il) be the set of morphisms Il → Ik with
k ∈ P1(l), associated with the four types of elements of P1(l) according to Lemma 5.13, as
follows:

(i) fαj : Il → Il+(1α,−1α−1;0) is the projection V ∗/V ∗α−1 → V ∗/V ∗α applied to the j-th tensorand
in (V ∗/V ∗α−1)⊗lα−1, extended by identity on all other tensorands in Il, for 0 ≤ α ≤ t and
0 ≤ j ≤ lα−1;

(ii) f̄αj : Il → Il+(0;−1α−1,1α) is the projection V̄ /V̄α−1 → V̄ /V̄α applied to the j-th tensorand
in (V̄ /V̄α−1)⊗mα−1, extended by identity on all other tensorands in Il, for 0 ≤ α ≤ t and
0 ≤ j ≤ mα−1;

(iii) p̃i,j : Il → Il−(1;1) is the morphism p̃ : V ∗ ⊗ V̄ → Q ⊂ I applied to the relevant pair of
tensorands V ∗ and V̄ in Il, extended by identity on all other tensorands, for 0 ≤ i ≤ l
and 0 ≤ j ≤ m;

(iv) ψl : Il → Il+(1,0;0,1) is the morphism ψ : I → (V ∗/V∗)⊗ (V̄ /V )⊗ I = I1,0;0,1 (see formula
(11)) applied to the tensorand I, extended by the identity to all other tensorands in Il.

We let Ξq(Il) be the set of morphisms Il → Ik with k ∈ Pq(l) obtained as compositions fq◦...◦f1,
where fj ∈ Ξ1(Ikj) for some decreasing sequence l = k0 � k1 � ... � kq = k satisfying
kj ∈ P1(kj−1) for j = 1, ..., q.

We also introduce a family of morphisms with domain Jl. Since socI = K there is a canonical
embedding Jl ⊂ I⊗Jl = Il. Let Ξq(Jl) be the set of restrictions to Jl of morphisms from Ξq(Il)
which are obtained as compositions of morphisms of type (i),(ii) and (iii). The codomains of
these morphisms are of the form Ik with k ∈ Pq(l).

5.2.4 The socle filtrations of the modules Jl•,l;m,m• and Jλ•,λ;µ,µ•

Here we study the families of modules Jl and Jλ defined in (15). We begin with the former
family, and the observation that there is an isomorphism

Jl ⊗ Jl′ ∼= Jl+l′

for l, l′ ∈ P .

Example 5.1. Let us consider J1;1 = V ∗ ⊗ V̄ and describe its socle filtration. From Theorem
5.6 we get

soc(V ∗ ⊗ V̄ ) = soc(V∗ ⊗ V ) = L1;1 = kerp = sl(V, V∗)

and observe that
soc(V ∗ ⊗ V̄ ) =

⋂
f∈Ξ1(J1;1)

kerf .
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Further, we have socj+1(V ∗) = V ∗j and socj+1(V̄ ) = V̄j for j = 0, ..., t+ 1, and consequently

socq+1(V ∗ ⊗ V̄ ) ⊂
∑
i+j=q

soci+1(V ∗)⊗ socj+1(V̄ ) =
∑
i+j=q

V ∗i ⊗ V̄j (23)

for q ≥ 0. For q ≥ 1, the containment in (23) is an equality, as can be shown by induction.
Thus the length of the socle filtration of V ∗ ⊗ V̄ is 2(t+ 1) + 1, and

socq+1(V ∗ ⊗ V̄ ) =
⋂

f∈Ξq+1(J1;1)

kerf .

For the higher layers of the socle filtration we obtain

soc2(V ∗ ⊗ V̄ ) = ((V ∗1 /V
∗

0 )⊗ V̄0)⊕K⊕ (V ∗0 ⊗ (V̄1/V̄0)) ∼= L1,0;1 ⊕ L0;0 ⊕ L1;0,1 ,

and
socq+1(V ∗ ⊗ V̄ ) =

⊕
i+j=q

soci+1(V ∗)⊗ socj+1(V̄ ) =
⊕
i+j=q

L1i−1;1j−1

for q ≥ 2.

Proposition 5.14. Let l = (l•, l;m,m•) ∈ P and p = min{l,m}. The socle filtration of Jl has
length 1 + q(l), see (19). For 0 ≤ q ≤ q(l) we have

socq+1Jl =
⋂

f∈Ξq+1(Jl)

kerf

socq+1Jl ∼=
⊕

i+j+k=q,k≤p

(
l
k

)(
m
k

)
soc(soci+1Jl•,l−k;0 ⊗ socj+1J0;m−k,m•)

∼=
⊕

i+j+|i•|+|j•|+k=q

(
l
k

)(
m
k

)
(soc(soci+1((V ∗)⊗(l−k))⊗ socj+1(V̄ ⊗(m−k)))⊗

k≤p ⊗ (
t⊗

α,β=0

sociα+1Jlα,0;0 ⊗ socjβ+1J0;0,mβ))

∼=
⊕

k∈Pq(l)

blkLk ,

where Pq(l) is as in Definition 5.4, and for k ∈ Pq(l),

blk :=
∑

k +
t∑

α=−1

(qα + q̄α) = q∑
−1≤α≤t

(r
(α)
• ; s

(α)
• ) = k

(
l

k

)(
m

k

)
(l − k)!∏

−1≤β≤t
r

(−1)
β !

(m− k)!∏
−1≤β≤t

s
(−1)
β !

∏
0≤α≤t

lα!∏
0≤β≤t

r
(α)
β !

mα!∏
0≤β≤t

s
(α)
β !

,

the sum running over all sets of integers k, q−1, ..., qt, q̄−1, ..., q̄t ∈ N, k ≤ p, and all sets of ele-

ments (r
(−1)
• ; s

(−1)
• ), ..., (r

(t)
• ; s

(t)
• ) ∈ P satisfying, in addition to the above equalities, (r

(−1)
• ; 0•) ∈

Pq−1(l− k; 0•), (0•; s
(−1)
• ) ∈ Pq̄−1(0•;m− k) and (r

(α)
• ; 0•) ∈ Pqα(lα; 0•), (0•; s

(α)
• ) ∈ Pq̄α(0•;mα)

for 0 ≤ α ≤ t.

Proof. From (17) and Theorem 5.6 we obtain

socJl = Ll =
⋂

f∈Ξ1(Jl)

kerf =

(
t⊗

α=0

(V ∗α+1/V
∗
α )⊗lα

)
⊗ Vl;m ⊗

(
t⊗

α=0

(V̄α+1/V̄α)⊗mα

)
.
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We have a corresponding decomposition of Jl•,l;m,m• , whose tensorands are essential extensions
of the respective tensorands of socJl•,l;m,m• :

Jl•,l;m,m•
∼=

(
t⊗

α=0

Jlα,0;0•

)
⊗ Jl;m ⊗

(
t⊗

α=0

J0•;0,mα

)
. (24)

We can split the proof of the proposition into two steps: first, verify the statement for each
of the above tensorands, and second, show that the tensor product of the resulting filtrations
yields the claimed socle filtration of Jl. For both steps, we use Künneth-type products of the
socle fitrations of the relevant tensorands. The key observation is that no simple constituent
descends to a layer lower than expected. This follows from the density statement of Lemma 5.8
which allows us to apply Proposition 2.11,(c) to the ideals glMα and to the relevant extensions.

The three types of elements in P1(l), given as (i),(ii),(iii) in Lemma 5.13, correspond to the
types (i),(ii),(iii) of morphisms in Ξ1(Jl) (see the discussion under Definition 5.5). The modules
of type Jlα,0;0• can only be the domain of morphisms of type (i). By (22), the set Pq(lα, 0; 0•)

consists of elements of the form
lα∑
i=1

(1α+qi , 0; 0•) with q1, ..., qlα ∈ N satisfying
∑

j qj = q. We

have

socq+1Jlα,0;0• =
⊕

q1+...+qlα=q

lα⊗
i=1

socqi+1(V ∗/V ∗α ) =
⊕

q1+...+qlα=q

lα⊗
i=1

V ∗α+qi+1/V
∗
α

=
⋂

f∈Ξq+1(Jlα,0;0• )

kerf ,

socq+1Jlα,0;0•
∼=

⊕
q1+...+qlα=q

lα⊗
i=1

socqi+1(V ∗/V ∗α ) ∼=
⊕

q1+...+qlα=q

lα⊗
i=1

V ∗α+qi+1/V
∗
α+qi

∼=
⊕

(k•,0;0•)∈Pq(lα,0;0•)

 lα!∏
α≤β≤t

kβ!

 · Lk•,0;0• .

