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Abstract. We define the class of admissible linear embeddings of flag varieties. The definition
is given in the general language of algebraic geometry. We then prove that an admissible
linear embedding of flag varieties has a certain explicit form in terms of linear algebra. This
result enables us to show that any direct limit of admissible embeddings of flag varieties is
isomorphic to an ind-variety of generalized flags as defined in [2]. These latter ind-varieties have
been introduced in terms of the ind-group SL(∞) (respectively, O(∞) or Sp(∞) for isotropic
generalized flags), and the current paper constructs them in purely algebraic-geometric terms.
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1. Introduction

Flag varieties play a fundamental role in geometry, and we expect that in ind-geometry the
analogues of flag varieties will be equally important. In this paper, we would like to place
these analogues under the looking glass and provide a new characterization of the ind-varieties
of generalized flags constructed in [2]. Around 20 years ago, I. Dimitrov and the first author
realized that in the context of ind-geometry the notion of a flag of vector subspaces in an
ambient infinite-dimensional vector space is rather subtle. More precisely, in addition to the
obvious three types of infinite flags, that is, chains of vector subspaces enumerated by Z>0,
Z<0 or Z, there is the need to consider chains of subspaces enumerated by more general totally
ordered sets in which every element has an immediate predecessor or an immediate successor,
but possibly not both. Such chains, satisfying the additional condition that every vector of
the ambient vector space is contained in some space of the chain but not in its immediate
predecessor, were christened generalized flags in [2].

The main result of [2] can be summarized roughly as follows: generalized flags in a countable-
dimensional vector space are in a natural 1-1 correspondence with splitting parabolic subgroups
P of the ind-group GL(∞), and hence the points of homogeneous ind-spaces of the form
GL(∞)/P can be thought of as generalized flags. A similar statement about isotropic general-
ized flags holds for the ind-groups O(∞) and Sp(∞). In particular, the concept of generalized
flag, and therefore also the notion of an ind-variety of generalized flags, has been motivated in
the past by the notion of a parabolic subgroup of an ind-group like GL(∞), O(∞), Sp(∞).

Let us point out that in some cases the ind-varieties of generalized flags have been known long
before the paper [2]. This concerns mostly the case of a generalized flag which consists of a single
proper subspace. If this space is finite dimensional, the corresponding ind-Grassmannian is a
relatively straightforward generalization of a finite-dimensional Grassmannian. This applies also
to the case of subspace of finite codimension. The case of a subspace of infinite dimension and
codimension is the most interesting one. The corresponding ind-Grassmannian is isomorphic
to the Sato Grassmannian [10] (see also [5]), a mathematical object of lasting influence.

The main purpose of the present paper is to propose a new, purely algebraic-geometric,
approach to the ind-varieties of generalized flags. More precisely, we define admissible linear
embeddings of usual flag varieties

(1) Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′)
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and show that an ind-variety obtained as a direct limit of such linear embeddings is isomorphic
to an ind-variety of generalized flags. In particular, such a linear direct limit is automatically
a homogeneous ind-space of GL(∞).

We also consider isotropic generalized flags and prove a similar result for the ind-groups
O(∞) and Sp(∞). In this way, the notion of an admissible linear embedding of flag varieties
leads naturally to the concept of generalized flag. A small part of this program has already
been carried in our paper [9] where we characterize linear embeddings of Grassmannians, and
then as a consequence describe linear ind-Grassmannians up to isomorphism.

Our main new result concerning embeddings of finite-dimensional flag varieties is finding an
explicit form of a class of embeddings (1) which we call admissible. We define an admissible
linear embedding in general algebraic-geometric terms, and then show that such an embed-
ding is nothing but an extension of a flag from Fl(m1, ...,mk, V ) to a possibly longer flag in
Fl(n1, ..., nk̃, V

′), given by an explicit formula from linear algebra. We call the latter embed-
dings standard extensions. This enables us to prove that a direct limit of admissible linear
embeddings is isomorphic to an ind-variety of generalized flags as in [2], as it is relatively
straightforward to show that direct limits of standard extensions have this property.

The paper is concluded by an appendix in which we present two examples of direct limits of
linear but non-admissible embeddings of flag varieties, that are not isomorphic to ind-varieties
of generalized flags.

Acknowledgements. I.P. thanks Vera Serganova for a useful discussion, which took place
several years ago, on the general idea of an algebraic-geometric approach to ind-varieties of
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2017, for hospitality and financial support. Finally, we are grateful to a referee for a very
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Notation. The sign ⊂ stands for not necessarily strict set-theoretic inclusion. By G(m,V )
we denote the Grassmannian of m-dimensional subspaces of V for 1 ≤ m ≤ dimV . We also
use the notation P(V ) for G(1, V ). If a : X → Y is a morphism of algebraic varieties, by a∗

and a∗ we denote respectively the pullback or pushforward of vector bundles. The superscript
(·)∨ indicates dual space or dual vector bundle.

2. Definition of linear embedding of flag varieties

In this section we give the basic definitions of linear embeddings of flag varieties including
the case of isotropic flag varieties.

The base field is C and all vector spaces, varieties and ind-varieties considered below are
defined over C. Let V be a vector space of dimension dimV ≥ 2. For any increasing sequence
of positive integers 1 ≤ m1 < ... < mk < dimV , we consider the flag variety

Fl(m1, ...,mk, V ) := {(Vm1 , ..., Vmk
) ∈ G(m1, V )× ...×G(mk, V ) | Vm1 ⊂ ... ⊂ Vmk

}.
We denote its points by

F = (0 ⊂ Vm1 ⊂ ... ⊂ Vmk
⊂ V )

or sometimes by
F = (Vm1 ⊂ ... ⊂ Vmk

).

The ordered k-tuple (m1, ...,mk) is the type of a flag F ∈ Fl(m1, ...,mk, V ).
There is a natural embedding

j : Fl(m1, ...,mk, V ) ↪→ G(m1, V )× ...×G(mk, V )
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and there are projections

πi : Fl(m1, ...,mk, V )→ G(mi, V ), F = (Vm1 ⊂ ... ⊂ Vmk
) 7→ Vmi

, i = 1, ..., k.

We have (see for instance [1, Prop. 1.4.1] or [4, Ex. 14.7.16])

Pic Fl(m1, ...,mk, V ) = Z[L1]⊕ ...⊕ Z[Lk],

where
Li := π∗iOG(mi,V )(1), i = 1, ..., k.

Here, OG(mi,V )(1) denotes the invertible sheaf on G(mi, V ) satisfying H0(OG(mi,V )(1)) =
∧mi(V ∗). By definition, [L1], ..., [Lk] is a preferred set of generators of Pic Fl(m1, ...,mk, V ).

Let V be equipped with a non-degenerate symmetric bilinear form on V . For our purposes,
we can assume that dimV ≥ 7. For 1 ≤ m ≤ [dimV

2
], the orthogonal Grassmannian GO(m,V )

is defined as the subvariety of G(m,V ) consisting of isotropic m-dimensional subspaces of V .
Unless dimV = 2m, the variety GO(m,V ) is a smooth irreducible variety. For dimV = 2m, the
orthogonal Grassmannian is a disjoint union of two isomorphic smooth irreducible components,
and they are both isomorphic to GO(m − 1, V ′) where dimV ′ = 2m − 1. Slightly abusing
notation, we will denote by GO(m,V ) each of these two components.

If m 6= dimV
2
−1, then PicGO(m,V ) = Z[OGO(m,V )(1)], where the sheaf OGO(m,V )(1) posesses

the following property: if t : GO(m,V ) ↪→ G(m,V ) is the tautological embedding, then

t∗OG(m,V )(1) ∼=
{ OGO(m,V )(1) for m 6= dimV

2
,

OGO(m,V )(2) for m = dimV
2
,

see [7, (1.7)]. If m = dimV
2
− 1, then for any Vm−1 ∈ GO(m − 1, V ) there is a unique Vm ∈

GO(m,V ) such that Vm−1 ⊂ Vm. Thus there is a well-defined morphism

(2) θ : GO(m− 1, V )→ GO(m,V ), Vm−1 7→ Vm, where Vm ⊃ Vm−1.

Consequently,

PicGO(m− 1, V ) = Z[θ∗OGO(m,V )(1)]⊕ Z[OGO(m−1,V )(1)],

where by OGO(m−1,V )(1) we denote the θ-relatively ample Grothendieck sheaf determined by
the property that θ∗OGO(m−1,V )(1) is the universal quotient bundle on GO(m,V ), see [6, Ch.
II, Ex. 7.9(a)].

Next, let 1 ≤ m1 < ... < mk be an increasing sequence of positive integers, where mk ≤
[dimV

2
]. The orthogonal flag variety FlO(m1, ...,mk, V ) is defined as

FlO(m1, ...,mk, V ) := {(Vm1 , ..., Vmk
) | Vmi

∈ GO(mi, V ), Vm1 ⊂ ... ⊂ Vmk
},

where, according to our convention, we assume GO(mk, V ) connected if mk = dimV
2

. Similarly
to the case of usual flag varieties, there is a natural embedding

j : FlO(m1, ...,mk, V ) ↪→ GO(m1, V )× ...×GO(mk, V )

and there are projections

πi : FlO(m1, ...,mk, V )→ GO(mi, V ), (Vm1 ⊂ ... ⊂ Vmk
) 7→ Vmi

, i = 1, ..., k.

