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Abstract

The purpose of this Ph.D. thesis is to study and classify primitive
ideals of the enveloping algebras U(o(∞)) and U(sp(∞)). Let g(∞)
denote any of the Lie algebras o(∞) or sp(∞). Then
g(∞) =

⋃
n≥2 g(2n) for g(2n) = o(2n) or g(2n) = sp(2n), respec-

tively. We show that each primitive ideal I of U(g(∞)) is weakly
bounded, i.e., I ∩ U(g(2n)) equals the intersection of annihilators of
bounded weight g(2n)-modules. To every primitive ideal I of g(∞)
we attach a unique irreducible coherent local system of bounded ide-
als, which is an analog of a coherent local system of finite-dimensional
modules, as introduced earlier by A. Zhilinskii. As a result, primitive
ideals of U(g(∞)) are parametrized by triples (x, y, Z) where x is a
nonnegative integer, y is a nonnegative integer or half-integer, and Z
is a Young diagram. In the case of o(∞), each primitive ideal is inte-
grable, and our classification reduces to a classification of integrable
ideals going back to A. Zhilinskii, A. Penkov and I. Petukhov. In the
case of sp(∞), only ’half’ of the primitive ideals are integrable, and
nonintegrable primitive ideals correspond to triples (x, y, Z) where y
is a half-integer.
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1. Introduction

In this work, we classify the primitive ideals of the universal enveloping
algebras of the infinite-dimensional Lie algebras o(∞) and sp(∞).

Let g(∞) denote one of the Lie algebras sl(∞), o(∞) and sp(∞), and
let g(n) denote the respective finite-dimensional Lie algebra sl(n), o(2n),
o(2n + 1) or sp(2n). Then the Lie algebra g(∞) is isomorphic to the direct
limit lim−→ g(n) for certain natural embeddings g(n) ↪→ g(n+ 1).

Classifying the primitive ideals of the universal enveloping algebra
U(g(∞)) is an important structural problem for U(g(∞)) as an associative
algebra, and is also a fundamental problem in the representation theory of
g(∞). Indeed, for any Lie algebra g, the annihilator in U(g) of a simple
g-module is a primitive ideal, but experience shows that even for a simple
finite-dimensional Lie algebra g the problem of classifying primitive ideals
in U(g) is tractable, while the problem of classifying simple g-modules when
rank of g the large enough, is untractable or ’wild’. The simple objects of
several important categories of g-modules have been classified. This concerns
category O, the category of Harish–Chandra modules, the category of weight
modules of finite type, and some other categories, but there is no known ap-
proach to a classification of arbitrary simple g-modules. On the other hand,
the classification of primitive ideals for a simple Lie algebra g is now one
of the cornerstones of the representation theory of simple, or semisimple,
finite-dimensional Lie algebras.

Let me discuss this classification in more detail. The starting point is
Duflo’s Theorem, see [D], which claims that, given a simple g-module, there
exists a simple highest weight g-module with the same annihilator. Hence, for
the classification of primitive ideals, it is enough to classify the annihilators
of all simple highest weight g-modules. After this, it remains to understand
when two different highest weight modules have the same annihilators. A
sufficient condition for this was given by A. Joseph [J1], and for g = sl(n)
Joseph was able to solve the problem completely. It turned out, that for
integral weights λ and µ lying in one Weyl group orbit, the corresponding
primitive ideals coincide precisely when the insertion tableaux in the out-
puts of the Robinson–Schensted algorithm applied to λ and µ coincide. We
recall that this is a combinatorial algorithm which attaches to each permu-
tation two Young tableaux: the insertion tableau and the recording tableau.
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For example, let

δ =

(
1 2 3 4 5 6 7 8 9
6 5 1 2 8 3 7 4 9

)
∈ S9

Then the output of the Robinson–Schensted algorithm applied to δ is

Y =

9 7 4
8 5 2
6
2
1

, Y ′ =

9 8 7
6 4 2
5
3
1

where Y is called the insertion tableau and Y ′ is called the recording tableau.
For a detailed description of this algorithm and more examples, see Subsec-
tion 2.12.