The situation with the modules J0•;0,mα is completely analogous, with Ξq(J0•;0,mα) consisting
of superpositions of morphisms of type (ii). The tensorand Jl;m can be the domain of all three
types (i),(ii),(iii) of morphisms in Ξ1(Jl;m), as long as both l,m are nonzero. We handle the
morphisms of type (iii) involving V ∗ ⊗ V̄ using Example 5.1.

As indicated above, Proposition 2.11 implies that the socle filtration of Jl•,l;m,m• is obtained
as the Künneth product of the socle filtrations of the three modules Jl•,0;0• , Jl;m, J0•;0,m• . The
formula for the multiplicities follows by a standard counting argument.

Next we turn our attention to the socle filtrations of the modules Jλ for λ = (λ•, λ;µ, µ•) ∈
Λ defined in (13). It was shown in Theorem 5.6 that Jλ is an essential extension of the simple
module Lλ. We observe that Jλ splits as a tensor product along the individual diagrams in λ:

Jλ = Jλ;∅ ⊗ J∅;µ ⊗ (
t⊗

α=0

Jλα,∅;∅ ⊗ J∅;∅,µα) .

With this in mind we shall successively compute the socle filtrations of Jλα,∅;∅, Jλ•,λ;∅ and
Jλ•,λ;µ,µ• .
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Lemma 5.15. Let λ• = (λt, ..., λ−1) ∈ Λt+2. Then the length of the socle filtration of Jλ•;∅• is
1 + q(|λ•|;0•) and the layers are

socq+1Jλ•;∅•
∼=

⊕
κ•∈Λt+2:(|κ•|;0•)∈Pq(|λ•|;0•)

zλ•κ• · Lκ•;∅• ,

where

zλ•κ• :=
∑

ρ−1
• ,...,ρt•∈Λt+2:(|ρβ• |;0•)∈P

jβ (|λβ |;0•),
∑
jβ=q

(
t∏

β=−1

N
λβ

ρββρ
β
β+1...ρ

β
t

)
Nκ•
ρ−1
• ...ρt•

.

Proof. The lemma is a reformulation of [ChP2017, Proposition 4.30] in our notation. The proof
is done in steps, first observing that for every β ∈ {−1, ..., t}

socq+1Jλβ ;∅•
∼=

⊕
ρ•∈Λt+2:(|ρ•|;0•)∈Pq(|λβ |;0•)

N
λβ
ρβ ...ρt · Lρ•;∅• ,

and then using the decomposition

socq+1Jλ•;∅•
∼=

⊕
j−1+...jt=q

t⊗
β=−1

socjβ+1Jλβ ;∅• .

Note that the sets Pjβ(|λβ|; 0•) and Pq(|λ•|; 0•) are described in the proof of Proposition 5.14.

Working towards the socle filtration of Jλ•,λ;µ,µ• , the decomposition Jλ•,λ;µ,µ• = Jλ•,λ;∅ ⊗
J∅;µ,µ• leads us to consider, for k ∈ Z≥0, the semisimple glM -module

Zk+1
λ•,λ;µ,µ•

:=
⊕

i+j=k

soc(soci+1Jλ•,λ;∅ ⊗ socj+1J∅;µ,µ•)

∼=
⊕

(κ•,κ;ν,ν•)∈Λ:(|κ•|,|κ|;|ν|,|ν•|)∈Pi(|λ•|,|λ|;0,0•)×Pj(0•,0;|µ|,|µ•|),i+j=k
zλ,λ•κ,κ• z

µ,µ•
ν,ν• · Lκ•,κ;ν,ν•

(25)

whose decomposition is derived from Lemma 5.15 and Proposition 5.12.

Proposition 5.16. Let λ = (λ•, λ;µ, µ•) ∈ Λ. Then

socq+1Jλ•,λ;µ,µ•
∼=
⊕
j+k=q

⊕
ξ,η∈Λ

Hom(Vξ;η, socj+1(V∗λ ⊗ Vµ))⊗ Zk+1
λ•,ξ;η,µ•

∼=
⊕

κ=(κ•,κ;ν,ν•)∈Λ:|κ|∈Pq(|λ|)

(∑
ξ,η∈Λ

zξ,λ•κ,κ•h
λ;µ
ξ;η z

η,µ•
ν,ν•

)
· Lκ•,κ;ν,ν• .

Proof. From Theorem 5.6 we know that Jλ is indecomposable with simple socle Lλ. By (17),
Jλ appears as a direct summand in the module J|λ|. Furthermore, by Proposition 5.14, the
layer socq+1J|λ| is a direct sum of modules of the form Lk with k ∈ Pq(|λ|). In turn, each Lk
decomposes as a direct sum of modules of the form Lκ with κ ∈ Λ, |κ| = k. Hence socq+1Jλ
consists exactly of the simple subquotients of Jλ of isomorphic to some Lκ with |κ| ∈ Pq(|λ|).
It remains to compute the multiplicity with which Lκ occurs as a subquotient of Jλ. To this
end, we start with the decomposition Jλ•,λ;µ,µ• = Jλ•,λ;∅• ⊗ J∅•;µ,µ• . The socle filtrations of the
two tensorands are obtained from Lemma 5.15. The tensor products of simple modules are
described in Proposition 5.12, and the formula for the multiplicities follows immediately.
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5.2.5 The socle filtrations of the modules Iλ•,λ;µ,µ• and Il•,l;m,m•

Proposition 5.17. The socle filtration of the module I = lim
→
SkQ defined in (8) is infinite and

exhaustive: for q ∈ N the (q + 1)-st layer is given by

socq+1I ∼=
⊕

j+|ζ|=q

socj+1Jζ,∅;∅,ζ ∼=
⊕

j+|ζ|=j

Zj+1
ζ,∅;∅,ζ .

Proof. The socle filtration of a direct limit of modules of finite length is always exhaustive. The
layers of the defining filtration of I are (see formula (9))

SkQ/Sk−1Q ∼= Sk(V ∗/V∗ ⊗ V̄ /V ) = SkJ1,0;0,1
∼=
⊕
|ζ|=k

Jζ,∅;∅,ζ .

By Proposition 5.16 we have

socj+1(SkQ/Sk−1Q) ∼=
⊕
|ζ|=k

Zj+1
ζ,∅;∅,ζ .

This yields a filtration of I with layers as indicated in our statement. To show that this is the
socle filtration, it remains to show that no simple constituent appears in a socle lower than
expected. It suffices to prove the statement for the submodule SkQ ⊂ I, and we will do this
by induction on k. The case k = 0 is trivial. By Theorem 5.6 we have

soc(SkQ/Sk−1Q) ∼= soc(SkJ1,0;0,1) ∼=
⊕
|ζ|=k

Lζ,∅;∅,ζ . (26)

On the other hand, we have the finite filtration K = I0,0 ⊂ I1,1 ⊂ ... ⊂ I t+1,t+1 = I following
from the definition of Ir,s in (10). The submodule I1,1 ⊂ I has the module (26) as the k + 1-
st layer of its defining filtration I1,1 = lim

k→∞
SkQ1,1. Note that for I1,1 the defining filtration

coincides with its socle filtration, i.e.,

sock+1(I1,1) ∼= Sk(V ∗1 /V∗ ⊗ V̄1/V ) ∼=
⊕
|ζ|=k

Lζ,∅;∅,ζ .

It follows that soc(SkQ/Sk−1Q) ⊂ sock+1I and, by induction on j, socj+1(SkQ/Sk−1Q) ⊂
socj+k+1I. This completes the proof.

Proposition 5.18. For (λ•, λ;µ, µ•) ∈ Λ the layers of the socle filtration of Iλ•,λ;µ,µ• are

socq+1(Jλ•,λ;µ,µ• ⊗ I) ∼=
⊕
j+k=q

socj+1Jλ•,λ;µ,µ• ⊗ sock+1I

∼=
⊕

i+j+k+|ζ|=q

Hom(Vξ;η, soci+1(V∗λ ⊗ Vµ))⊗ Zj+1
λ•,ξ;η,µ•

⊗ Zk+|ζ|+1
ζ,∅;∅,ζ

ξ,η,ζ∈Λ

∼=
⊕

|λ|−|ξ|+j+k=q

hλ;µ
ξ;η · Z

j+1
λ•,ξ;η,µ•

⊗ Zk+|ζ|+1
ζ,∅;∅,ζ ,

ξ,η,ζ∈Λ

where the numbers hλ;µ
ξ;η are defined in (12).
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Proof. The socle filtrations of Jλ•,λ;µ,µ• and I are described in Propositions 5.16 and 5.17,
respectively. All simple subquotients of I have the property that their tensor products with
semisimple tensor modules are semisimple and their tensor products with essential extensions
yield essential extensions. The implies the first line in the above formula. The rest follows from
the expressions for socj+1Jλ•,λ;µ,µ• and sock+1I given in Propositions 5.16 and 5.17.