Unless mk = dimV
2
− 1, we have

Pic FlO(m1, ...,mk, V ) = Z[L1]⊕ ...⊕ Z[Lk],

where
Li := π∗iOGO(mi,V )(1), i = 1, ..., k,

see [8, Prop. 10.4]. The isomorphism classes [Li] are a preferred set of generators of
Pic FlO(m1, ...,mk, V ). If mk = dimV

2
− 1, then there is an additional preferred generator

[(θ ◦ πk−1)∗OGO(mk+1,V )(1)] of PicFlO(m1, ...,mk, V ) [8, Prop. 10.4].
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Let now V be equipped with a non-degenerate symplectic form. This implies that dimV ∈
2Z>0. Assume 1 ≤ m ≤ 1

2
dimV . By definition, the m-th symplectic Grassmannian GS(m,V )

is the smooth irreducible subvariety of G(m,V ) consisting of isotropic m-dimensional subspaces
of V . It is known (see [8, Prop. 10.4]) that

PicGS(m,V ) = Z[OGS(k,V )(1)], OGS(k,V )(1) = i∗OG(k,V )(1),

where i : GS(m,V ) ↪→ G(m,V ) is the tautological embedding. For a fixed increasing sequence
of positive integers 1 ≤ m1 < ... < mk ≤ dimV

2
, the symplectic flag variety is defined as

FlS(m1, ...,mk, V ) := {(Vm1 , ..., Vmk
) ∈ GS(m1, V )× ...×GS(mk, V ) | Vm1 ⊂ ... ⊂ Vmk

}.

We have a natural embedding

j : FlS(m1, ...,mk, V ) ↪→ GS(m1, V )× ...×GS(mk, V )

and projections

πi : Fl(m1, ...,mk, V )→ GS(mi, V ), (Vm1 ⊂ ... ⊂ Vmk
) 7→ Vmi

, i = 1, ..., k.

Moreover, according to [8, Prop. 10.4]

Pic FlS(m1, ...,mk, V ) = Z[L1]⊕ ...⊕ Z[Lk],

where

Li := π∗iOGS(mi,V )(1), i = 1, ..., k.

The isomorphism classes [Li] are a preferred set of generators of Pic FlS(m1, ...,mk, V ).
We now proceed to the definition of linear embeddings of flag varieties and their orthogonal

and symplectic analogues.

Definition 2.1. Let k and k̃ be positive integers with 1 < k ≤ k̃. An embedding of flag
varieties

ϕ : X ↪→ Y,

where X = Fl(m1, ...,mk, V ), Y = Fl(n1, ..., nk̃, V
′), or X = FlO(m1, ...,mk, V ), Y =

FlO(n1, ..., nk̃, V
′), or X = FlS(m1, ...,mk, V ), Y = FlS(n1, ..., nk̃, V

′), is a linear embedding

if, for any j, 1 ≤ j ≤ k̃, we have

[ϕ∗Mj] = 0 or [ϕ∗Mj] = [Li]

for some i, 1 ≤ i ≤ k, where [L1], ..., [Lk] and [M1], ..., [Mk̃] are the preferred sets of generators
respectively of PicX and PicY .

Example 2.2. Assume that k = k̃ = 1 in Definition 2.1. Then X and Y are Grassmannians,
orthogonal Grassmannians, or symplectic Grassmannians. In all cases, except when X =
GO(m,V ) and Y = GO(n, V ′) for (m, dimV ) = (l− 1, 2l) or (n, dimV ′) = (r− 1, 2r), a linear
embedding ϕ : X → Y is simply an embedding with ϕ∗[L] = [M ], where [L] and [M ] are
respective ample generators of the Picard groups PicY and PicX, cf. [9, Def. 2.1].

In the remaining cases, a linear embedding ϕ : X → Y exists if and only if X ' GO(l−1, V ),
Y ' GO(r − 1, V ′) for l ≤ r, and here the linearity of ϕ implies

ϕ∗OGO(r−1,V ′)(1) ∼= OGO(l−1,V )(1), ϕ∗θ′∗OGO(r,V ′)(1) ∼= θ∗OGO(l,V )(1),

where θ : GO(l − 1, V ) → GO(l, V ) and θ′ : GO(r − 1, V ′) → GO(r, V ′) are the projections
defined in (2). To see this, one has to show (we leave this to the reader) that it is impossible
to have an embedding ϕ : GO(l − 1, V )→ GO(r − 1, V ′) with

ϕ∗θ′∗OGO(r,V ′)(1) ∼= OGO(l−1,V )(1), ϕ∗OGO(r−1,V ′)(1) ∼= θ∗OGO(l,V )(1).
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A linear embedding ϕ as in Definition 2.1 induces a partition with k + 1 parts

{0, 1, ..., k̃} = I0 t I1 t I2 t ... t Ik
such that 0 ∈ I0, 1 ≤ j ∈ I0 iff ϕ∗[Mj] = 0, and j ∈ Ii for i ≥ 1 iff ϕ∗[Mj] = [Li]. The map
j 7→ i, for j ∈ Ii, is a surjection which we denote by p. By definition, p(0) = 0.

Proposition 2.3. (i) Let ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′) be a linear embedding.

Then ϕ induces a collection of morphisms of Grassmannians

ϕ[i] = {ϕi,j}i=p(j) : G(mi, V )→
∏

j>0:p(j)=i

G(nj, V
′), 0 ≤ i ≤ k,

such that the diagram

(3) Fl(m1, ...,mk, V ) �
� ϕ //

� _

j

��

Fl(n1, ..., nk̃, V
′)

� _

j′

��
G0 ×G(m1, V )× ...×G(mk, V ) �

� ϕ[1]×...×ϕ[k] // G(n1, V
′)× ...×G(nk̃, V

′)

where j and j′ are the natural embeddings, is commutative. Here G0 is a single point, and is
present in the diagram if and only if there are constant morphisms ϕ0=p(j),j : G0 → G(nj, V

′).
(ii) Similar statements hold in the orthogonal and symplectic cases.

In the proof we will need the following.

Lemma 2.4. Let X, Y, Z be projective varieties with Y smooth, and let a : X → Y and
b : X → Z be morphisms such that a is surjective and b is constant on the fibers of a. Then
there exists a morphism f : Y → Z such that b = f ◦ a.

Proof. Consider the morphism

g : X → Y × Z, x 7→ (a(x), b(x)),

and let

Y
a′←− Y × Z b′−→ Z

be the projections satisfying a = a′ ◦ g and b = b′ ◦ g. Since b is constant on the fibers of
p, it follows that ã := a′|g(X) : g(X) → Y is a bijection. Therefore, as Y is smooth, ã is an
isomorphism (see, e.g., [11, Ch.2, Section 4.4, Thm. 2.16]). The desired morphism f is now
the composition f = b′ ◦ ã−1. �

Proof of Proposition 2.3. (i) We consider the case k = k̃ = 2. For arbitrary k and k̃, the proof
goes along the same lines and we leave the details to the reader. Set [L1] := ϕ∗[Mj1 ], [L2] :=
ϕ∗[Mj2 ], and let

πi : Fl(m1,m2, V )→ G(mi, V ), π′i : Fl(n1, n2, V
′)→ G(ni, V

′), i = 1, 2,

be the natural projections. For an arbitrary point

x = (x1, x2) = (Vm1 , Vm2) ∈ Fl(m1,m2, V ) ⊂ G(m1, V )×G(m2, V ),

consider the fibers π−1i (xi) ⊂ F, i = 1, 2, through the point x. The embedding ϕ is linear, thus

Mj1|ϕ(π−1
1 (x1))

' ϕ∗Mj1|π−1
1 (x1)

' Oπ−1
1 (x1)

' Oϕ(π−1
1 (x1))

.

Since ϕ(π−11 (x1)) is an irreducible variety and Mj1 = π′∗1OG(nj1
,V ′)(1), where OG(nj1

,V ′)(1) is
an ample sheaf, it follows from the above isomorphisms that π′j1 is constant on the variety

ϕ(π−11 (x1)). In other words, the morphism π′j1 ◦ϕ is constant on the fibers of the projection π1.
Lemma 2.4 implies that π′1 ◦ ϕ factors through the projection π1, i.e. there is a well-defined

morphism

(4) ϕ1 : G(m1, V )→ G(nj1 , V
′), x1 7→ π′j1(ϕ(π−11 (x1)))
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such that ϕ1 ◦ π1 = π′j1 ◦ ϕ. In a similar way there is a well-defined morphism

(5) ϕ2 : G(m2, V )→ G(nj2 , V
′), x2 7→ π′j2(ϕ(π−11 (x2)))

such that ϕ2 ◦ p2 = π′j2 ◦ ϕ. By construction, ϕ1 and ϕ2 are linear morphisms.
Consider now Fl(m1,m2, V ) and Fl(n1, n2, V

′) as lying respectively in G(m1, V )×G(m2, V )
and G(n1, V

′) × G(n2, V
′). For any points x = (x1, x2) ∈ Fl(m1,m2, V ) and x′ = (x′1, x

′
2) ∈

Fl(n1, n2, V
′) we have

{x} = π−11 (x1) ∩ π−12 (x2), {x′} = π′
−1
1 (x′1) ∩ π′

−1
2 (x′2).

This together with (4) and (5) shows that, if x′ji = ϕi(xi), i = 1, 2, then

{ϕ(x)} = ϕ(π−11 (x1)) ∩ ϕ(π−12 (x2)) ⊂ π′
−1
j1

(x′j1) ∩ π
′−1
j2

(x′j2) = {(ϕ1 × ϕ2)(x)},
i.e. the diagram (3) is commutative for k = 2.

We leave to the reader to make (ii) precise and check that the above proof extends to this
case. 2

3. Standard extensions of flag varieties

In this section we introduce and study a class of embeddings of flag varieties that we call
standard extensions. In almost all cases, standard extensions are linear embeddings in the sense
of Section 2.

We start by considering the case of Grassmannians. Let

(6) ϕ : G(m,V ) ↪→ G(n, V ′)

be a regular morphism. Assume dimV ′ > dimV , m 6= 0, m 6= dimV . We say that ϕ is a strict

standard extension if there exists an isomorphism of vector spaces V ′ = V ⊕ Ŵ and a subspace

W ⊂ Ŵ , such that
ϕ(Vm) = Vm ⊕W

where Vm ⊂ V is an arbitrary point of G(m,V ). If m = 0 or m = dimV , a morphism (6)
is necessarily constant and we call it a constant strict standard extension. In this case we set
W := ϕ(G(m,V )).