Another important result of Joseph, closely related to the classification of
primitive ideals, is that the associated variety of a primitive ideal coincides
with the closure of a nilpotent coadjoint orbit.

The classification of primitive ideals of U(g) for g(n) equal to o(2n),
o(2n+1) or sp(2n) was completed by D. Barbash and D. Vogan in their work
[BV]. As we pointed out above, two annihilators of simple sl(n)-modules L(λ)
and L(µ), with respective highest weights λ and µ, coincide if and only if the
insertion tableaux in the outputs of Robinson–Schensted algorithm applied
λ and µ coincide. This is no longer true for o(2n), o(2n + 1) or sp(2n).
In this case, consider a primitive ideal I = Ann(L(λ)) for a simple module
L(λ) with highest weight λ. Then Barbash and Vogan find a weight γ such
that I = Ann(L(γ)) and the insertion tableau Y in the output of Robinson–
Schensted algorithm applied to γ has the property that the lengths of the
rows of Y are equal to the sizes of Jordan cells for a nilpotent matrix from the
associated variety of I. In this way, primitive ideals of U(o(2n)), U(o(2n+1))
and U(sp(2n)) can also be parameterized by (certain) Young tableaux.

Now, let us turn to the infinite-dimensional setting. First, we will briefly
recall the classification of primitive ideals of the universal enveloping alge-
bra for the infinite-dimensional Lie algebra sl(∞), due to I. Penkov and A.
Petukhov. In the series of works [PP1], [PP2], [PP3], [PP4], they provided
such a classification, and in the paper [PP5] this classification was related to
an infinite-dimensional analogue of the Robinson–Schensted algorithm.

We should note that in the case of sl(∞) there are some important differ-
ences to the finite-dimensional case. First, it easy to prove that the center of
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the universal enveloping algebra of the Lie algebra sl(∞) consists of constants
only. Second, a ’generic’ simple sl(∞)-module has zero annihilator, and in
[PP2] a criterion for a simple highest weight sl(∞)-module to have nonzero
annihilator is established. Next, every primitive ideal for sl(∞) is integrable,
which is wrong in the finite-dimensional case. Recall that an integrable ideal
I ⊂ U(g(∞)) is by definition the annihilator of an integrable g(∞)-module
M , i.e., of a g(∞)-module M which, when restricted to g(n) for any n, is a
sum of finite-dimensional g(n)-modules. Finally, the integrability of a prim-
itive ideal I ⊂ U(sl(∞)) does not imply that any simple sl(∞)-module M ,
whose annihilator equals I, is integrable.

The integrability of a primitive ideal I ⊂ U(sl(∞)) was proved by Penkov
and Petukhov in the work [PP4]. This reduced the classification of primitive
ideals to a classification of annihilators of simple integrable sl(∞)-modules.
This latter classification had already been carried out in the papers [PP1],
[PP2], [PP3] (without classifying simple integrable sl(∞)-modules!) and re-
lies essentially on work of A. Zhilinskii.

In a series of works [Zh1], [Zh2], [Zh3], Zhilinskii introduces and classifies
certain combinatorial data which he called coherent local systems, c.l.s.. In
the work [PP3], Penkov and Petukhov establish a bijection between some irre-
ducible c.l.s. and integrable primitive ideals. In the cases of o(∞) and sp(∞),
integrable primitive ideals of U(sl(∞)) are in one-to-one correspondence with
all irreducible c.l.s. Next, in the paper [PP4] Penkov and Petukhov intro-
duce the notion of a precoherent local system (p.l.s.) and prove that every
primitive ideal of U(sl(∞)) is integrable.

More precisely, let V (n) be the natural sl(n)-module, and let V = lim−→V (n)
be the natural sl(∞)-module. We denote by S•(V ) and Λ•(V ) the symmetric
algebra and the exterior algebra of V respectively. It turns out that every
primitive ideal of U(sl(∞)) has the form

I(x, y, Yl, Yr) := AnnU(sl(∞))(VYl ⊗ (S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ (VYr)∗),

where x, y ∈ Z≥0, Yl and Yr are Young diagrams, and the modules VYl and
(VYr)∗ are constructed as follows. Let Y be a Young diagram with row lengths

l1 ≥ l2 ≥ · · · ≥ ls > 0.