Corollary 5.19. For l = (l•, l;m,m•) ∈ P the socle filtration of Il, and its layers, are

socq+1Il =
⋂

f∈Ξq+1(Il)

kerf , socq+1Il ∼=
⊕
j+k=q

socj+1Jl ⊗ sock+1I .

Consequently, Hom(Lk, socq+1Il) 6= 0 implies k ∈ Pq(l).

Proof. The statement on the layers follows from 5.18 and the decompositions of Il and Jl
given in (17). The last statement of the corollary follows immediately. The expression for
socq+1Il =

⋂
f∈Ξq+1(Il)

kerf is then deduced by induction using (22) (applied for the poset P(l)),

by an argument similar to the one applied for socq+1Jl in Proposition 5.14.

5.3 Order on the category Tt

Theorem 5.20. The category Tt is an ordered Grothendieck category with order-defining objects

Il = I ⊗ Jl , l ∈ P ,

parametrized by the poset P of Definition 5.2, see (15). The socles of the order-defining objects
are given by

socIl = socJl = Ll ∼=
⊕
λ∈Sl

Kλ ⊗ Lλ

where Sl := {λ ∈ Λ : |λ| = l}.

Proof. We need to check the axioms (a)-(f) of Definition 4.1. Let l = (l•, l;m,m•) ∈ P . The
socle filtration of Il is determined in Corollary 5.19. In particular, we obtain the claimed
expressions for socIl (see also (17)). Therefore, axioms (a) and (e) are satisfied. Axiom (b)
holds by the definition of T. Axiom (c) holds with the above set Sl, in view of Theorem 5.10.
Axiom (d) holds because of Corollary 5.19. The family of morphisms required in axiom (f),
for k ≺ l, consists of f : Il → Ik such that f ∈ Ξq(Il), where q is the unique integer such that
k ∈ Pq(l).

Corollary 5.21. The map λ 7→ Lλ induces a bijection of Λ with the set of isomorphism classes
of simple objects in the category T. Furthermore, Iλ is an injective hull of Lλ, and the modules
Iλ, λ ∈ Λ, exhaust (up to isomorphism) the indecomposable injectives of T.

Proof. The statement follows immediately from Theorem 5.20 and Proposition 4.1.

Our next goal is to determine injective resolutions of the simple objects Lλ = Lλ•,λ;µ,µ• in
the category T. As an intermediate step we shall solve the same problem for Lλ•,λ;∅ in the
category T(V ∗), or, analogously, L∅•;µ,µ• in T(V̄ ). The general solution will be constructed in
§5.5 with these ingredients, along with the resolutions of L∅•,λ;µ,∅• = Vλ,µ given in Theorem 5.5.
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5.3.1 An involution on Λ

We introduce here some symmetries of the set Λ that will be useful in the descriptions of
injective resolutions of simple objects. For any sequence λ• of Young diagrams, we denote by
λ⊥• the sequence whose terms are the conjugates λ⊥α of the terms of λ•. We denote by λe⊥• and
λo⊥• the sequences, where only the diagrams with even, respectively odd, index α are replaced
by their conjugates, while the odd, respectively even, terms remain unchanged. For an element
λ = (λ•, λ;µ, µ•) ∈ Λ, we set λe⊥o := (λe⊥• , λ;µ⊥, µo⊥• ). Clearly this defines an involution on
Λ.

5.4 The category T(V ∗)

Recall that T(V ∗) is the smallest full tensor Grothendieck subcategory of Tt containing V ∗ and
closed under taking subquotients. In this section we use the notation l• = (l−1, ..., lt) ∈ Nt+2,
as in Remark 5.1.

Definition 5.6. Let Pleft be the poset with underlying set Nt+2 and the following partial order:

l• � l′• ⇐⇒ |l•| = |l′•|∑
α≥β lα ≥

∑
α≥β l

′
α ∀β .

Remark 5.3. The underlying set of Pleft is included in the underlying set N2(t+2) of both posets
P and P as the set of elements (l•; 0•) with l• ∈ Nt+2. The partial order on Pleft coincides
with the restrictions of both partial orders of P and P. Analogously, we define a poset Pright

(isomorphic to Pleft) as the set of elements of P of the form (0•;m•) with m• ∈ Nt+2, with the
restricted order from P or P.

Theorem 5.22. ([ChP2017, § 4.2])
The category T(V ∗) is an ordered Grothendieck category with order-defining objects

Jl•;∅ =
t⊗

α=−1

(V ∗/V ∗α )⊗lα ,

parametrized by the poset Pleft. Moreover,

socJl•;∅ = Ll•;∅
∼=

⊕
λ•∈Λleft:|λ•|=l•

Kλ• ⊗ Lλ•;∅ .

The simple objects and the indecomposable injectives of T(V ∗) are, up to isomorphism, the
modules Lλ•;∅ and Jλ•;∅ with λ• ∈ Λleft, respectively.

Remark 5.4. The following properties hold in the category T(V ∗):

1. Any tensor product of semisimple modules is semisimple.

2. Any tensor product of injective modules is injective.

3. The pure simple modules are, up to isomorphism, exactly the modules of the form (V ∗α+1/V
∗
α )λ

with λ ∈ Λ and α ∈ {−1, 0, ..., t}.
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5.4.1 Injective resolutions of simple objects in T(V ∗)

Proposition 5.23. For any Young diagram λ and α ∈ {−1, 0, ..., t}, there is an injective
resolution in T(V ∗) of the simple glM -module (V ∗α+1/V

∗
α )λ of length 0 if α = t, and length |λ| if

α < t. In the latter case, this resolution is

0→ (V ∗α+1/V
∗
α )λ → I0((V ∗α+1/V

∗
α )λ)→ I1((V ∗α+1/V

∗
α )λ)→ ...→ I |λ|((V ∗α+1/V

∗
α )λ)→ 0 ,

with

I0((V ∗α+1/V
∗
α )λ) = (V ∗/V ∗α )λ ,

I1((V ∗α+1/V
∗
α )λ) = (V ∗/V ∗α+1)⊗ (

⊕
σ∈Λ:Nλ

σ(1)
=1

(V ∗/V ∗α )σ) ,

Ij((V ∗α+1/V
∗
α )λ) =

⊕
σ,τ∈Λ:|τ |=j

Nλ
στ⊥ · (V

∗/V ∗α+1)τ ⊗ (V ∗/V ∗α )σ ,

I |λ|((V ∗α+1/V
∗
α )λ) = (V ∗/V ∗α+1)λ⊥ .

Proof. The result is proven in [ChP2019] under the assumption that t = 0, but this assumption
is inessential.

Theorem 5.24. Let λ• ∈ Λleft. There exists an injective resolution of the simple module Lλ•;∅
in T(V ∗) of length equal to ||λ•<t || =

∑
−1≤α<t

|λα|. The decomposition of the k-th term of this

resolution into indecomposable injective direct summands is

Ik(Lλ•;∅) ∼=
⊕

κ•∈Λleft:k
λ•
κ•=k

pλ•κ• · Jκ•;∅ ,

where

kλ•κ• :=
∑

0≤α≤t

(α + 1)(|κα| − |λα|) , pλ•κ• :=
∑

σ•,τ•∈Λleft:σt=τ−1=∅

Nκt
λtτt

∏
−1≤α<t

Nλα
σατ⊥α+1

Nκα
σατα . (27)

The last nonzero term of the resolution is

I ||λ•<t ||(Lλ•;∅) ∼= (V ∗/V ∗t )λt ⊗

( ⊗
−1≤α<t

(V ∗/V ∗α+1)λ⊥α

)
,

and this term is an indecomposable glM -module if and only if λt = ∅ or λt−1 = ∅.

Proof. The category T(V ∗) has the property that the tensor product of injective modules is
injective and the tensor product of semisimple modules is semisimple. Thus we can apply
Lemma 4.2, which yields the first line in the formula below; the second line follows from
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Proposition 5.23, and the rest follows by standard rules for tensor products:

Ik(Lλ•;∅) ∼=
⊕

j−1+j0+...+jt=k

⊗
−1≤α≤t

Ijα(Lλα;∅)

∼= (V ∗/V ∗t )λt ⊗ (
⊕

j−1+...+jt−1=k

⊗
−1≤α≤t−1

⊕
σ,τ∈Λ:|τ |=jα

Nλ
στ⊥ · (V

∗/V ∗α+1)τ ⊗ (V ∗/V ∗α )σ)

∼= (V ∗/V ∗t )λt ⊗ (
⊕

σ•,τ•∈Λleft:σt=τ−1=∅,||τ•||=k

⊗
−1≤α≤t

Nλ
σατ⊥α+1

· (V ∗/V ∗α )τα ⊗ (V ∗/V ∗α )σα)

∼=
⊕

κ•∈Λleft

 ∑
σ•,τ•∈Λleft:σt=τ−1=∅,||τ•||=k

Nκt
λtτt

t−1∏
α=−1

Nλα
σατ⊥α+1

Nκα
σατα

 · Jκ•;∅ .
To obtain the explicit form of the coefficients pλ•κ• stated in (27), it remains to show that the
condition ||τ•|| = k appearing above can be substituted by the condition k = kλ•κ• . We claim
that pλ•κ• 6= 0 implies the following:

1. |λ•| � |κ•| in the poset Pleft;

2. supp(κ•) ⊂ supp(λ•) ∪ (1 + supp(λ•));

3. every nonvanishing summand in the defining formula for pλ•κ• arises for σ•, τ• satisfying
||τ•|| = kλ•κ• .