It is easy to check that a nonconstant strict standard extension is a linear embedding.
By a modified standard extension we understand an embedding (6) for which there exists a

strict standard extension
ϕ′ : G(m,V ) ↪→ G(dimV ′ − n, V ′∨)

such that ϕ = d ◦ ϕ′ where

d : G(dimV ′ − n, V ′∨) ∼−→ G(n, V ′)

is the duality isomorphism. In what follows, a standard extension will mean a strict standard
extension or a modified standard extension.

Note that if a morphism (6) is linear, it is not necessarily a standard extension. For instance,
the reader can prove that the Plücker embedding

ψ : G(m,V ) ↪→ G(1,∧mV ) = P(∧mV )

is a standard extension if and only if m = 1 or m = dimV − 1. On the other hand, the Plücker
embedding is of course a linear embedding.

In the cases of orthogonal and symplectic Grassmannians, a strict standard extension is
defined in the same way with the additional requirement that the decomposition V ′ = V ⊕ U
be orthogonal and that the spaces Vm and W be isotropic. In these cases there is no need to
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consider modified standard extensions (as the spaces V and V ∨ are identified via the respective
non-degenerate form), and the terms strict standard extension and standard extension are
synonyms.

Here is a definition of strict standard extension ϕ of Grassmannians which refers only to data
of linear algebra which can be recovered canonically from the embedding ϕ.

Definition 3.1. Let dimV ′ > dimV . A morphism of Grassmannians ϕ : G(m,V ) ↪→ G(n, V ′)
is said to be a strict standard extension if either G(m,V ) is a point (i.e. m = 0 or m = dimV ,
and ϕ is constant) or there exists a subspace U ⊂ V ′ and a surjective linear operator ε : U � V
such that

(7) ϕ(Vm) = ε−1(Vm)

for any point Vm of G(m,V ).

If ϕ is a nonconstant strict standard extension, the subspace U ⊂ V ′ is unique and the linear
operator ε : U → V is unique up to a nonzero scalar multiple. Indeed, assume ϕ is given and
set

(8) W :=
⋂

Vm∈G(m,V )

ϕ(Vm).

Let S and S ′ denote respectively the tautological bundles on G(m,V ) and G(n, V ′). There is
an obvious exact sequence

0→ W ⊗OG(m,V ) → ϕ∗S ′ → S → 0.

Dualization yields an injective homomorphism

V ∨ = H0(G(m,V ),S∨) ↪→ H0(G(m,V ), (ϕ∗S ′)∨)
with cokernel equal to W∨. Set U∨ := H0(G(m,V ), (ϕ∗S ′)∨). Then a second dualization yields
a surjective homomorphism ε : U → V with ker ε = W . In particular,

(9) U =
⋃

Vm∈G(m,V )

ϕ(Vm).

In what follows, we will assign to ϕ a subspace U ⊂ V ′ also in the case when ϕ is a constant
map: we set

U = W := ϕ(G(m,V )) ∈ G(n, V ′)

and ε := 0. Formulas (7), (8) and (9) then hold in this case too.
It is easy to show that Definition 3.1 is equivalent to the above “naive” definition of strict

standard extension. Let ϕ be a nonconstant strict standard extension according to Definition
3.1. Then U and ε : U → V are given, and we can choose a splitting U ' V ⊕ (W = ker ε). In
particular, this induces an embedding of V into V ′. We then extend the splitting U ' V ⊕W
to a splitting V ′ = V ⊕ Ŵ with W ⊂ Ŵ . This yields the datum of the “naive” definition.
Conversely, given a nonconstant strict standard extension as in the “naive” definition, we simply
set U := V ⊕W and define ε to be the projection U → V . Finally, if ϕ is constant then we put
U := ϕ(G(m,V )) = W (here dimU = n).

In the orthogonal and symplectic cases, in Definition 3.1 one must assume that the space
W is isotropic and the isomorphism U/W

∼−→ V induced by the operator ε : U � V is an
isomorphism of spaces endowed with symmetric, or respectively symplectic, forms. Here the
form on U is induced by the respective form on V ′.

It is a straightforward observation that in all cases the composition of standard extensions of
Grassmannians is also a standard extension. The composition of two strict standard extensions
or two modified standard extensions is a strict standard extension, while the composition of
a strict standard extension and a modified standard extension is again a modified standard
extension.
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We now give the definition of a strict standard extension of usual and isotropic flag varieties.

Definition 3.2. An embedding of flag varieties

ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′)

is said to be a strict standard extension if there exists a flag of distinct nonzero subspaces of V ′

(10) (U1 ⊂ U2 ⊂ ... ⊂ Uk̃)

and a commutative diagram

(11) V V . . . V

U1

ε1

OO

� � // U2

ε2

OO

� � // . . . �
� // Uk̃

εk̃

OO

of linear operators εi : Ui → V , surjective whenever nonzero and such that

ϕ
(

(0 = Vp(0) ⊂ Vp(1) ⊂ ... ⊂ Vp(k̃) ⊂ Vp(k̃+1) = V )
)

=(
0 ⊂ ε−11 (Vp(1)) ⊂ ε−12 (Vp(2)) ⊂ ... ⊂ ε−1

k̃
(Vp(k̃)) ⊂ V ′)

(12)

for a suitable surjective map p : {0, 1, ..., k̃, k̃ + 1} → {0, 1, ..., k, k + 1} satisfying p(i) ≤ p(j)
whenever i < j.

In the isotropic case, an embedding ϕ : FlO(m1, ...,mk, V ) ↪→ FlO(n1, ..., nk̃, V
′), or ϕ :

FlS(m1, ...,mk, V ) ↪→ FlS(n1, ..., nk̃, V
′), is a strict standard extension, or simply a standard

extension, if a flag (10) and a diagram (11) as above are given, such that the spaces Ui are
nondegenerate, the linear operators εi : Ui → V are compatible with the respective forms on
Ui and V , and ker εi are isotropic spaces.

Note that p(0) = 0, p(k̃ + 1) = k + 1 and that there are exactly k distinct proper nonzero
subspaces among Vp(1), ..., Vp(k̃).

A strict standard extension is a linear embedding, except in the case

FlO(m1, ...,mk, V ) ↪→ FlO(n1, ..., nk̃, V
′)

where dimV
2
− 1 appears among m1, ...,mk but dimV ′

2
− 1 does not appear among n1, ..., nk̃,

or dimV
2

appears among m1, ...,mk but dimV ′

2
− 1 or dimV ′

2
does not appear among n1, ..., nk̃.

In all cases when a strict standard extension ϕ as above is a linear embedding, the surjection
p : {0, 1, ..., k̃} → {0, 1, ..., k} defined right before Proposition 2.3 is obtained from the surjection
p in the following way: we set p(j) := p(j) if p(j) 6= 0, k + 1, and p(j) := 0 otherwise.

Furthermore, in the case of ordinary (i.e. not isotropic) flag varieties, we need also the
definition of a modified standard extension. By definition, this is a composition ϕ = d ◦ ϕ′
where

ϕ′ : Fl(m1, ...,mk, V ) ↪→ Fl(dimV ′ − nk̃, ..., dimV ′ − n1, V
′∨)

is a strict standard extension and

d : Fl(dimV ′ − nk̃, ..., dimV ′ − n1, V
′∨)

'−→ Fl(n1, ..., nk̃, V
′)

is the duality isomorphism. This implies the existence of a surjective map q : {0, 1, ..., k̃} →
{0, 1, ..., k} such that ϕ∗[Mj] = [Lq(j)] and subject to the following conditions:

• q(0) = 0,
• q(i) ≥ q(j) whenever q(i) 6= 0, q(j) 6= 0 and i ≤ j,
• q(j) = 0 implies j < t or j > t for all t with q(t) 6= 0.
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Example 3.3. Set Wi := ker εi for 1 ≤ i ≤ k̃.
(i) Consider the extreme case when k = 1 and k̃ is an arbitrary integer greater or equal to 1.

Then the surjection p : {0, 1, ..., k̃, k̃ + 1} → {0, 1, 2} from Definition 3.2,(ii) defines an ordered

partition of {0, 1, ..., k̃, k̃ + 1} with three parts p−1(0), p−1(1), p−1(2), and a corresponding
standard extension

G(m,V ) ↪→ Fl(m1, ...,mk̃, V
′)

has the form

(0 ⊂ Vm ⊂ V ) 7→ (0 ⊂ W1 ⊂ ... ⊂ Ws ⊂ ε−1s+1(Vm) ⊂ ... ⊂ ε−1t (Vm) ⊂ Ut+1 ⊂ ... ⊂ Uk̃ ⊂ V ′),

where {0, 1, ..., s} = p−1(0), {s+ 1, ..., t} = p−1(1) and {t+ 1, ..., k̃ + 1} = p−1(2).

(ii) Next, consider the case when dimV ′ = dimV + 1. Then k̃ necessarily equals k or
k + 1. Hence, dimWi ≤ 1 and there exists i0, 0 ≤ i0 ≤ k, such that Wj = 0 for j ≤ i0 and
dimWi0+1 = ... = dimWk̃ = 1. Consequently, Wi0+1 = ... = Wk̃. Set W := Wi0+1 = ... = Wk̃.

If k̃ = k, then p is a bijection and the corresponding standard extension

ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk, V
′)

has the form

ϕ
(

(0 ⊂ Vm1 ⊂ ... ⊂ Vmk
⊂ V )

)
=

=


(0 ⊂ Vm1 ⊕W ⊂ ... ⊂ Vmk

⊕W ⊂ V ′) for i0 = 0,

(0 ⊂ Vm1 ⊂ ... ⊂ Vmi0
⊂ Vmi0+1

⊕W ⊂ ... ⊂ Vmk
⊕W ⊂ V ′) for 0 < i0 < k,

(0 ⊂ Vm1 ⊂ ... ⊂ Vmk
⊂ V ′) for i0 = k.