Then for n ≥ s we denote by VY (n) the sl(n)-module with highest weight

(l1, l2, . . . , ls, 0, 0, . . . , 0)︸ ︷︷ ︸
n numbers

,
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and note that the modules VY (n) are nested: VY (n) ↪→ VY (n+1). This allows
us to define the sl(∞)-module VY as the direct limit lim−→VY (n). Finally, we
put

(VY )∗ = lim−→(VY (n))∗,

where (VY (n))∗ is the module dual to VY (n).

As stated above, the goal in the present work is to classify the prim-
itive ideals of the universal enveloping algebras of o(∞) and sp(∞). For
o(∞), Penkov and Petukhov conjectured that every primitive ideal is inte-
grable. Proving this conjecture, reduces the classification of primitive ideals
of U(o(∞)) to the known classification [PP3] of integrable primitive ideals
of U(o(∞)). On the other hand, in the case of sp(∞) not every primitive
ideal is integrable. Indeed, consider the simple sp(2n)-modules SW+(2n)
and SW−(2n) (the Shale–Weil modules) with respective highest weights
(−1

2
,−1

2
, . . . ,−1

2
,−1

2
) and (−1

2
,−1

2
, . . . ,−1

2
,−3

2
). One can check that the di-

rect limits lim−→SW+(2n) and lim−→SW−(2n) are well-defined sp(∞)-modules.
In the work [PP3] Penkov and Petukhov prove that the annihilators in
U(sp(∞)) of these modules coincide, and constitute a nonintegrable primitive
ideal.

For the sp(∞)-case Penkov and Petukhov provided me with a conjectural
construction of all primitive ideal of U(sp(∞)) by using a generalization of
the notion of c.l.s. In this work, I prove this conjecture, as well as the
conjecture that all primitive ideals of U(o(∞)) are integrable.

In what follows, I describe the contents of this dissertation.

In Section 2 we give most necessary definitions, as well as known state-
ments which are used later in this work. Section 3 is devoted to the proof
of the fact that every primitive ideal of U(o(∞)) or U(sp(∞)) is weakly
bounded. In addition, it turns out that all primitive ideals of U(o(∞)) and
some primitive ideals of U(sp(∞)) are locally integrable. In Section 4 we
prove that every locally integrable ideal of U(o(∞)) and U(sp(∞)) is inte-
grable.

In Section 5 we introduce the notions of a coherent local system of
bounded ideals (c.l.s.b.) and a precoherent local system of bounded ide-
als (p.l.s.b.), which generalize the notions of a coherent local system and a
precoherent local system of finite-dimensional representations, respectively.

A new combinatorial tool appearing in the case of sp(∞) are the Kazhdan–
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Lusztig polynomials. Each Kazhdan–Lusztig polynomial is defined by two
elements of the Weyl group of sp(2n) for some n (in general, of a Cox-
eter group); for a more precise definition, see [H] or Subsection 5.1. It is
a remarkable fact that the Kazhdan–Lusztig polynomials corresponding to
a bounded simple highest weight sp(2n)-module L(λ) are equal to the re-
spective Kazhdan–Lusztig polynomials corresponding to the simple finite-
dimensional o(2n)-module L(λ′) where λ′ = λ +

∑n
i=1 εi. Using this, we

establish a one-to-one correspondence between the set of c.l.s.b. for sp(∞)
and the set of c.l.s.b for o(∞), the latter set being equal to the set of c.l.s.
for o(∞).