Indeed, the nonvanishing of a summand of pλ•κ• implies |τt| = |κt| − |λt|, since Nκt
λtτt
6= 0, and

|τα| = |κα|−|λα|+|τα+1| for −1 ≤ α < t since Nλα
σατ⊥α+1

Nκα
σατα 6= 0. Now part 3 of the claim follows

by induction on t. Parts 1 and 2 are trivial to verify. The statement on the injective dimension
and the last nonzero term of the injective resolution follows immediately. This completes the
proof.

The above theorem allows us to compute the dimensions of the Ext-spaces of pairs of simple
objects in T(V ∗).

Corollary 5.25. Let κ•, λ• ∈ Λleft. Then

dim ExtkT(V ∗)(Lκ•;∅, Lλ•;∅) =

{
pλ•κ• if k = kλ•κ• ,

0 otherwise.

In the next corollary we encounter a new family of modules, whose socle filtrations relate
to the injective resolutions of simple modules given in Theorem 5.24. For (l•;m•) ∈ P and
(λ•;µ•) ∈ Λ, we denote

Ml•;m• := (V ∗/V ∗t )⊗lt ⊗
(

t−1⊗
α=−1

(V ∗α+2/V
∗
α )⊗lα

)
⊗
(

t−1⊗
α=−1

(V̄α+2/V̄α)⊗mα
)
⊗ (V̄ /V̄t)

⊗mt ,

Mλ•;µ• := (V ∗/V ∗t )λt ⊗
(

t−1⊗
α=−1

(V ∗α+2/V
∗
α )λα

)
⊗
(

t−1⊗
α=−1

(V̄α+2/V̄α)µα

)
⊗ (V̄ /V̄t)µt .

(28)

Corollary 5.26. For κ•, λ• ∈ Λleft and k ≥ 0,

dim ExtkT(V ∗)(Lκo⊥• ;∅, Lλo⊥• ;∅) = dim ExtkT(V ∗)(Lκe⊥• ;∅, Lλe⊥• ;∅) = dim Hom(Lκ• , sock+1(Mλ•;∅)) ,

where Mλ•;∅ is defined in (28).
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Proof. First we compute the socle filtration of Mλ•;∅. Since Mλ•;∅ = ⊗αMλα;∅, we have

sock+1(Mλ•;∅)
∼= (V ∗/V ∗t )λt ⊗

 ⊕
j−1+...+jt−1=k

⊗
−1≤α<t

socjα+1((V ∗α+2/V
∗
α )λα)



∼= Lλt;∅ ⊗


⊕

j−1+...+jt−1=k

⊗
−1≤α<t


⊕

σ, τ ∈ Λ
|τ | = jα

Nλα
στ · (V ∗α+2/V

∗
α+1)τ ⊗ (V ∗α+1/V

∗
α )σ




∼=

⊕
κ•∈Λleft

 ∑
σ•,τ•∈Λleft,σt=τ−1=∅,||τ•||=k

Nκt
λtτt

∏
−1≤α<t

Nλα
σατα+1

Nκα
σατα

 · Lκ•;∅.
On the other hand, we apply Corollary 5.25 to compute p

λo⊥•
κo⊥•

= dim ExtkT(V ∗)(Lκo⊥• ;∅, Lλo⊥• ;∅),

the case of ExtkT(V ∗)(Lκe⊥• ;∅, Lλe⊥• ;∅) being analogous. We also assume t to be even, the odd case
being similar. In the calculation below, we begin by replacing the product over {−1, 0, ..., t}
in the formula for p

λo⊥•
κo⊥•

by a product over the even indices of twofold products of the respec-

tive consecutive terms. The subsequent manipulations follow by standard properties of the
Littlewood-Richardson numbers. We obtain

dim ExtkT(V ∗)(Lκo⊥• ;∅, Lλo⊥• ;∅) =
∑

σ•, τ• ∈ Λleft

σt=τ−1=∅,||τ•||=k

∏
−1 ≤ α < t
α odd

N
λ⊥α
σατ⊥α+1

Nκ⊥α
σαταN

λα+1

σα+1τ⊥α+2
Nκα+1
σα+1τα+1

=
∑

σ•, τ• ∈ Λleft

σt=τ−1=∅,||τ•||=k

∏
−1 ≤ α < t
α odd

Nλα
σ⊥α τα+1

Nκα
σ⊥α τ

⊥
α
N
λα+1

σα+1τ⊥α+2
Nκα+1
σα+1τα+1

=
∑

σ•, τ• ∈ Λleft

σt=τ−1=∅,||τ•||=k

∏
−1 ≤ α < t
α odd

Nλα
σατα+1

Nκα
σαταN

λα+1
σα+1τα+2

Nκα+1
σα+1τα+1

= dim Hom(Lκ• , sock+1(Mλ•;∅)) .

5.5 Injective resolutions of simple objects in Tt

Proposition 5.27. An injective resolution of the trivial module K = L∅;∅ in the category T is
given by

0→ K→ I
ψ0→ I ⊗ F ψ1→ I ⊗ Λ2F

ψ2→ ...
ψj−1→ I ⊗ ΛjF

ψj→ ...,

where F := V ∗/V∗ ⊗ V̄ /V = J1,0;0,1, ψ0 = ψ, and the j-th map is defined as the direct limit
ψj := lim

k→∞
ψkj of the morphisms

ψkj : SkQ⊗ ΛjF
∆k

1⊗id
−→ Sk−1Q⊗Q⊗ ΛjF

id⊗π⊗id−→ Sk−1Q⊗ F ⊗ ΛjF
id⊗multiplyΛ•F−→ Sk−1Q⊗ Λj+1F .
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The j-th term IjT(K) := I ⊗ ΛjF of this resolution decomposes into a direct sum of indecom-
posable injectives as

IjT(K) ∼=
⊕

ζ∈Λ:|ζ|=j

Iζ,∅;∅,ζ⊥

Proof. The proposition is proven in [ChP2021, § 3.5] for t = 0, but this assumption is not
necessary.

Corollary 5.28. For λ ∈ Λ and j ∈ N we have

ExtjT(Lλ,K) =

{
K if λ = (ζ, ∅; ∅, ζ⊥) with |ζ| = j,

0 otherwise.

Theorem 5.29. Let λ = (λ•, λ;µ, µ•) ∈ Λ. There is an injective resolution of the simple
module Lλ in T, with k-th term

IkT(Lλ•,λ;µ,µ•) :=
⊕

i+ j + l +m = k
ξ, η ∈ Λ

I iT(K)⊗ ExtjT(V∗,V )(Vξ,η, Vλ;µ)⊗ I lT(V ∗)(Lλ•,ξ;∅)⊗ ImT(V̄ )(L∅;η,µ•)

∼=
⊕

(κ•,κ;ν,ν•)∈Λ:kλ•,λ;µ,µ•
κ•,κ;ν,ν• =k

( ∑
ξ,η,ζ,ρ,θ∈Λ

pξ,λ•κ,ρ,κ•>0
Nκ0
ρζm

λ;µ
ξ;ηN

ν0

θζ⊥
pη,µ•ν,θ,ν•>0

)
· Iκ•,κ;ν,ν• ,

where kλ•,λ;µ,µ•
κ•,κ;ν,ν• := |λ| − |κ|+

∑
0≤α≤t

(α + 1
2
)(|κα| − |λα|+ |να| − |µα|).