(13)

If k̃ = k + 1, then p(i0) = p(i0 + 1) = i0 and the standard extension

ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk+1, V
′)

has the form

ϕ
(

(0 ⊂ Vm1 ⊂ ... ⊂ Vmk
⊂ V )

)
=

=


(0 ⊂ W ⊂ Vm1 ⊕W ⊂ ... ⊂ Vmk

⊕W ⊂ V ′) for i0 = 0,

(0 ⊂ Vm1 ⊂ ... ⊂ Vmi0
⊂ Vmi0+1

⊕W ⊂ ... ⊂ Vmk
⊕W ⊂ V ′) for 0 < i0 < k,

(0 ⊂ Vm1 ⊂ ... ⊂ Vmk
⊂ Uk+1 ⊂ V ′) for i0 = k.

(14)

(iii) Let dimV = 2 and let V ′ = V ⊕ V . Consider the embedding

P(V ) = G(1, V ) ↪→ Fl(1, 2, 3, V ⊕V ), (0 ⊂ V1 ⊂ V ) 7→ (0 ⊂ V1 ⊂ V ⊕0 ⊂ V ⊕V1 ⊂ V ⊕V ).

This embedding is not a standard extension. Here, ϕ∗[M1] = ϕ∗[M3] = [L], ϕ∗[M2] = 0. This
shows that there is no p as in the definition of strict standard extension, and it is easy to check
that ϕ is also not a modified standard extension.

(iv) Let V ′ be endowed with a non-degenerate symmetric or symplectic form, and V ′ = V ⊕Ŵ
where Ŵ = V ⊥ and dim Ŵ = 2. Fix an isotropic lineW ⊂ Ŵ . Then for any increasing sequence
0 < m1 < ... < mk ≤ [dimV

2
] and any s, 1 ≤ s ≤ k, there is a standard extension ϕ : X → Y ,

where X = FlO(m1, ...,mk, V ) and Y = FlO(m1, ...,ms,ms + 1, ...,mk + 1, V ′), or respectively,
X = FlS(m1, ...,mk, V ) and Y = FlS(m1, ...,ms,ms + 1, ...,mk + 1, V ′). For s = 0 there
also is a standard extension ϕ : X → Y , where now Y = FlO(1,m1 + 1, ...,mk + 1, V ′) or
Y = FlS(1,m1 + 1, ...,mk + 1, V ′), respectively. The embedding ϕ is given by formula (14)
with i0 substituted by s.

A less canonical, but more intuitive, description of strict standard extensions (respectively,
of standard extensions in the isotropic case) is given by the following easily proved proposition.
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Proposition 3.4. Assume that ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′), respectively,

ϕ : FlO(m1, ...,mk, V ) ↪→ FlO(n1, ..., nk̃, V
′), respectively, ϕ : FlS(m1, ...,mk, V ) ↪→

FlS(n1, ..., nk̃, V
′) is a nonconstant strict standard extension corresponding to a surjection

p : {0, 1, ..., k̃, k̃ + 1} → {0, 1, ..., k, k + 1}. Set Wi := ker εi. Then there exists a direct sum
decomposition

(15) V ′ = V ⊕ Ŵ

with Ŵ = V ⊥ in the orthogonal and symplectic case, and such that Wi ⊂ Ŵ , Ui ⊃ V for
all i with εi 6= 0, and the nonzero operators εi : Ui → V are just projections onto V via the
decomposition (15). Moreover,

(16) ϕ
(
0 ⊂ Vp(1) ⊂ ... ⊂ Vp(k̃) ⊂ V

)
=
(
0 ⊂ Vp(1) ⊕W1 ⊂ ... ⊂ Vp(k̃) ⊕Wk̃ ⊂ V ′

)
.

Lemma 3.5. In the notation of Proposition 3.4, let w be a basis of Ŵ such that all subspaces

Wi are coordinate subspaces with respect to w. Then, for any splitting Ŵ = W ⊕ W such

that W and W are coordinate spaces, mutually perpendicular within Ŵ in the orthogonal and
symplectic cases, the strict standard extension given by formula (14) is the composition of strict
standard extensions

Fl(m1, ...,mk, V ) ↪→ Fl(m′1, ...,m
′
l, V ⊕W ) ↪→ Fl(n1, ..., nk̃, V

′ = (V ⊕W )⊕W )

for which the corresponding spaces in W and W are the respective intersections of the spaces

Wi, 1 ≤ i ≤ k̃, with W and W .

Proof. Direct verification using formula (16). �

4. A sufficient condition for a linear embedding to be a standard extension

In this section we establish our main result concerning linear embeddings of flag varieties.
This is a sufficient condition for a linear embedding to be a standard extension.

Consider a flag variety Fl(m1, ...,mk, V ) and let {m1, ...,mk} = R1 ∪ ... ∪Rs be a decompo-
sition into a union of s subsets for s ≥ 2. Denote this decomposition by R. By ordering the
elements of Ri we can think of Ri as a type of a flag, and then Fl(Ri, V ) is a well-defined flag
variety. Moreover, for any (t1, ..., ts) ∈ (Z≥1)s there is a canonical embedding

ψR,t1,...,ts : Fl(m1, ...,mk, V ) ↪→ Fl(R1, V )×t1 × ...× Fl(Rs, V )×ts

where by Fl(Ri, V )×ti we denote the direct product of ti copies of Fl(Ri, V ).
If now

ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′)

is an embedding, we say that ϕ does not factor through any direct product if ϕ 6= ψ ◦ ψR,t1,...,ts
for any decomposition R, any ti ∈ Z≥1 and any embedding

ψ : Fl(R1, V )×t1 × ...× Fl(Rs, V )×ts ↪→ Fl(n1, ..., nk̃, V
′).

The definition clearly makes sense also in the orthogonal and symplectic cases.

Lemma 4.1. Let ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′) be a linear embedding which does

not factor through any direct product. Assume that k̃ ≥ 3 and there exist integers i and j,
1 ≤ i, i + 2 ≤ j ≤ k̃, such that the morphisms πi ◦ ϕ and πj ◦ ϕ are not constant maps. Then
for any l, i < l < j, the morphism πl ◦ϕ is not a constant map. Similar statements are true in
the orthogonal and symplectic cases.
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Proof. Suppose the contrary, i. e. that there exists l, i < l < j, such that the morphism πl ◦ ϕ
is a constant map, and let V ′l := im(πl ◦ ϕ) ⊂ V ′. Then ϕ induces well-defined embeddings

ϕ′ : Fl(p({0, 1, ..., l}), V ) ↪→ Fl(n1, ..., nk̃, V
′),

ϕ′′ : Fl(p({l, ..., k̃}), V ) ↪→ Fl(n1, ..., nk̃, V
′),

where we consider p({0, 1, ..., l}) and p({l, ..., k̃}) as types of flags. Moreover, ϕ clearly factors
through the embedding

ψ : Fl(p({0, 1, ..., l}), V )× Fl(p({l, ..., k̃}, V )→ Fl(n1, ..., nk̃, V
′),

where, for F1 ∈ Fl(p({0, 1, ..., l}), V ) and F2 ∈ Fl(p({l, ..., k̃}, V ), the spaces with indices from
1 to l of the flag ψ(F1 × F2) coincide with those of the flag ϕ′(F1), and the spaces with indices

from l to k̃ coincide with those of the flag ϕ′′(F2). The flag ψ(F1, F2) is well defined as its space
with index l equals V ′l . �

Theorem 4.2. Let ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V
′) be a linear embedding. Assume

that all morphisms ϕp(j),j : G(mp(j), V ) ↪→ G(nj, V
′) from Proposition 2.3 are strict standard

extensions, and that ϕ does not factor through any direct product. Then ϕ is a strict standard
extension. Analogous statements hold in the orthogonal and symplectic cases.

Proof. Lemma 4.1 implies that there are s and t, s < t, so that p(j) = 0 holds precisely for
j ≤ s and for j ≥ t.

In the case when there is a single index j such that ϕp(j),j is a nonconstant morphism, the
statement of the theorem is easy. We thus may assume that there are (at least) two indices j
and j + 1, 1 < j < j + 1 < t, so that ϕ induces nonconstant strict standard extensions

ϕp(j),j : G(mp(j), V ) ↪→ G(nj, V
′), ϕp(j+1),j+1 : G(mp(j+1), V ) ↪→ G(nj+1, V

′).

Define subspaces Uj and Uj+1 of V ′ by formula (9) in which we put ϕ = ϕp(j),j and m = mp(j),
or ϕ = ϕp(j+1),j+1 and m = mp(j+1), respectively. Let (0 ⊂ Vm1 ⊂ ... ⊂ Vmk

⊂ V ) denote an
arbitrary point of Fl(m1, ...,mk, V ). Since by definition

(17) ϕp(j),j(Vmp(j)
) ⊂ ϕp(j+1),j+1(Vmp(j+1)

)

for any subflag Vmp(j)
⊂ Vmp(j+1)

if p(j) < p(j + 1), or for any subflag Vmp(j+1)
⊂ Vmp(j)

if

p(j + 1) < p(j), formula (9) implies that Uj is a subspace of Uj+1. Next, since the strict
standard extensions ϕp(j),j and ϕp(j+1),j+1 are nonconstant, it follows from Definition 3.1 that
there are surjective linear operators εj : Uj → V and εj+1 : Uj+1 → V , such that formula (7)
holds for ε = εj, m = mp(j) and ε = εj+1, m = mp(j+1), respectively. This, together with (17),
means that

(18) ε−1j (Vmp(j)
) ⊂ ε−1j+1(Vmp(j+1)

)

under the same conditions on Vmp(j)
and Vmp(j+1)

as in (17).

Denoting Wj = ker εj and Wj+1 = ker εj+1, in view of (17) we obtain from (8) that Wj is a
subspace of Wj+1. The inclusions Uj ⊂ Uj+1 and Wj ⊂ Wj+1 join into a commutative diagram

(19) V
θj // V

Uj
� � //

εj

OO

Uj+1

εj+1

OO

Wj
� � //

?�

OO

Wj+1,
?�

OO

where θj is the induced linear operator. From (18) and (19) we obtain

(20) θj(Vmp(j)
) ⊂ Vmp(j+1)

.
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Now we are going to show that

p(j) ≤ p(j + 1).