Finally, in Section 6 it is proved that each nonzero primitive ideal
I ( U(sp(∞)) is the annihilator of a unique sp(∞)-module of the form

(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ or (S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ ⊗R

where x, y ∈ Z≥0, V is the natural sp(∞)-module, VZ is the sp(∞)-module
defined analogously to the sl(∞) case (for Z is arbitrary Young diagram),
and R is the Shale–Weil sp(∞)-module which is equal to the direct limit
lim−→SW+(2n).

One may note that the notion of a bounded primitive ideal of U(o(∞))
and U(sp(∞)) is well-defined. This can be deduced for instance from work of
I. Penkov and V. Serganova [PS]. Furthermore, the work [GP] of
D. Grantcharov and I. Penkov shows that the only nonintegrable bounded
ideal of U(sp(∞)) is the annihilator of module lim−→SW+(2n). By analogy
with the finite-dimensional case, this ideal should be called Joseph ideal. In
this way, all nonintegrable primitive ideals of U(sp(∞)) are weakly bounded
but all of them, with one exception, are not bounded.
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2. Preliminaries

All Lie algebras and vector spaces are defined over C. Here we outline
some of the preliminaries needed in the sequel. Let g be a finite- or countable-
dimensional Lie algebra, and g, g0 ⊂ g. Then

adg : g→ g, adg(g0) = [g, g0]

is the adjoint representation of g. The universal enveloping algebra U(g) of
a Lie algebra g is the quotient algebra

U(g) := T (g)/I,

where
T (g) = C⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ . . .

is the tensor algebra of g, and I is the two-sided ideal of T (g) generated by
all elements of the form

a⊗ b− b⊗ a− [a, b]

for a, b ∈ g.
For a vector space V , we define the dual space

V ∗ := Hom(V,C).

Let V be a vector space and S ⊂ V be a subset of V . Then linear span
spanS of S in V defined as

spanS =
⋂

V ′,

where the intersection is taken over all subspaces V ′ ⊂ V such that V ′ ⊃ S.
Let F be a finite set. Then #F denotes the number of elements of F .

Next, we introduce the associative algebra Matn = Matn(C) of all (n×n)-
matrices over C. Also we fix the special basis of the vector space Matn, where
eij is the elementary matrix

eij =


0 . . . 0 . . . 0
...

. . .
... . .

. ...
0 . . . 1ij . . . 0
... . .

. ...
. . .

...
0 . . . 0 . . . 0

 .

The (i, j)-th entry of ei,j equals 1, while all other entries are zero.
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Let X = {xij} be a (n× n)-matrix. Then we put

trX =
n∑
i=1

xii and X t = {aij | aij = xji}.

There is a symmetric bilinear form (·, ·) on the Lie algebra g, defined by

(x, y) = tr(adx ady)

for x, y ∈ g. This symmetric bilinear form is called the Killing form on g.

2.1. Lie algebras with root decomposition

Here we introduce some basic definitions and facts from the structure
theory of the Lie algebras.

Let g be a finite- or countable-dimensional Lie algebra, and let U(g)
denote the universal enveloping algebra of g.

Definition 2.1. A Lie subalgebra h ⊂ g is called a toral subalgebra of g if,
for every nonzero element h ∈ h, the linear operator adh : g→ g is diagonal-
izable.

Lemma 2.1. Each toral subalgebra h of a finite-dimensional Lie algebra g
is abelian.

Proof. Consider two nonzero elements h1, h2 ∈ h and let h2 =
∑n

s=1 h
s
2 be

the decomposition of h2 as a linear combination of adh1-eigenvectors with
distinct eigenvalues λs. Then, adh1(h2) =

∑n
s=1 λsh

s
2. As h is a subspace of

g, every vector of the form h′i =
∑n

s=1(λs − λi)hs2 belongs to h. The vector
h′i decomposes as a sum of n− 1 adh1-eigenvectors with distinct eigenvalues,
and induction on n shows that in fact every vector hs2 belongs to h. Next,
note that [hs2, [h

s
2, h1]] = [hs2,−λshs2] = 0. Since adhs2 is diagonalizable for

each s and keradhs2
= ker(adhs2

)2 , we conclude that [hs2, h1] = 0 for all s. Hence,

[h2, h1] = 0.