Proof. Let us first establish the relation between the two expressions for IkT(Lλ•,λ;µ,µ•). The
building blocks of the first expression are computed, respectively, in Theorem 5.24 for the
injective resolutions of the “one-sided” modules Lλ•,λ;∅• and L∅•;µ,µ• in the respective categories
T(V ∗) and T(V̄ ), Proposition 5.27 for the resolution of K in T, and Theorem 5.5 for the
resolution of Vλ;µ in T(V∗, V ). Compiling the coefficients from these building blocks we obtain

IkT(Lλ) ∼=
⊕

(κ•,κ;ν,ν•)∈Λ

 ∑
ξ,η,ζ,ρ,θ∈Λ

|λ|−|ξ|+|ζ|+kξ,λ•κ,ρ,κ•>0
+kη,µ•ν,θ,ν•>0

=k

pξ,λ•κ,ρ,κ•>0
Nκ0
ρζm

λ;µ
ξ;ηN

ν0

θζ⊥
pη,µ•ν,θ,ν•>0

 · Iκ•,κ;ν,ν• ,

and observe that the equality |λ| − |ξ| + |ζ| + kξ,λ•κ,ρ,κ•>0
+ kη,µ•ν,θ,ν•>0

= kλ•,λ;µ,µ•
κ•,κ;ν,ν• holds whenever

pξ,λ•κ,ρ,κ•>0
Nκ0
ρζm

λ;µ
ξ;ηN

ν0

θζ⊥
pη,µ•ν,θ,ν•>0

6= 0. This establishes the equivalence of our two expressions.

The modules IkT(Lλ) are injective since, by Corollary 5.21, the modules Iκ for κ ∈ Λ are
indecomposable injectives in T. To show that we have the desired resolution, it remains to
construct an exact sequence of morphisms yk,λ : IkT(Lλ)→ Ik+1

T (Lλ), with kery0,λ = Lλ.
We consider the triple Künneth product with k-th term

IkT(Lλ•,λ;∅• ⊗ L∅•;µ,µ•) :=
⊕

i+j1+j2=k

I iT(K)⊗ Ij1T(V ∗)(Lλ•,λ;∅•)⊗ I
j2
T(V̄ )

(L∅•;µ,µ•) , (29)

and we let gk,λ : IkT(Lλ•,λ;∅• ⊗ L∅•;µ,µ•) → Ik+1
T (Lλ•,λ;∅• ⊗ L∅•;µ,µ•) be its k-th map. We have

kerg0,λ = Lλ•,λ;∅• ⊗ L∅•;µ,µ• , and hence (29) is an injective resolution of Lλ•,λ;∅• ⊗ L∅•;µ,µ• in T.
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We shall modify this resolution into a resolution of the simple module Lλ•,λ;µ,µ• using the fact
that, by Proposition 5.12,

Lλ•,λ;µ,µ• = soc(Lλ•,λ;∅• ⊗ L∅•;µ,µ•) ∼= Lλ•,∅;∅,µ• ⊗ soc(Lλ;∅ ⊗ L∅;µ) .

We note that for every ξ, η ∈ Λ such that mλ;µ
ξ;η 6= 0 and kλ;µ

ξ;η = 1 we have mλ;µ
ξ;η = 1. Thus⊕

ξ,η∈Λ:kλ;µ
ξ;η =1

mλ;µ
ξ;η · I

0
T(Lλ•,ξ;∅• ⊗ L∅•;η,µ•) ∼=

⊕
ξ,η∈Λ:mλ;µ

ξ;η =kλ;µ
ξ;η =1

Iλ•,ξ;η,µ• .

Let
wλ := (

⊕
f∈Ξ1(Iλ•,λ;µ,µ• ) of type (iii)

f) : Iλ →
⊕

ξ,η∈Λ:mλ;µ
ξ;η =kλ;µ

ξ;η =1

Iλ•,ξ;η,µ• .

We obtain a morphism

y0,λ = g0,λ ⊕ wλ : I0
T(Lλ•,λ;µ,µ•)→ I1

T(Lλ•,λ;µ,µ•) (30)

with the properties kery0,λ
∼= Lλ•,λ;µ,µ• and imy0,λ ∩ I0

T(Lλ•,ξ;∅• ⊗ L∅•;η,µ•)
∼= Lλ•,ξ;η,µ• . We

proceed to define

y1,λ := g1,λ ⊕ (
⊕

ξ,η∈Λ:mλ;µ
ξ;η =kλ;µ

ξ;η =1

y0,(λ•,ξ;η,µ•))

and, more generally,

yk,λ := (
⊕

ξ,η∈Λ:0≤kλ;µ
ξ;η ≤k

(gk−kλ;µ
ξ;η ,(λ•,ξ;η,µ•)

)⊕m
λ;µ
ξ;η )⊕ (

⊕
ξ,η∈Λ:kλ;µ

ξ;η =k

(w(λ•,ξ;η,µ•))
⊕mλ;µ

ξ;η ) .

It follows by induction on |λ∩ µ⊥| (which is the injective length of Vλ;µ in T(V∗, V )), using the
Koszulity of the category T(V∗, V ), that the morphisms yk,λ form an exact sequence.

Corollary 5.30. Let (λ•, λ;µ, µ•), (κ•, κ; ν, ν•) ∈ Λ. Then, for k ≥ 0,

dim ExtkT(Lκ•,κ;ν,ν• , Lλ•,λ;µ,µ•) =

=
∑

ξ,η,ζ,ρ,θ∈Λ

|λ|−|ξ|+|ζ|+kξ,λ•κ,ρ,κ•>0
+kη,µ•ν,θ,ν•>0

=k

pξ,λ•κ,ρ,κ•>0
Nκ0
ρζm

λ;µ
ξ;ηN

ν0

θζ⊥
pη,µ•ν,θ,ν•>0 .

If ExtkT(Lκ•,κ;ν,ν• , Lλ•,λ;µ,µ•) 6= 0 then k = kλ•,λ;µ,µ•
κ•,κ;ν,ν• .

6 The category Tt

Recall Proposition 3.1 which states that the glM -module I is endowed with a structure of
a commutative algebra via the isomorphism I ∼= S•Q/(1 − ι(1)). Generalizing a concept
introduced in [ChP2021], we define a category Tt as follows. An object of Tt is any object of
Tt isomorphic as a glM -module to a tensor product I⊗M for some M in Tt. In addition to their
glM -module structure, the objects of Tt are free I-modules with respect to left multiplication
by elements of I. The morphisms in Tt are, by definition, morphisms of glM -modules which
are also morphisms of I-modules, i.e., commute with the action of I. The category Tt is a
tensor category with respect to ⊗I . Since t is fixed, we put T = Tt. Note that the functor
I ⊗ • : T → T is left adjoint to the forgetful functor T → T. The simple objects in T are
related to those in T as follows.
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Theorem 6.1. ([ChP2021, Theorem 3.24]) The simple objects in T are exactly the modules
of the form I ⊗ L with L - a simple object in T. Furthermore, each simple object in T has
endomorphism algebra isomorphic to K.

Consequently, the isomorphism classes of simple objects in T are parametrized by the set
Λ = Λ2(t+2) of 2(t+ 2)-tuples of Young diagrams, with representatives (see (13))

Kλ = I ⊗ Lλ , λ ∈ Λ .

The proof given in [ChP2021] is independent of the assumption t = 0 made in that article.

Proposition 6.2. There is a surjective morphism of glM -modules

Ip : (I ⊗ V ∗)⊗I (I ⊗ V̄ )→ I .

Proof. The claimed morphism is the following composition

(I ⊗ V ∗)⊗I (I ⊗ V̄ ) ∼= I ⊗ (V ∗ ⊗ V̄ )
id⊗π̃−→ I ⊗Q multiply−→ I .

It is surjective, since K ∼= q ⊂ Q.

Proposition 6.3. Let λ = (λ•, λ;µ, µ•) ∈ Λ. The injective object Iλ has finite length in T.
The socle filtration of Iλ in T has length 1 + q(|λ|) and its layers are

socq+1
T Iλ•,λ;µ,µ• = I ⊗ socq+1

T Jλ•,λ;µ,µ•

∼=
⊕
j+k=q

⊕
ξ,η∈Λ

Hom(Vξ,η, socj+1
T (Vλ;∅ ⊗ V∅;µ))⊗ I ⊗ Zk+1

λ•,ξ;η,µ•

∼=
⊕
j+k=q

⊕
ξ,η∈Λ:|λ|−|ξ|=j

hλ;µ
ξ;η · I ⊗ Z

k+1
λ•,ξ;η,µ•

,

where Zk+1
λ•,ξ;η,µ•

are the glM -modules defined in (25) and hλ;µ
ξ;η are the numbers defined in (12).

Proof. Note that the finiteness of the length of Iλ follows from the proposed description of the
socle filtration, because the multiplicities of simple objects in the (finitely many) socle layers
are finite. Next, recall that the socle filtration of Iλ as a glM -module is known from Proposition
5.18. Theorem 6.1 allows us to determine the simple subquotients of Iλ in T and observe that
they correspond to the simple subquotients of Jλ in T. To prove the first line of the formula
claimed in the theorem, it remains to show that the number of the layer in which a given simple
subquotient of Jλ appears remains the same for the respective simple subquotient of Iλ in T.
This holds, since socTIκ = Lκ for every κ ∈ Λ, and the T-socle filtration of Iλ is subordinate
to the T-socle filtration. This implies the first line, and the rest follows from Proposition 5.16
describing socq+1

T Jλ.