Assume the contrary, i.e. p(j + 1) < p(j). Then the inclusion (20) implies

θj(Vmp(j)
) ⊂

⋂
Vmp(j+1)

⊂Vmp(j)

Vmp(j+1)
= 0.

Thus θj = 0, and consequently Uj ⊂ Wj+1 by diagram (19). This together with formula (7)
means that the inclusion (18) extends to a pair of inclusions

ε−1j (Vmp(j)
) ⊂ Wj+1 ⊂ ε−1j+1(Vmp(j+1)

),

for any (Vmp(j)
, Vmp(j+1)

) ∈ G(mp(j), V ) × G(mp(j+1), V ). Then the exact same argument as in
the proof of Lemma 4.1 shows that ϕ factors through a direct product. Hence the assumption
p(j + 1) < p(j) is invalid.

Next, we claim that θj = cjId for some nonzero constant cj. Note that θj 6= 0 by the above.
Then, since ε−1j (Vmp(j)

) ⊂ ε−1j+1(Vmp(j+1)
), we have θj(Vmp(j)

) ⊂ Vmp(j+1)
. Taking into account

that ⋂
Vmp(j+1)

⊃Vmp(j)

Vmp(j+1)
= Vmp(j)

,

we obtain

θj(Vmp(j)
) ⊂ Vmp(j)

for any Vmp(j)
∈ G(mp(j), V ). As any 1-dimensional subspace of V is the intersection of all

mp(j)-dimensional subspaces which contain it, we see that any vector in V is an eigenvector for
θj. Consequently, we have θj = cjId for cj 6= 0.

The above argument applies to any pair of integers j, j+1 where s+1 < j < t−2. Therefore,
we can construct a commutative diagram

(21) V
θ1 // V // . . . // V

θk̃ // V

U1

ε1

OO

� � // U2

ε2

OO

� � // . . . �
� // Uk̃−1

εk̃−1

OO

� � // Uk̃,

εk̃

OO

where the morphisms εi equal zero for i ≤ s, i ≥ t, θi = Id for i ≤ s and i ≥ t, and θi = ciId
with ci 6= 0 for s + 1 ≤ i ≤ t − 1. Here, the spaces U1, ..., Us, Ut+1, ..., Uk̃ are defined as the
subspaces of V ′ which equal the images of the respective constant morphisms π′1 ◦ ϕ, ..., π′s ◦ ϕ,
π′t+1 ◦ ϕ, ..., π′k̃ ◦ ϕ, where

π′r : Fl(n1, ..., nk̃, V
′)→ G(nr, V

′)

are the natural projections.
Via scaling the morphisms εi for s + 1 ≤ i ≤ t − 1, we can turn the diagram (21) into the

diagram (11) in the definition of strict standard extension. An immediate checking shows that
our given embedding ϕ is given by formula (12) for the surjection

p : {0, 1, ..., k̃, k̃ + 1} → {0, 1, ..., k, k + 1}

where p(j) = p(j) for j ≤ t− 1, p(j) = k̃ + 1 for j ≥ t. �

The next theorem is a more general version of Theorem 4.2.

Theorem 4.3. If, in the setting of Theorem 4.2, all morphisms ϕp(j),j are (not necessarily
strict) standard extensions, then ϕ is also a standard extension.
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Proof. First, as in the proof of Theorem 4.2, we assume that there are (at least) two indices j
and j + 1 such that there are nonconstant standard extensions ϕp(j),j and ϕp(j+1),j+1 as in (4).
The reader will easily handle the remaining case.

We will show now that the standard extensions ϕp(j),j and ϕp(j+1),j+1 are either both strict
or are both modified. For this, we need to exclude the following other logical possibilities:
(a) p(j) ≤ p(j + 1), ϕp(j),j : G(mp(j), V ) ↪→ G(nj, V

′) is a strict standard extension and
ϕp(j+1),j+1 : G(mp(j+1), V ) ↪→ G(nj+1, V

′) is a modified standard extension;
(b) p(j) > p(j + 1), ϕp(j),j is a modified standard extension and ϕp(j+1),j+1 is a strict standard
extension;
(c) p(j) ≤ p(j + 1), ϕp(j),j is a modified standard extension and ϕp(j+1),j+1 is a strict standard
extension;
(d) p(j) > p(j + 1), ϕp(j),j is a strict standard extension and ϕp(j+1),j+1 is a modified standard
extension.

(a) Note that the modified standard extension ϕp(j+1),j+1 defines a flag of subspaces Wj+1 ⊂
Uj+1 of V ′ and a surjective linear operator εj+1 : Uj+1 → V ′∨ with ker εj+1 = Wj+1, such that

(22) ϕp(j+1),j+1(Vmp(j+1)
) = ε−1j+1((V/Vmp(j+1)

)∨),

where (V/Vmp(j+1)
)∨ is naturally considered as a subspace of V ∨. Moreover,

(23) Wj+1 =
⋂

Vmp(j+1)
⊂V

ϕp(j+1),j+1(Vmp(j+1)
).

Formulas (22) and (23) are corollaries of formulas (7) and (8), respectively.
Now, given Vmp(j)

∈ G(mp(j), V ), we obtain

(24) {0} =
⋂

Vmp(j+1)
⊃Vmp(j)

(V/Vmp(j+1)
)∨,

where the intersection is taken in (V/Vmp(j)
)∨. Using (22)-(24), we find

Wj+1 =
⋂

Vmp(j+1)
⊃Vmp(j)

ϕp(j+1),j+1(Vmp(j+1)
).

Therefore,

(25) ϕp(j),j(Vmp(j)
) ⊂ Wj+1 ⊂ ϕp(j+1),j+1(Vmp(j+1)

)

for any Vmp(j+1)
∈ G(mp(j+1), V ). In view of (7) and (22), the inclusion (25) coincides with the

inclusion (4). Hence, as in the proof of Theorem 4.2, we see that ϕ factors through a direct
product, contrary to our assumption. This contradiction rules out (a).

(b) Given Vmp(j+1)
∈ G(mp(j+1), V ), for any Vmp(j)

⊂ Vmp(j+1)
we have

ϕp(j+1),j+1(Vmp(j)
) ⊃ ϕp(j),j(Vmp(j+1)

).

Hence, there is an inclusion

ϕp(j),j(Vmp(j+1)
) ⊂

⋂
Vmp(j)

⊂Vmp(j+1)

ϕp(j+1),j+1(Vmp(j)
),

the right-hand side of which is zero, as it clearly follows from the definition of nonconstant
strict standard extension. Thus ϕp(j),j(Vmp(j+1)

) = {0}, which is a contradiction since Vn1 6= 0.

Cases (c) and (d) are reduced to cases (a) and (b), respectively, via the duality isomorphisms

G(nj, V
′)
'−→ G(dimV ′−nj, V ′∨) and G(nj+1, V

′)
'−→ G(dimV ′−nj+1, V

′∨). Thus, all the cases
(a)-(d) lead to a contradiction.
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The above, together with Lemma 4.1, implies that either all nonconstant morphisms
ϕp(j),j : G(mp(j), V ) ↪→ G(nj, V

′) are strict standard extensions, or that they all are mod-
ified standard extensions. In the latter case one considers the morphism d ◦ ϕ, where d is
the duality isomorphism. Then by Theorem 4.2, d ◦ ϕ is a strict standard extension, and
consequently ϕ is a modified standard extension. �

We now introduce the following condition on a linear embedding

ϕ : Fl(m1, ...,mk, V ) ↪→ Fl(n1, ..., nk̃, V ),

or respectively,

ϕ : FlO(m1, ...,mk, V ) ↪→ FlO(n1, ..., nk̃, V )

or

ϕ : FlS(m1, ...,mk, V ) ↪→ FlS(n1, ..., nk̃, V ).

(c) No nonconstant morphism ϕp(j),j : G(mi, V ) → G(nj, V
′) factors through an embedding

of a projective subspace into G(nj, V
′); in the orthogonal and symplectic cases no nonconstant

morphism ϕp(j),j : X → Y for X = GO(mi, V ) and Y = GO(nj, V
′), or X = GS(mi, V )

and Y = GS(nj, V
′), factors through a smooth subvariety of Y isomorphic to a Grassmannian

G(m,V ′′) or a multidimensional quadric in case Y = GO(nj, V
′); in the case where X =

GO(s− 1, V ), Y = GO(t− 1, V ′) for dimV = 2s, dimV ′ = 2t for t > s, this latter condition
should also be imposed on the induced morphism ϕ̃p(j),j : GO(s, V )→ GO(t, V ′).

We say that a linear embedding ϕ is admissible if it does not factor through any direct
product and satisfies condition (c).

Our main result in this section is the following.

Corollary 4.4. An admissible linear embedding ϕ is a standard extension.

Proof. According to Theorem 4.3, all we need to show is that condition (c) implies that every
nonconstant morphism ϕp(j),j is a standard extension. For usual Grassmannians, this follows
directly from [9, Thm. 1], which claims that a linear morphism of Grassmannians ϕp(j),j : X →
Y is a standard extension unless it factors through a projective subspace of Y . For isotropic
Grassmannians, [9, Thm. 1] applies only to the case when PicX ' PicY ' Z, and also implies
our claim under this assumption. It remains to consider the situation of a linear morphism
ϕp(j),j : GO(s−1, V )→ GO(t−1, V ′) where dimV = 2s, dimV ′ = 2t, t ≥ s. In this situation,
as stated in Section 2, we always have a commutative diagram

GO(s− 1, V ) �
� ϕp(j),j //

θ
��

GO(t− 1, V ′)

θ′

��
GO(s, V ) �

� ϕ̃p(j),j // GO(t, V ′).