We note that, as a corollary of Lemma 2.1 and Definition 2.1, every
toral subalgebra of a finite-dimensional Lie algebra is diagonalizable, i.e. all
operators in it are simultaneously diagonalizable.

Definition 2.2. Let h be a toral subalgebra of g. Then h is a maximal toral
subalgebra if there is no proper inclusion h ⊂ h′ for a toral subalgebra h′ ∈ g.

11



Definition 2.3. A maximal toral subalgebra h ⊂ g is a splitting Cartan
subalgebra if g has the following h-module decomposition:

g =
⊕
α∈h∗

gα (1)

where gα is the eigenspace {x ∈ g | [h, x] = α(h)x : ∀h ∈ h} and g0 = h.

For a splitting Cartan subalgebra, the set of nonzero elements α appearing
in the decomposition (1) is called the root system of g, or simply the set of
roots of g with respect to h. We denote the set of roots by ∆.

Let now ∆+, ∆− ⊂ ∆ be two subsets satisfying the conditions

∆ = ∆+ t∆−, −∆+ = ∆−, α, β ∈ ∆+, α + β ∈ ∆⇒ α + β ∈ ∆+.

Given such subsets, we call ∆+ the set of positive roots, and ∆− the set of
negative roots. Then the Z-submodule Λ∆ of h∗ generated by ∆ is called the
root lattice of the root system ∆.

If the Lie algebra g is finite dimensional, we introduce the notation

ρg :=
∑
α∈∆+

α/2.

Definition 2.4. Let g be a Lie algebra. A Lie subalgebra b of g is a splitting
Borel subalgebra if

b = h⊕
⊕
α∈∆+

gα

for some splitting Cartan subalgebra h, and some subset ∆+ of positive roots.

Definition 2.5. Let b be a Borel subalgebra defining ∆+. Then an element
α ∈ ∆+ is said to be a simple b-positive root, or a simple root with respect
to b, if it cannot be decomposed as a (finite) sum of two or more b-positive
roots. We usually use the symbol Σ+ or Σ for the set of all simple b-positive
roots. Similarly, we say that α ∈ ∆− is a simple negative root with respect
to b if it cannot be decomposed as a sum of two or more b-negative roots.
The symbol Σ− denotes the set of simple b-negative roots.
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2.2. Some finite-dimensional Lie algebras

Here we review some important examples of finite-dimensional Lie alge-
bras.

1) The Lie algebra g = gl(n) = gl(n,C) is the Lie algebra of the algebra
Matn, where [X, Y ] = XY − Y X for X, Y ∈ Matn.

The general linear Lie algebra is the Lie algebra obtained from the
associative algebra Matn.

We can choose a splitting Cartan subalgebra hgl(n) as the algebra of
all diagonal matrices in Matn. Indeed, hgl(n) is clearly a maximal toral
subalgebra of g. We have the following hgl(n)-root decomposition:

g = hgl(n) ⊕
⊕

1≤i,j≤n,i 6=j

span{eij}.

Consider the basis b = {e11, e22, . . . , en n} of the Lie algebra hgl(n). The
dual basis

b∗ = {ε1, ε2, . . . , εn}

of h∗gl(n) satisfies

εi(ejj) = δij

for 1 ≤ i, j ≤ n. Here δij is Kronecker’s delta.

Thus the root system ∆gl(n) of gl(n) with respect to hgl(n) is

∆gl(n) = {εi − εj | i, j ∈ Z>0, 1 ≤ i 6= j ≤ n}.

We can choose

∆+
gl(n) = {εi − εj | i, j ∈ Z>0, 1 ≤ i < j ≤ n} (2)

as the set of positive roots, with simple roots

{ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn}.

Then the splitting Borel subalgebra bgl(n) of gl(n) containing hgl(n) and
corresponding to ∆+

gl(n) consists of all upper-triangular matrices.