We are now ready to prove the following generalization of [ChP2021, Proposition 3.25] where
the result is obtained for t = 0.

Theorem 6.4. The category T is an ordered Grothendieck category with order-defining objects
Il, l ∈ P, parametrized by the poset P of Definition 5.3. The isomorphism classes of simple
objects in T are parametrized by the set Λ, with representatives Kλ, λ ∈ Λ. The indecomposable
injectives are, up to isomorphism, Iλ for λ ∈ Λ. The socles of the order-defining objects are

socTIl = Kl =
⊕
λ∈Sl

Kλ ⊗Kλ ,

with Sl = {λ ∈ Λ : |λ| = l} as in Theorem 5.20.
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Proof. From Proposition 6.3 we deduce that

sock+1
T Il = I ⊗ sock+1

T Jl . (31)

Now, the theorem follows by arguments analogous to these in the proof of Theorem 6.4, using
the socle filtration of Jl determined in Proposition 5.14 where the layers correspond to indices

k
P

� l.

6.1 Tensor products of simple objects and a subcategory T of T

We make here some technical observations which will be used further on for the construction
of injective resolutions of simple objects in T.

Proposition 6.5. Let λ = (λ•, λ;µ, µ•), λ
′ = (λ′•, λ

′;µ′, µ′•) ∈ Λ. Then, for q ≥ 0, we have
socq+1

T (Kλ ⊗I Kλ′) ∼= I ⊗ socq+1
T (Lλ ⊗ Lλ′) and

socq+1
T (Kλ ⊗I Kλ′) ∼= I ⊗ socq+1

T (Lλ ⊗ Lλ′)
∼= Kλ•,∅;∅,µ• ⊗I Kλ′•,∅;∅,µ′• ⊗I socq+1

T (Kλ;µ ⊗I Kλ′;µ′)

∼= Kλ•,∅;∅,µ• ⊗I Kλ′•,∅;∅,µ′• ⊗I

 ⊕
κ,ν∈Λ:|λ|−|κ|=q

n
(λ;µ),(λ′;µ′)
(κ;ν) ·Kκ;ν


∼=

⊕
(κ•,κ,ν,ν•)∈Λ

(
Nκ•
λ•λ′•

n
(λ;µ),(λ′;µ′)
(κ;ν) Nν•

µ•µ′•

)
·Kκ•,κ;ν,ν• ,

where the numbers n
(λ;µ),(λ′;µ′)
(κ;ν) and Nκ•

λ•λ′•
are given respectively in Lemma 5.11 and Proposition

5.12.
In other words, the socle filtration of Kλ⊗I Kλ′ in T is determined by the socle fitration of

Lλ⊗Lλ′ in T. In particular, the analogues of parts (a),(c),(d),(e) of Proposition 5.12 hold for
Kλ ⊗I Kλ′.

Proof. The socle filtrations of the glM modules V∗λ ⊗ Vµ remain unaltered after restriction to
the ideal sl(V, V∗) ⊂ gl(V ), by Theorem 5.3. On the other hand, sl(V, V∗) acts trivially on
I. It follows from Proposition 2.11 that the claim holds for the socle filtration of a tensor
product of the form Kλ;∅ ⊗I K∅;µ′ . Now the general statement follows from Proposition 5.12 in
a straightforward manner.

Let T be the smallest full tensor Grothendieck subcategory of T containing the objects
K1;0 = I ⊗ V∗ and K0;1 = I ⊗ V and closed under taking subquotients.

Theorem 6.6. The categories T(V∗, V ) and T are equivalent under the functor I ⊗ •. This
functor is also determined by the universality property of T(V∗, V ) and the assignment V∗ 7→
K1;0, V 7→ K0;1, p 7→ (K1;0⊗IK0;1

∼= I⊗V∗⊗V
id⊗p→ I). In particular, T has the structure of an

ordered Grothendieck category, with order-defining objects Il;m for (l;m) ∈ N×N, parametrized
by the poset P from Definition 5.1. Representatives of the isomorphism classes of simple objects
and indecomposable injective objects of T are given respectively by Kλ;µ and Iλ;∅ ⊗I I∅;µ for
(λ;µ) ∈ Λ× Λ.
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Proof. The existence of the claimed functor is due to the universality property of T(V∗, V ),
cf. [PS2014],[ChP2019]. The fact that I ⊗ • fits exactly with the required assignment for
the universal functor is obvious. The verification that this functor defines an equivalence is
straightforward in view of Proposition 6.5.

Theorem 6.6 allows us to translate the results from Section 5.1 into results about the cate-
gory T. In particular, Theorem 5.5 yields the following.

Corollary 6.7. For λ, µ, ξ, η ∈ Λ and k ≥ 0, we have

dim ExtkT(Kξ;η, Kλ,µ) = dim ExtkT(V∗,V )(Vξ;η, Vλ,µ) = mλ;µ
ξ,η .

If this dimension is nonzero then k = kλ;µ
ξ;η = |λ| − |ξ| = |µ| − |η|.

6.2 Injective resolutions of simple objects in Tt

Theorem 6.8. Let λ = (λ•, λ;µ, µ•) ∈ Λ. There is an injective resolution of the simple object
Kλ in T, of length kλ := ||λ|| − (|λt|+ |µt|) and with k-th term

IkT(Kλ•,λ;µ,µ•)
∼=

⊕
i+j1+j2=k

⊕
ξ,η∈Λ:kλ;µ

ξ;η =i

mλ;µ
ξ;η ·

(
Ij1T (Kλ•,ξ;∅•)⊗I I

j2
T (K∅•;η,µ•)

)
∼=

⊕
i+j1+j2=k

⊕
ξ,η∈Λ:kλ;µ

ξ;η =i

mλ;µ
ξ;η · I ⊗ I

j1
T(V ∗)(Lλ•,ξ;∅•)⊗ I

j2
T(V̄ )

(L∅•;η,µ•)

∼=
⊕

(κ•,κ;ν,ν•)∈Λ:kλ•,λ;µ,µ•
κ•,κ;ν,ν• =k

(∑
ξ,η∈Λ

pξ,λ•κ,κ•m
λ;µ
ξ;η p

η,µ•
ν,ν•

)
· Iκ•,κ;ν,ν• ,

where kλ•,λ;µ,µ•
κ•,κ;ν,ν• is as in Theorem 5.29.

Proof. The strategy relays on the fact that the tensor product of injective objects in T is
injective, which allows us to apply Lemma 4.2.

We begin with the one-sided case, and the observation that the injective resolution of Lλ•,λ;∅•
in T(V ∗) (see Theorem 5.24) is transformed under the functor I⊗• into an exact sequence with
j-th term IjT(Kλ•,λ;∅•) := I⊗IjT(V ∗)(Lλ•,λ;∅•). The indecomposable injectives of T(V ∗) are of the
form Jκ•,κ;∅• , and hence I⊗• transforms them into indecomposable injectives of T, by Theorem
6.4. In particular, IjT(Kλ•,λ;∅•) is injective in T for all j, and the above exact sequence is an
injective resolution of Kλ•,λ;∅• in T. The case of IjT(K∅•;µ,µ•) := I⊗IjT(V̄ )

(L∅•;µ,µ•) is analogous.

By Lemma 4.2, the Künneth product of the resolutions of Kλ•,λ;∅• and K∅•;µ,µ• is a resolution
of Kλ•,λ;∅• ⊗I K∅•;µ,µ• with k-th term⊕

j1+j2=k

Ij1T (Kλ•,λ;∅•)⊗I I
j2
T (K∅•;µ,µ•) .

We have an analogous resolution of Kλ•,ξ;∅• ⊗I K∅•;η,µ• for ξ, η ∈ Λ such that mλ;µ
ξ;η , and we can

combine these resolutions, using Corollary 6.7, in a manner similar to the one in the proof of
Theorem 5.29, to obtain the claimed resolution of Kλ•,λ;µ,µ• .
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Corollary 6.9. For (κ•, κ; ν, ν•), (λ•, λ;µ, µ•) ∈ Λ and q ≥ 0 we have

dim ExtqT(Kκ•,κ;ν,ν• , Kλ•,λ;µ,µ•) =
∑

ξ,η∈Λ:q=kξ,λ•κ,κ•+kλ;µ
ξ;η +kη,µ•ν,ν•

pξ,λ•κ,κ•m
λ;µ
ξ;η p

η,µ•
ν,ν• .