Here, [9, Thm. 1] applies to the linear morphism ϕ̃ := ϕ̃p(j),j, implying that it is a standard
extension whenever it does not factor through a Grassmannian or a multidimensional quadric
embedded in GO(t, V ′). Let this standard extension have the form

(26) Vs 7→ Vs ⊕W ′,

where V ′ = V ⊕W is an orthogonal decomposition and W ′ is a maximal isotropic subspace of
W . We will show that ϕ := ϕp(j),j is the standard extension

(27) Vs−1 7→ Vs−1 ⊕W ′.

For this, consider an arbitrary projective line P1 on GO(s, V ), i.e. a smooth rational curve
C ⊂ GO(s, V ) such that OGO(s,V )(1)|C ' OP1(1). It is an exercise to see that there exists an
isotropic subspace WP1 ⊂ V of dimension p − 2, such that the restriction E := S|P1 of the
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tautological bundle S on GO(s, V ) is isomorphic to 2OP1(−1)⊕WP1 ⊗OP1 . Hence, by (26), we
have

(28) E ′ := ϕ∗S ′|P1 ' 2OP1(−1)⊕ (WP1 ⊕W ′)⊗OP1 ,

where S ′ is the tautological bundle on GO(t− 1, V ′).
For any point x ∈ P1, consider the projective spaces θ−1(x) = P(E∨|t) and θ′−1(ϕ̃(x)) =

P((E ′)∨|t). By definition,

ϕ|θ−1(x) : θ−1(x)→ θ′−1(ϕ̃(x))

is a linear embedding of projective spaces, hence it has the form

(29) Vs−1 7→ Vs−1 ⊕W ′′(x)

for some unique isotropic vector subspace W ′′(x) ⊂ V ′. Indeed, W ′′(x) =
⋂

Vs−1∈θ−1(x)

ϕ(Vs−1)

(see (8)). Moreover, by construction, W ′′ := {(x,W ′′(x))}x∈P1 is a vector subbundle of E ′, and
the condition that

ϕ∗OGO(t−1,V ′)(1) ∼= OGO(s−1,V )(1)

(see Example 2.2) implies

(30) detW ′′ ∼= OP1 .

Consider the composition of morphisms of sheaves: f : W ′′ i
↪→ E ′

pr→ 2OP1(−1) where i is the
above mentioned monomorphism and pr is the canonical projection defined by (28). If f is a
nonzero morphism, it follows from (30) and Grothendieck’s Theorem that W ′′ contains a direct
summand OP1(a) for some a > 0. But this contradicts to (28) since i is a monomorphism.
Hence, f = 0, and by (28), W ′′ is a subbundle of the trivial bundle (WP1 ⊕ W ′) ⊗ OP1 .
Therefore, in view of (30), W ′′ is itself a trivial bundle. This means that the space W ′′(x) does
not depend on x ∈ P1, but possibly depends on the choice of the projective line P1. We can set
W ′′(x) = W ′′

P1 . Then

(31) W ′′
P1 ⊂ WP1 ⊕W ′.

Pick a point x0 ∈ P1, so that W ′′(x0) = W ′′
P1 . Next, pick another line P′1 through x0, distinct

from P1. Then W ′′
P1 = W ′′

P′1 . Since, as one easily checks, any two points in GO(s, V ) can be
connected by a chain of projective lines, we conclude that W ′′

P1 does not depend on the line P1.
We therefore denote this space by W ′′

0 , and the inclusion (31) can be rewritten as

(32) W ′′
0 ⊂ WP1 ⊕W ′, P1 ⊂ GO(s, V ).

Now one easily observes that
⋂

P1⊂GO(s,V )

WP1 = {0}. Hence, (32) implies

W ′′
0 =

⋂
P1⊂GO(s,V )

(WP1 ⊕W ′) = W ′.

It follows that the linear embedding ϕ in (29) is Vs−1 7→ Vs−1 ⊕W ′, i.e., ϕ coincides with (27)
as claimed. �

Corollary 4.4 provides a sufficient condition, in terms of pure algebraic geometry, for a linear
embedding of flag varieties, or varieties of isotropic flags, to be a standard extension.
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5. Admissible direct limits of linear embeddings of flag varieties are
isomorphic to ind-varieties of generalized flags

We start by recalling the notions of generalized flag and ind-variety of generalized flags
introduced in [2, Section 5]. Let V be an arbitrary vector space. A chain of subspaces in V
is a set C of pairwise distinct subspaces of V such that for any pair F , H ∈ C, one has either
F ⊂ H or H ⊂ F . Every chain of subspaces C is linearly ordered by inclusion. Given a chain
C, we denote by C ′ (respectively, by C ′′) the subchain of C that consists of all subspaces C ∈ C
which have an immediate successor (respectively, an immediate predecessor) with respect to
this ordering.

A generalized flag in V is a chain of subspaces F that satisfies the following conditions:
(i) each F ∈ F has an immediate successor or an immediate predecessor, i.e. F = F ′ ∪ F ′′;
(ii) V \{0} = ∪F ′∈F ′F ′′\F ′, where F ′′ ∈ F ′′ is the immediate successor of F ′ ∈ F ′.

In what follows, we assume that V is a countable-dimensional vector space with basis E =
{en}n∈Z>0 . A generalized flag F in V is compatible with the basis E if for every F ∈ F the set
F ∩ E is a basis of F . We say that a generalized flag F is weakly compatible with E, if F is
compatible with some basis L of V such that E\(E ∩ L) is a finite set.

Example 5.1. Let V = SpanE where E = {en}n∈Z>0 .
(i) Any finite chain (0 ⊂ F1 ⊂ ... ⊂ Fk ⊂ V ) of coordinate subspaces (i. e. subspaces Fi ⊂ V

satisfying Fi = Span{Fi∩E} for 1 ≤ i ≤ k) is a generalized flag compatible with the basis E. If
dimFi <∞ for 1 ≤ i ≤ k, and if one drops the condition that all Fi are coordinate subspaces,
then the chain (0 ⊂ F1 ⊂ ... ⊂ Fk ⊂ V ) is a generalized flag weakly compatible with E.

(ii) Fix a bijection Z>0 = Z>0 t Z<0, and let ≺ denote the linear order on Z>0, induced by
the (non-standard) linear order on Z>0 t Z<0 in which all elements of Z<0 are larger than all
elements of Z>0, and Z>0 and Z<0 are ordered in the usual way. Then the chain {0, Fj, V }j∈Z>0 ,
where Fj = {Span{ei}i4j}, is a generalized flag compatible with E.

(iii) Fix a bijection Z>0 = Ql t Qr, where Ql = Q = Qr, and consider the following linear
order on Ql t Qr: j ≺ t ⇔ j ∈ Ql t Qr, t ∈ Ql t Qr, j < t, or j = t, j ∈ Ql, t ∈ Qr.
Then the chain {F ′j , F ′′j }j∈Ql

, where F ′j = Span{ek}k≺j, F ′′j = Span{ek}k4j, is a generalized flag
compatible with E.

We define two generalized flags F and G in V to be E–commensurable if both F and G are
weakly compatible with E and there exists an inclusion preserving bijection ϕ : F → G and a
finite-dimensional subspace U ⊂ V , such that for every F ∈ F

F ⊂ ϕ(F ) + U, ϕ(F ) ⊂ F + U, dim(F ∩ U) = dim(ϕ(F ) ∩ U).

Let

X = Fl(F , E, V )

denote the set of all generalized flags in V that are E-commensurable with F . We now explain
that X has a natural ind-variety structure. Let V ′n := Span{ej|j ≤ n}. Then the intersection
F ∩ V ′n is a flag in V ′n, and let this flag have type 0 < m′n,1 < ... < m′n,kn < n for kn ≤ n − 1.
Since dimV ′n+1 = dimV ′n + 1 = n + 1, if we set W ′

n := Span{en+1}, we have V ′n+1 = V ′n ⊕W ′
n

and there is a standard extension

in : Fl(m′n,1, ...,m
′
n,kn , V

′
n) ↪→ Fl(n′n+1,1, ..., n

′
n+1,kn+1

, V ′n+1)

given by formulas (13) or (14) in Example 3.4 (where we had no need to use as many subscripts
as well as primes).

Note that this standard extension in is determined by the two types of flags (m′n,1, ...,m
′
n,kn

)
and (n′n+1,1, .., n

′
n+1,kn+1

), and by the choice of W ′
n+1. In [2] it is shown that Fl(F , E, V ) is
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naturally identified with the direct limit

lim−→Fl(m′n,1, ...,m
′
n,kn , V

′
n)

of the embeddings in. In particular, this equips Fl(F , E, V ) with the structure of an ind-variety.
Let’s now consider the case when V is endowed with a nondegenerate symmetric or symplectic

bilinear form ( , ). Here we assume that either the basis E is isotropic and is enumerated as
{en, en}n∈Z>0 where (en, e

n) = 1 for n ∈ Z>0, or that E is enumerated as {en, e0, en}n∈Z>0

where en and en are isotropic vectors satisfying (en, e
n) = 1 for n ∈ Z>0 and e0 satisfies

(e0, en) = (e0, e
n) = 0, (e0, e0) = 1. This latter enumeration of E is possible only in the case

of a symmetric form. We define a generalized flag F to be isotropic if it consists of isotropic
and coisotropic subspaces (a subspace F is coisotropic if F⊥ is isotropic) and is invariant under
taking orthogonal complement. In the current case, where dimV =∞, this definition is more
convenient for our purposes than the consideration of ”purely isotropic” flags as in Sections
2, 3 and 4. Note that an isotropic generalized flag is determined by its subchain of isotropic
spaces.

Example 5.2. Consider the case where V is endowed with a nondegenerate symmetric form
and the basis of V is enumerated as {en, e0, en}n∈Z>0 as above. Set F l

j = Span{en}n>j,j≥0,
F r
j = (F l

j)
⊥. Then F l

j ⊃ F l
k, F

r
j ⊂ F r

k , F
l
j ⊂ F r

k for k ≥ j, and {F l
j , F

r
j }j∈Z≥0

is a maximal
isotropic generalized flag compatible with E.