The Lie algebra gl(n) is not a simple Lie algebra, and we can split it
as gl(n) = sl(n)⊕ {scalar matrices}.
Let’s describe the Lie algebra sl(n).
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2) The Lie algebra g = sl(n) = sl(n,C) is the Lie subalgebra of gl(n)
consisting of all g such that tr g = 0.

The Lie algebra sl(n) is called the special linear Lie algebra.

We can choose as a Cartan subalgebra the algebra

hsl(n) = span{eii − ei+1 i+1 | 1 ≤ i ≤ n}

of all diagonal matrices of sl(n). Then we have the root decomposition

g = hsl(n) ⊕
⊕

1≤i,j≤n,i 6=j

span{eij}.

Next, we define εi as in the previous case. Note that

{εi − εi+1 | 1 ≤ i ≤ n}

is the basis of h∗sl(n) dual to the basis

{eii
2
− ei+1 i+1

2
| 1 ≤ i ≤ n}.

The root system ∆sl(n) of sl(n) with respect to hsl(n) is equal to the root
system of gl(n) with respect to hgl(n).

Let the positive and simple roots be as in the previous example. The
Weyl group Wsl(n) is isomorphic to the permutation group in n letters
Wsl(n) ' Sn. It acts on a weight λ =

∑n
i=1 λiεi by permuting its

coordinates:

w(λ) =
n∑
i=1

λiεw(i), w ∈ Wsl(n).

The Lie subalgebra of upper triangular matrices in sl(n) is a splitting
Borel subalgebra bsl(n), and ∆+

sl(n) is given by the right-hand side of the

formula (2).

3) The Lie algebra o(2n) = o(2n,C) is a Lie subalgebra of the Lie algebra
gl(2n). Fix the matrix

F =


0 0 . . . 0 1
0 0 . . . 1 0
... . .

. ...
0 1 . . . 0 0
1 0 . . . 0 0

 .
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Then the Lie algebra o(2n) is

o(2n) = {X ∈ gl(2n) | XF + FX t = 0}.

It is a subalgebra because

(X + Y )F + F (X + Y )t = (XF + FX t) + (Y F + FY t) = 0,

and

[X, Y ]F + F [X, Y ]t = XY F − Y XF + F (XY )t − F (Y X)t =

= −XFY t + Y FX t + FY tX t − FX tY t =

= (Y F + FY t)X t − (XF + FX t)Y t = 0,

where X, Y ∈ o(2n).

Throughout the rest of this work, we index the columns and rows of
matrices in the ambient Lie algebra gl(2n) by

(−n,−n+ 1, . . . ,−1, 1, . . . , n− 1, n).

The subalgebra

ho(2n) = span{vi = eii − e−i−i | 1 ≤ i ≤ n}

of all diagonal matrices in o(2n) is a splitting Cartan subalgebra of
o(2n).

Let {εi} be the basis of h∗o(2n) dual to the basis {vi}. The root system

∆o(2n) of o(2n) with respect to ho(2n) is

∆o(2n) = {±(εi ± εj) | i, j ∈ Z>0, 1 ≤ i 6= j ≤ n}.

Let
∆+

o(2n) = {εi ± εj | i, j ∈ Z>0, 1 ≤ i < j ≤ n}
be the set of positive roots, with the set of simple roots

{ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn}. (3)

The splitting Borel subalgebra bo(2n) of o(2n) with these positive roots
is the subalgebra of all upper-triangular matrices in o(2n).

In the sequel we fix an inclusion h∗o(2n) ↪→ h∗sl(2n) defined by εi 7→ ε̄i−ε̄−i,
where {ε̄1, ε̄2 . . . , ε̄n, ε̄−n, . . . , ε̄−2, ε̄−1} is the basis of h∗gl(2n) dual to the

basis {2eii}.

15



Under this inclusion, a weight λ =
∑n

i=1 λiεi is mapped to

n∑
i=1

λiε̄i +
−n∑
j=−1

λj ε̄j

where λj = −λ−j for j < 0.

Let S2n denote the symmetric group on the 2n letters

−n, . . . ,−1, 1, . . . , n.