If ExtqT(Kκ•,κ;ν,ν• , Kλ•,λ;µ,µ•) 6= 0 then q = kλ•,λ;µ,µ•
κ•,κ;ν,ν• .

Corollary 6.10. For κ,λ ∈ Λ and q ≥ 0,

dim ExtkT(Kκe⊥o , Kλe⊥o) = dim ExtkT(Kκo⊥e , Kλo⊥e) = dim HomT(Kκ, sock+1
T (I ⊗Mλ)) ,

where Mλ•,λ;µ,µ• is the module defined in (28) and e⊥o is the involution defined in §5.3.1.

Proof. The corollary follows from Corollary 6.9, Corollary 5.26, Theorem 5.5.

As a special case we obtain the following.

Corollary 6.11. Assume t = 0, meaning that V is of countable dimension. Then

dim ExtkT0
(Kκ⊥0 ,κ;ν⊥,ν0

, Kλ⊥0 ,λ;µ⊥,µ0
) = dim HomT0(Kκ0,κ;ν,ν0 , sock+1

T0
Iλ0,λ;µ,µ0)

holds for any (κ0, κ; ν, ν0), (λ0, λ;µ, µ0) ∈ Λ and k ≥ 0.

Proof. Under the assumption t = 0 we have Iλ = I⊗Mλ and Mλ = Jλ for all λ ∈ Λ. Therefore
the statement follows from Corollary 6.10.

7 Symmetries

In the preceding sections we have shown that the categories Tt and Tt have finite-dimensional
Ext-spaces between simple objects, as well as finite-dimensional Hom-spaces from simple objects
to socle layers of indecomposable injective objects. The explicit combinatorial formulas for these
dimensions facilitate the study of various relations between Ext- and Hom-spaces. Some such
phenomena correspond to symmetries of the set Λ parametrizing the isomorphism classes of
simple objects in both Tt and Tt. We have already encountered the involution λ 7→ λo⊥e of Λ
(see §5.3.1) in relation to several equalities between dimensions of Ext- and Hom-spaces given
in Theorem 5.5 and Corollaries 5.26, 6.10 and 6.11. In the next proposition we derive equalities
related to another involution of Λ.

If λ• = (λ−1, λ0, ..., λt) is a finite sequence of Young diagrams, we denote the reversed
sequence by revλ• := (λt, ...λ0, λ−1).

Proposition 7.1. Let (λ•;µ•), (κ•; ν•) ∈ Λ and q ≥ 0. Then

1. pλ•κ• = prevκ•
revλ•

and if this number is nonzero then kλ•κ• = krevκ•
revλ•

; analogously pµ•ν• = prevµ•
revν• and

if this number is nonzero then kλ•κ• = krevκ•
revλ•

;

2. dim HomT(Lκ•;∅• , socq+1
T Jλ•;∅•) = dim HomT(Lrevλ•;∅• , socq+1

T Jrevκ•;∅•);

3. dim ExtqT(Lκ•;∅• , Lλ•;∅•) = dim ExtqT(Lrevλ•;∅• , Lrevκ•;∅•);

4. dim HomT(Kκ•;∅• , socq+1
T Iλ•;∅•) = dim HomT(Krevλ•;∅• , socq+1

T Irevκ•;∅•);
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5. dim ExtqT(Kκ•;∅• , Kλ•;∅•) = dim ExtqT(Krevλ•;∅• , Krevκ•;∅•);

6. we have
dim ExtqT(Lκ0,κ;ν,ν0 , Lλ0,λ;µ,µ0) = dim ExtqT(Lλ,λ0;µ0,µ, Lκ,κ0;ν0,ν)

=
∑

δ,τ,θ,ϕ,ψ,ξ,η,ζ∈Λ

Nκ0
ζϕN

ϕ
λ0τ
N ξ
τ⊥κ

Nλ
ξδN

µ
δ⊥η

Nη
νθ⊥

Nψ
θµ0
N ν0

ψζ⊥
,

and if this number is nonzero then q is unique and equals

q = |κ0| − |λ0|+ |µ| − |ν| = |λ| − |κ|+ |ν0| − |µ0| ;

7. if |λ0|+ |λ| = |κ0|+ |κ| we have

dim ExtqT(Kκ0,κ;ν,ν0 , Kλ0,λ;µ,µ0) = dim ExtqT(Kλ,λ0;µ0,µ, Kκ,κ0;ν0,ν)

=
∑
τ,θ∈Λ

Nκ0
λ0τ
Nλ
τ⊥κN

µ
νθ⊥

Nν0
θµ0

,

and if this number is nonzero then q is unique and equals

q = |λ| − |κ|+ |µ| − |ν| = |κ0| − |λ0|+ |µ| − |ν| = |λ| − |κ|+ |ν0| − |µ0| .

Proof. The first statement follows by standard properties of Littlewood-Richardson coefficients
from the defining formulas of pλ•µ• and kλ•µ• in Theorem 5.24. The rest of the statements follow
from the first and the explicit formulas for the dimensions of the involved Ext- and Hom-spaces,
obtained in Proposition 5.16, Corollary 5.30 and Corollary 6.9.

8 Universality

Before addressing the topic of universality we should point out that a seed of the following
discussion can be traced to the work [SS2015]. Here we follow [ChP2021].

Let Tfin denote the full tensor subcategory of T containing Il for l ∈ P and closed under
taking subquotients. The goal of this section is to prove the following theorem.

Theorem 8.1. Let t ∈ N. Let (D,⊗,1) be a (K-linear abelian) tensor category with a given
pair of objects X, Y , a morphism

q : X ⊗ Y → 1 , (32)

and filtrations 0 = X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xt+1 = X and 0 = Y−1 ⊂ Y0 ⊂ Y1 ⊂ ... ⊂ Yt+1 = Y .
Then the following hold.

(i) There is a unique, up to a monoidal isomorphism, left-exact symmetric monoidal functor
Φ : Tfin → D sending the pairing Ip : (I ⊗ V ∗)⊗I (I ⊗ V̄ )→ I to the pairing q, and for
−1 ≤ α < β ≤ t the morphisms I⊗(V ∗/V ∗α )→ I⊗(V ∗/V ∗β ) and I⊗(V̄ /V̄α)→ I⊗(V̄ /V̄β)
respectively to the morphisms X/Xα → X/Xβ and Y/Yα → Y/Yβ.

(ii) If D is additionally a Grothendieck category then Φ extends to a functor T→ D.

The proof will be given after some preparation. In the next proposition we relate the
endomorphism algebras of the objects Il to the groups Sl defined in (16).

40



Proposition 8.2. For l ∈ P, the endomorphism algebra EndTIl is isomorphic to the group
algebra K[Sl] via the Sl-action on Il, where the Slα-factor of Sl permutes the tensorands in
the tensorand (V ∗/V ∗α )⊗lα of Il and the Smα-factor permutes the tensorands in the tensorand
(V̄ /V̄α)⊗mα of Il.

Proof. We follow the idea of [ChP2021, Lemma 3.34] and only outline the main steps as the
details are analogous. By Theorems 6.1 and 6.4, the endomorphism algebra of every inde-
composable injective is trivial: EndTIλ ∼= K for all λ ∈ Λ. The Sl-action defined in the
proposition extends to an injective homomorphism K[Sl] ↪→ EndTIl. The surjectivity follows
from a dimension argument.

Let R be the tensor algebra in T of the object R1 :=
⊕

l∈P:|l|=1

Il and let Rd := R⊗Id1 be the

degree d component of R. Let

A :=
⊕
k,l∈N

HomT(Rl, Rk) ∼=
⊕
k,l∈P

HomT(Il, Ik) ; (33)

this is an N-graded algebra with degree components

Ad :=
⊕

k,l∈P:k∈Pd(l)

HomT(Il, Ik) .

Theorem 8.3. The category T is Koszul, in the sense of [ChP2017], namely, for every pair of
simple objects K,L and every q ≥ 2, the canonical Yoneda map⊕

M1,...,Mq−1 simple

Ext1(K,M1)⊗ Ext1(M1,M2)⊗ ...⊗ Ext1(Mq−1, L)→ Extq(K,L)

is surjective. Consequently, the algebra A is Koszul and, in particular, quadratic.

Proof. The surjectivity of the Yoneda maps in T follows from Corollary 6.9. It is shown in
[ChP2021] that the Koszulity of the category T implies that A is a Koszul algebra, and is hence
quadratic.