By FlO(F , E, V ), or respectively FlS(F , E, V ), we denote the set of all generalized flags
which are E-commensurable with a fixed isotropic flag F compatible with E. To define an ind-
variety structure on FlO(F , E, V ) or FlS(F , E, V ), set V ′n = Span{ej, ej}j≤n or respectively
V ′n = Span{ej, e0, ej}j≤n. Then F ∩V ′n has an isotropic subflag of type 0 < m′n,1 < ... < m′n,kn ≤
[n
2
], and there is a standard extension

ψn : FlO(m′n,1, ...,m
′
n,kn , V

′
n) ↪→ FlO(m′n+1,1, ...,m

′
n+1,kn+1

, V ′n)

or

ψn : FlS(m′n,1, ...,m
′
n,kn , V

′
n) ↪→ FlS(m′n+1,1, ...,m

′
n+1,kn+1

, V ′n+1),

determined uniquely by the isotropic 1-dimensional subspace Wn = Span{en+1}. One can show
that the direct limit of the embeddings ψn is identified with FlO(F , E, V ), or respectively
FlS(F , E, V ), and hence FlO(F , E, V ) and FlS(F , E, V ) are ind-varieties [2, Prop. 5].

Next, we will relate an arbitrary direct limit of strict standard extensions to the ind-varieties
Fl(F , E, V ), FlO(F , E, V ), or FlS(F , E, V ). First, consider a chain of strict standard exten-
sions

(33) ϕN : Fl(mN,1, ...,mN,kN , VN) ↪→ Fl(mN+1,1, ...,mN+1,kN+1
, VN+1)

for some choice of vector spaces VN , dimVN+1 > dimVN for N ∈ Z>0. Then, according to

Proposition 3.4, we may choose vector spaces ŴN , together with isomorphisms

VN+1 = VN ⊕ ŴN ,

and flags in ŴN

(WN,1 ⊂ ... ⊂ WN,kN ⊂ ŴN),

such that each ϕN is given by:

ϕN

(
(0 ⊂ VmN,1

⊂ ... ⊂ VmN,kN
⊂ VN)

)
= (0 ⊂ VmN,1

⊕WN,1 ⊂ ... ⊂ VmN,kN
⊕WN,kN ⊂ VN+1).

Set

V := lim
→
VN .
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Our aim is to define a basis E of V and a generalized flag F compatible with E, so that the
direct limit of the strict standard extensions ϕN can be identified with Fl(F , E, V ). Fix a flag

F1 = (0 ⊂ V1,1 ⊂ ... ⊂ V1,k1 ⊂ V1) ∈ Fl(m1,1, ...,m1,k1 , V1).

Choose a basis
E = {eα}α∈Z>0

of V such that, for all subspaces T of V of the form V1,1, ..., V1,k1 and WN,j for N and j, the set
T ∩ E is a basis of T . Consider the following equivalence relation ∼ on the set E. We write

eα ∼ eα̃

if there exists Nα ∈ Z>0 such that, for any N ≥ Nα, there is no space of the flag ϕN ◦ ϕN−1 ◦
... ◦ ϕ1(F1) containing eα but not eα̃, or vice versa. Using the fact that all embeddings ϕN are
strict standard extensions, one checks that ∼ is an equivalence relation. Denote by [eα] the
equivalence class of the vector eα.

Next, we claim that, by construction, the set A of equivalence classes [eα] is linearly ordered,
and we will denote this linear ordering by the symbol ≺. Indeed, let [eα] 6= [eβ]. For n ≥
max{Nα, Nβ}, consider the flag ϕN ◦ϕN−1◦...◦ϕ1(F1) and take its smallest subspaces containing
respectively eα and eβ. Since [eα] 6= [eβ], it follows that these spaces are not equal. By definition,
we have [eα] ≺ [eβ] if the smallest space of the flag ϕN ◦ ϕN−1 ◦ ... ◦ ϕ1(F1) containing eα is
smaller than the smallest space of the same flag containing eβ.

Finally, we define a generalized flag F , compatible with the basis E, and determined by the
above order on E. For this, we associate two subspaces of V to any equivalence class a = [eα] :

(34) F ′a = Span{eβ | [eβ] ≺ a}, F ′′a = Span{eβ | [eβ] 4 a}.
Then the set of vector subspaces of V

(35) F = {F ′a, F ′′a }a∈A
is easily seen to be a generalized flag in V compatible with E.

If, instead of (33), we consider standard extensions

(36) ψN : FlO(mN,1, ...,mN,kN , VN) ↪→ FlO(mN+1,1, ...,mN+1,kN+1
, VN+1)

or

(37) ψN : FlS(mN,1, ...,mN,kN , VN) ↪→ FlS(mN+1,1, ...,mN+1,kN+1
, VN+1),

a similar construction of a relevant basis E goes through. First of all, in the case of (36), for
our purposes it suffices to assume that that the dimension of all spaces VN are simultaneously
odd or even. We require E to have the form {en, e0, en}n∈Z>0 in the odd case, and the form
{en, en}n∈Z>0 in the even case. This latter form applies also to the case of (37). In all cases, E
has to be chosen by the same condition that all subspaces of the form V1,1, ..., V1,k1 and WN,kj for
N ∈ Z>0 are generated by subsets of E. Next, in order to define a linear order on E, one applies
to the vectors en the procedure outlined above, and then sets ek ≺ el ⇔ el ≺ ek. Finally,
whenever there is a vector e0 one puts en ≺ e0 ≺ ek for any k, n ∈ Z>0. Then the generalized
flag F determined by formulas (34) and (35) is isotropic (in the sense of the definition of the
beginning of this section) and an ind-variety FlO(F , E, V ) , or respectively FlS(F , E, V ) is
well defined.

We are now ready for the following theorem.

Theorem 5.3. There are isomorphisms of ind-varieties

lim−→Fl(mN,1, ...,mN,kN , VN) ' Fl(F , E, V ),

lim−→FlO(mN,1, ...,mN,kN , VN) ' Fl(F , E, V ),

lim−→FlS(mN,1, ...,mN,kN , VN) ' Fl(F , E, V ).
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Proof. We consider only the case of ordinary flag varieties, and leave the other cases to the
reader. Note first that (mN,1, ...,mN,kN ) is the type of the flag F ∩ VN , so that

Fl(F , E, V ) = lim−→Fl(mN,1, ...,mN,kN , VN)

where the direct limit is taken with respect to the embeddings

idimVN+1−1 ◦ ... ◦ idimVN : Fl(mN,1, ...,mN,kN , VN) ↪→ Fl(mN+1,1, ...,mN+1,kN+1
, VN+1).

The embeddings in were introduced in the first part of this section, and are given by formulas
(13) and (14), respectively.

However, we claim that our fixed standard extension ϕN equals the composition idimVN+1−1 ◦
... ◦ idimVN . This follows from an iterated application of Lemma 3.5 to the decompositions

VN+1 = V ′dimVN+1−1 ⊕ Span{edimVN+1
},

V ′dimVN+1−1 = V ′dimVN+1−2 ⊕ Span{edimVN+1−1}, ...,
V ′dimVN+1 = VN ⊕ Span{edimVN+1},

and from the observation that the corresponding standard extensions

Fl(mn,1, ...,mn,kn , V
′
n) ↪→ Fl(mn+1,1, ...,mn+1,kn+1 , V

′
n+1)

arising in this way, are determined simply by the splitting V ′n+1 = V ′n ⊕ Span{en+1}. Since the
standard extension in is determined by the same decomposition, the statement follows. �

The following corollary can be considered as the main result of this paper.

Corollary 5.4. The direct limit of any admissible sequence of linear embeddings,
lim−→Fl(mN,1, ...mN,kN , VN), lim−→FlO(mN,1, ...mN,kN , VN), or lim−→FlS(mN,1, ...mN,kN , VN), is a
homogeneous ind-variety for the group SL(∞), O(∞) or Sp(∞), respectively.

The claim of Corollary 5.4 can be derived more directly from Corollary 4.4 by showing that
any direct limit of standard extensions is a homogeneous ind-variety, but Theorem 5.3 provides
an explicit description of such a direct limit as an appropriate ind-variety of generalized flags.
We should also point out that homogeneous ind-varieties of the ind-groups GL(∞), SL(∞),
O(∞), Sp(∞) have been studied in papers preceding [2], see [3] and the references therein.

6. Appendix

In this appendix, we construct ind-varieties which are not isomorphic to ind-varieties of
generalized flags, but nevertheless are direct limits of linear embeddings of flag varieties. Here
we use the notation P(V ) also for a countable-dimensional vector space. P(V ) is the ind-variety
of 1-dimensional subspaces of V . We also write P∞ instead of P(V ) when we do not need to
specify V .

First, consider the following chain of linear embeddings

... ↪→ Fl(1, 2n − 1, Vn)
kn
↪→ G(1, Vn)×G(2n − 1, Vn)

jn
↪→ Fl(1, 2n+1 − 1, Vn ⊕ Vn)

kn+1

↪→
kn+1

↪→ G(1, Vn ⊕ Vn)×G(2n+1 − 1, Vn ⊕ Vn) ↪→ ... ,

where dimVn = 2n, kn and kn+1 are the canonical embeddings, and

jn(V1, V2n−1) = (V1 ⊂ V ⊕ 0 ⊂ V ⊕ V2n−1)
for subspaces V1, V2n−1 ⊂ V of respective dimensions 1 and 2n − 1. Clearly, the embedding

jn ◦ kn : Fl(1, 2n − 1, Vn) ↪→ Fl(1, 2n+1 − 1, Vn)
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is linear but does not satisfy condition (b) of Theorem 4.3 as it factors through the embedding
kn. The direct limit lim−→Fl(1, 2n − 1, Vn) is isomorphic as an ind-variety to the direct limit of
embeddings

G(1, Vn)×G(2n − 1, Vn)
kn+1◦jn
↪→ G(1, Vn ⊕ Vn)×G(2n − 1, Vn ⊕ Vn),

which is easily checked to be isomorphic to the direct product P(V ) × P(V ) for a countable-
dimensional vector space V .