In the proposition below, we study certain (Sl,Sk)-bimodules of homomorphisms Il → Ik.
These bimodule structures of the models provided for these bimodules are obtained as follows.
If l, l′ ∈ N satisfy l ≤ l′ we consider Sl as the subgroup of Sl′ fixing l+1, ..., l′. If all coordinates
of l ∈ P are smaller or equal to the respective coordinates of l′ ∈ P, then we consider Sl as the
subgroup of Sl′ given by the component-wise embeddings Slα ⊂ Sl′α and Smα ⊂ Sm′α fixed
above. Now, if Sl ⊂ Sl′ and Sk ⊂ Sk′ are two such inclusions, every (Sl′ ,Sk′)-bimodule is a
(Sl,Sk)-bimodule by restriction. All models for homomorphism spaces used in the proposition
below are bimodules of this form. For instance, for l′ = k′ the group algebra K[Sl′ ] is a
(Sl,Sk)-bimodule.

Proposition 8.4. The space of quadratic relations between degree 1 elements of A decomposes
as a sum of monogenerated (Sl,Sk)-bimodules, along the pairs l,k at distance 2 in the poset
P, as follows:

ker(A1 ⊗A1 → A2) =
⊕

k,l∈P:k∈P2(l)

kergl,k , kergl,k ∼= (K[Sk]⊗K[Sl]) · fl,k.
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Here

gl,k :
⊕

k′∈P:l
P
�k′

P
�k

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′)→ Hom(Il, Ik)

is the morphism induced by composition, it is surjective, and a generator fl,k ∈ kergl,k is
specified below in the various relevant cases. For l = (l•, l;m,n•) ∈ P, we let pl : Il → Il−(1;1)

stand for the morphism defined by the identity on all tensorands in Il = Il•,0;0,n•⊗I I
⊗I l
1;0 ⊗ I

⊗Im
0;1 ,

except on the last tensorand of I⊗I l1;0 and the last tensorand of I⊗Im0;1 on which Ip : I1;0⊗I0;1 → I0;0

is applied. Similarly, for 0 ≤ α ≤ t, fαl : Il → Il+(1α,−1α−1;0) is the projection V ∗/V ∗α−1 → V ∗/V ∗α
applied to the last tensorand in I⊗I lα1α−1;0, extended by identity on all other tensorands in Il, and

f̄αl : Il → Il+(0;−1α−1,1α) is the analogous morphism obtained from V̄ /V̄α−1 → V̄ /V̄α.

1. For l = (lt, ..., l0, l;m,m0, ...,mt) and k = (lt, ..., l0, l − 2;m − 2,m0, ...,mt) = l − (2; 2),
we have a single intermediate element k′ = (lt, ..., l0, l − 1;m− 1,m0, ...,mt) = l− (1; 1);
the domain of gl,k is

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′) ∼= K[Sl]

as an (Sl,Sk)-bimodule, and the kernel of gl,k is generated by

fl,k = pk′ ⊗ pl − pk′ ⊗ pl ◦ s ,

where s is the product of the two simple transpositions in Sl×Sm exchanging respectively
the last two tensorands in (V ∗)⊗l and the last two tensorands in V̄ ⊗m.

2. For l = (lt, ..., l0, l;m,m0, ...,mt) and k = (lt, ..., l0 + 1, l − 2;m − 1,m0, ...,mt), we have
two intermediate elements k′ = (lt, ..., l0, l − 1;m − 1,m0, ...,mt), k′′ = (lt, ..., l0 + 1, l −
1;m,m0, ...,mt); the domain of gl,k is

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′)⊕ Hom(Ik′′ , Ik)⊗EndIk′′

Hom(Il, Ik′′)

∼= K[Slt,...,l0+1,l;m,m0,...,mt ]
⊕2 ∼= (ind

Sl0+1

Sl0
K[Sl])

⊕2

as an (Sl,Sk)-bimodule (the two summands are isomorphic), and the kernel of gl,k is
generated by

fl,k = f 0
k′ ⊗ pl − pk′′ ⊗ f 0

l ◦ s,

where s is the simple transposition in Sl ⊂ Sl exchanging respectively the last two tenso-
rands in (V ∗)⊗l.

3. For l = (lt, ..., l0, l;m,m0, ...,mt) and k = l + (1α,−1α−1;−1β−1, 1β), with 0 ≤ α, β ≤ t,
there are two intermediate elements k′ = l+ (1α,−1α−1; 0•), k′′ = l+ (0•;−1β−1, 1β); the
domain of gl,k is

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′)⊕ Hom(Ik′′ , Ik)⊗EndIk′′

Hom(Il, Ik′′) ∼= K[Sl+(1α;1β)]
⊕2

as an (Sl,Sk)-bimodule (the two summands are isomorphic), and the kernel of gl,k is
generated by

fl,k = fαk′′ ⊗ f̄
β
l − f̄

β
k′ ⊗ f

α
l .
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4. For l = (lt, ..., l0, l;m,m0, ...,mt) and k = l+ (2α,−2α−1; 0•), with 0 ≤ α ≤ t, there is one
intermediate element k′ = l + (1α,−1α−1; 0•); the domain of gl,k is

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′) ∼= K[Sl+(2α;0•)]

as an (Sl,Sk)-bimodule, and the kernel of gl,k is generated by

fl,k = s′ ◦ (fαk′ ⊗ fαl )− (fαk′ ⊗ fαlα) ◦ s ,

where s ∈ Slα−1 ⊂ Sl is the transposition of the last two tensorands in (V ∗α−1)⊗lα−1 as a
tensorand of Il and s′ ∈ Slα+2 ⊂ Sk is the transposition of the last two tensorands of
(V ∗α )⊗lα+2 as a tensorand of Ik.

5. For l = (lt, ..., l0, l;m,m0, ...,mt) and k = l + (1α,−1α−1; 0•) + (1β,−1β−1; 0•), with 0 ≤
α < β ≤ t, there are two intermediate elements k′ = l + (1α,−1α−1; 0•), k′′ = l +
(1β,−1β−1; 0•); the domain of gl,k is

Hom(Ik′ , Ik)⊗EndIk′
Hom(Il, Ik′)⊕Hom(Ik′′ , Ik)⊗EndIk′′

Hom(Il, Ik′′) ∼= K[Sl+(1β ,1α;0•)]
⊕2

as an (Sl,Sk)-bimodule (the two summands are isomorphic), and the kernel of gl,k is
generated by an element fl,k determined depending on β − α as follows:

(a) if β = α + 1 then
fl,k = fαk′′ ⊗ fα+1

l − s ◦ (fα+1
k′ ⊗ f

α
l ) ,

where s ∈ Slα+1 ⊂ Sl+(1α+1,1α;0•) is the transposition of the last two tensorands in
(V ∗α )⊗lα as a tensorand of Il+(1α+1,1α;0•).

(b) if β > α + 1 then
fl,k = fαk′′ ⊗ f

β
l − f

β
k′ ⊗ f

α
l ,

where s ∈ Slα+1 ⊂ Sl+(1α+1,1α;0•) is the transposition of the last two tensorands in
(V ∗α )⊗lα as a tensorand of Il+(1α+1,1α;0•).

Proof. The proof is a compilation of the proofs of [ChP2017, Lemma 5.16] and [ChP2021,
Theorem 3.33].

Proof of Theorem 8.1. We follow the strategy of [ChP2021, Theorem 3.33], [ChP2017, Theorem
5.3]. The general properties of tensor categories imply that the relations given Proposition 8.4
are satisfied in D for the respective objects and morphisms derived from X and Y instead of V ∗

and V̄ . Now Theorem 8.3, together with Proposition 8.4, implies that the assignment Φ(V ∗α ) =
Xα, Φ(V̄α) = Yα, for α = −1, 0, ..., t, Φ(p) = q, Φ(V ∗/V ∗α → V ∗/V ∗α+1) = X/Xα → X/Xα+1,
Φ(V̄ /V̄α → V̄ /V̄α+1) = Y/Yα → Y/Yα+1, for α = −1, ..., t − 1, provides a consistent definition
of a functor Φ : Tfin → D. The uniqueness of this functor, up to tensor natural isomorphism,
its left-exactness, and its extension to the Grothendieck category T if D is a Grothendieck
category, follow from standard arguments as in [ChP2021, §8].

Corollary 8.5. Let 0 ≤ s ≤ t and let T(V ∗s , I
s,s, V̄s) ⊂ Tt be the smallest full tensor Grothendieck

subcategory of Tt containing V ∗s , V̄s and the module Is,s, which is also a commutative subalgebra
of I, defined at the end of Section 3. Let T(V ∗s , I

s,s, V̄s) be the category, whose objects are
glM -modules in T(V ∗s , I

s,s, V̄s) which are also free as Is,s-modules, and whose morphisms are
morphisms of glM -modules as well as of Is,s-modules. Then T(V ∗s , I

s,s, V̄s) is equivalent to the
category Ts constructed from an arbitrary diagonalizable pairing between two ℵs-dimensional
vector spaces.
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