The ind-variety P(V ) × P(V ) is not isomorphic to an ind-variety of generalized flags. In-
deed, assume the contrary. Since Pic(P(V ) × P(V )) ' Z × Z, we would have an isomor-
phism P(V ) × P(V ) ' Fl(F , E, V ) where F = {0 ⊂ F1 ⊂ F2 ⊂ V } is a flag of length 2.
Elementary considerations show that the pullback on Fl(F , E, V ) of the two standard gen-
erators OP(V )×P(V )(1, 0) and OP(V )×P(V )(0, 1) of Pic(P(V ) × P(V )) have to be preferred gen-
erators of Pic(Fl(F , E, V )). Consequently, Fl(F , E, V ) would be isomorphic to the direct
product of maximal ind-varieties of Fl(F , E, V ) on which the projective generators restrict
trivially, and moreover these ind-varieties would be both isomorphic to P(V ). For a general
flag F = {0 ⊂ F1 ⊂ F2 ⊂ V } such ind-varieties are ind-Grassmannians. Since an ind-
Grassmannian Fl(F,E, V ), where F ⊂ V is a single subspace of V , is isomorphic to P(V ) only
if dimF = 1 or codimV F = 1 [9, Thm. 2], we see that our assumption forces dimF1 = 1 and
codimV F2 = 1. So it remains to check that this particular ind-variety of generalized flags is not
isomorphic to P(V )× P(V ). This follows from the easy observation that a standard extension
of the form Fl(1, n−1,Cn) ↪→ Fl(1, N−1,CN) for n < N does not factor through a subvariety
Ps × Ps ⊂ Fl(1, N − 1,CN) with the property that

S1|Ps×Ps ' OPs×Ps(1, 0), (CN ⊗OFl(1,N−1,CN )/SN−1)|Ps×Ps ' OPs×Ps(0, 1),

where S1 and SN−1 are the tautological bundles on Fl(1, N − 1,CN). We leave it to the reader
to supply this observation with a proof.

Next, we will give a more interesting example in which condition (c) is not satisfied. More
precisely, we will construct a linear embedding

ϕ : Fl(m1,m2, V ) ↪→ Fl(n1, n2, V
′)

such that p(1) = 1, p(2) = 2 and ϕ2,2 : G(m2, V ) → G(n2, V
′) is a standard extension, but

ϕ1,1 : G(m1, V )→ G(n1, V
′) factors through a projective subspace of G(n1, V

′).
Let 3 < dimV < ∞, fix positive integers m1, m2, 1 < m1 < m2 < dimV, and let V 0 be a

subspace of V of dimension dimV −m1 + 1. Consider the rational morphism

γ : G(m1, V ) 99K P(V 0), Vm1 7→ Vm1 ∩ V 0.

Assume G(m1, V ) is embedded into P(∧m1V ) via the Plücker embedding, and let

Y := {Vm1 ∈ G(m1, V ) | dim(Vm1 ∩ V 0) ≥ 2}.

A standard computation in linear algebra shows that
(i) there exists a subspace W ⊂ ∧m1V of codimension dimV −m1 + 1, such that

Y = G(m1, V ) ∩ P(W );

(ii) there is an isomorphism g : (∧m1V )/W
'−→ V 0 satisfying

(38) γ(Vm1) = g(∧m1Vm1 +W )

(in particular, this implies that γ is regular on G(m1, V ) \ Y );
(iii) there exists a vector space U containing ∧m1V as a subspace, together with a surjective
operator ε : U � V with ker ε = W .
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In addition, we may suppose that m1 is large enough so that there exists a subspace Z of W
such that the morphism

ϕ′ : G(m1, V )→ P((∧m1V )/Z), Vm1 7→ ∧m1Vm1 + Z

is an embedding. Set V ′ := U , n1 = dimZ + 1, n2 = dimW + m2. The inclusion ∧m1V ⊂ V ′

yields an embedding

j : P((∧m1V )/Z) ↪→ G(n1, V
′), v + Z 7→ Span{v + Z}.

Define ϕ1,1 : G(m1, V ) → G(n1, V
′) as the composition j ◦ ϕ′, and let ϕ2,2 : G(m2, V ) →

G(n2, V
′) be the standard extension defined by the flag (W ⊂ U).

We show now that, given a flag (0 ⊂ Vm1 ⊂ Vm2 ⊂ V ), one has ϕ1,1(Vm1) ⊂ ϕ2,2(Vm2), and
hence there is a well-defined embedding

ϕ : Fl(m1,m2, V ) ↪→ Fl(n1, n2, V
′), (Vm1 ⊂ Vm2) 7→ (ϕ1,1(Vm1) ⊂ ϕ2,2(Vm2)).

Indeed, in view of (38), the rational morphism γ decomposes as

γ : G(m1, V )
ϕ′

↪→ P((∧m1V )/Z)
q
99K P((∧m1V )/W )

g−→
'

P(V 0),

Vm1

ϕ′7→ ∧m1Vm1 + Z
q7→ ∧m1Vm1 +W

g7→ Vm1 ∩ V 0,

where q is a rational surjective morphism. If Vm1 ∩ V 0 =: V1 is a 1-dimensional space, i.e. if
q is regular at the point ∧m1Vm1 + Z ∈ P((∧m1V )/Z), then the inclusion Vm1 ⊂ Vm2 implies
V1 ⊂ Vm2 . Hence,

ϕ1,1(Vm1) = ∧m1Vm1 + Z ⊂ ∧m1Vm1 +W = ε−1(V1) ⊂ ε−1(Vm2) = ϕ2,2(Vm2).

In the remaining case when dim(Vm1 ∩ V 0) ≥ 2, we have ∧m1Vm1 ⊂ W by property (i), and
therefore

ϕ1,1(Vm1) = ∧m1Vm1 + Z ⊂ W ⊂ ε−1(Vm2) = ϕ2,2(Vm2).

Finally, we have the following proposition.

Proposition 6.1. Let {ϕk : Fl(mk,1,mk,2, Vk) → Fl(mk+1,1,mk+1,2, Vk+1)}k≥1 be a chain of
embeddings as constructed above. The ind-variety X obtained as the direct limit of this chain
is not isomorphic to an ind-variety of generalized flags.

Proof. Assume to the contrary that X is isomorphic to Y for some ind-variety of generalized
flags Y. Since the embeddings ϕk are linear, it follows that PicX ' Z× Z. Therefore PicY '
Z × Z, and consequently, Y is isomorphic to Fl(F ′, E ′, V ′) for some countable-dimensional
vector space V ′, some basis E ′ of V ′, and some flag F ′ = (F ′1 ⊂ F ′2) in V ′ of length 2. Since
the morphisms (ϕk)1,1 : G(mk,1, Vk) → G(mk+1,1, Vk+1) factor through projective spaces, the
ind-variety X projects onto P∞ in a way that the line bundle OX(1, 0) is trivial along the fibers
of the projection. Therefore, we infer that dimF ′1 = 1 or codimV ′F

′
2 = 1. This follows from the

fact that the ind-variety P∞ is not isomorphic to any ind-Grassmannian Fl(F,E ′, V ′), where
F is a single subspace with dimF ≥ 2 and codimV ′F

′ 6= 1, see [9, Thm. 2]. Consequently,
the flag F ′ = (F ′1 ⊂ F ′2) can be chosen with dimF ′1 = 1 (in the case where codimV ′F

′
2 = 1 one

replaces V ′ by its restricted dual space defined by the basis E ′).
The standard extensions (ϕk)2,2 : G(mk,2, Vk) → G(mk+1,2, Vk+1) allow to identify

lim−→G(mk,2, Vk) with an ind-Grassmannian Fl(F∞, E, V ), where F∞ is a subspace of V = lim−→Vk
and E is an appropriate basis of V . Moreover, we have dimF∞ = ∞ = codimV F∞, as the
construction of ϕk shows that lim

k→∞
mk,2 = ∞ = lim

k→∞
(dimVk − mk,2). After identifying the
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triples (F∞, E, V ) and (F ′2, E
′, V ′), we obtain a commutative diagram

X

πX
%%

Fl(F,E, V )

π

��

∼
σoo

Fl(F∞, E, V ),

where π is the natural projection and σ is an isomorphism of ind-varieties. The fibers of both
projections πX and π are isomorphic to P∞.

We will show now that the existence of the isomorphism X
σ←−
∼

Fl(F,E, V ) is contradictory.

Recall that the group GL(E, V ) of invertible finitary linear operators defined by E (i.e. the
group of invertible linear generators on V each of which fixes all but finitely many elements
of E) acts on Fl(F,E, V ) and Fl(F∞, E, V ), and the line bundle O(1, 0) := σ∗OX(1, 0) on
Fl(F,E, V ) admits a GL(E, V )-linearization. This linearization is unique when restricted to
SL(E, V ). If we compute the SL(E, V )-module Γ := H0(Fl(F,E, V ),O(1, 0)), we see that

Γ ' lim←−H
0(πk∗(O(1, 0)|Fl(1,mk,2,Vk))),

where here πk : Fl(1,mk,2, Vk)→ Gr(mk,2, Vk) denote the natural projections. Consequently,

Γ ' lim←−V
∗
k ' V ∗.

On the other hand, since σ∗ induces an SL(E, V )-linearization on OX(1, 0), and consequently

an isomorphism of SL(E, V )-modules Γ
∼−→ H0(X,OX(1, 0)), we can compute Γ via the system

of projections τk : Fl(mk,1,mk,2, Vk)→ G(mk,2, Vk). This yields

Γ ' lim←−H
0(τk∗(OX(1, 0)|Fl(mk,1,mk,2,Vk))) ' lim←−∧

mkV ∗k .

However, lim←−∧
mkV ∗k is not isomorphic to V ∗ as an SL(E, V )-module. To see this, it is enough

to observe that lim←−∧
mkV ∗k and V ∗ are non-isomorphic after restriction to SL(Vk) for large k.

We have a contradiction as desired. �
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