The Weyl group Wo(2n) of the Lie algebra o(2n) is isomorphic to the
subgroup of S2n consisting of permutations w ∈ S2n such that w(−i) =
−w(i), 1 ≤ i ≤ n, for which the number #{i > 0 | w(i) < 0} is even.
00

We will identify Wo(2n) with this subgroup, and will use the usual two-
line notation

g =

(
−n −n+ 1 . . . −1 | 1 . . . n− 1 n
g(−n) g(−n+ 1) . . . g(−1) | g(1) . . . g(n− 1) g(n)

)
for an element g ∈ W . Note that, if we identify a weight λ =

∑n
i=1 λiεi

with the sequence of integers

(λ1, λ2, . . . , λn, λ−n, . . . , λ−2, λ−1),

then g sends this sequence to

(λg−1(1), λg−1(2), . . . , λg−1(n), λg−1(−n), . . . , λg−1(−2), λg−1(−1)).

4) The Lie algebra sp(2n) = sp(2n,C) is a Lie subalgebra of gl(2n). Fix
the matrix

F =


0 0 . . . 0 1
0 0 . . . 1 0
... . .

. ...
0 −1 . . . 0 0
−1 0 . . . 0 0


with n 1s and (−1)s on the antidiagonal. Then the Lie algebra sp(2n)
is

sp(2n) = {X ∈ gl(2n) | XF + FX t = 0}.

16



One can check that it is a Lie subalgebra indeed.

As in the case of o(2n), we use the set of indices {−n,−n+1, . . . ,−1, 1, . . . , n−
1, n}. The subalgebra

hsp(2n) = span{eii − e−i−i | 1 ≤ i ≤ n},

of all diagonal matrices in sp(2n) is a splitting Cartan sublagebra
of sp(2n).

We denote by εi the same weights as for o(2n). Then the root system
∆sp(2n) of sp(2n) with respect to hsp(2n) is

∆sp(2n) = {±(εi ± εj),±2εi | i, j ∈ Z>0, 1 ≤ i 6= j ≤ n}.

Let
∆+

sp(2n) = {εi ± εj, 2εi | i, j ∈ Z>0, 1 ≤ i < j ≤ n}

be the set of positive roots with the set of simple roots

{ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, 2εn}. (4)

Then the splitting Borel subalgebra bsp(2n) of sp(2n) with positive roots
∆+

sp(2n) is the subalgebra of all upper-triangular matrices in sp(2n).

As in the case of o(2n), we can rewrite any weight λ =
∑n

i=1 λiεi as

λ =
n∑
i=1

λiε̄i +
−n∑
j=−1

λj ε̄j

where λj = −λ−j for j < 0. The Weyl group Wsp(2n) of sp(2n) is iso-
morphic to the subgroup of S2n consisting of permutations w ∈ S2n such
that
w(−i) = −w(i), 1 ≤ i ≤ n. As for o(2n), we will identify Wsp(2n)

with this subgroup and will use usual two-line notation.

In the sequel, we will refer to the Cartan and Borel subalgebras of
sl(n), o(2n) or sp(2n) introduced above, as fixed Cartan and Borel
sibalgebras.

2.3. Some countable-dimensional Lie algebras

Here we review some important examples of infinite-dimensional Lie al-
gebras.

17



1) The Lie algebra sl(∞) = sl(∞,C) is a countable-dimensional Lie alge-
bra. Consider the embeddings

sl(i)→ sl(i+ 1),

X 7−→
(

X 0i×1

01×i 0

)
.

We set
sl(∞) := lim−→ sl(i).

Next, we choose a splitting Cartan subalgebra hsl(∞) as the direct limit

hsl(∞) := lim−→ hi,

where hi is the diagonal splitting Cartan subalgebra of sl(i). The Lie
algebra hsl(∞) is obviously a toral subalgebra. It is also maximal toral,
as any larger subalgebra contains an elementary nondiagonal matrix,
and the latter is a nilpotent element of sl(∞).

The root decomposition of the Lie algebra sl(∞) is

sl(∞) = hsl(∞) ⊕
⊕

i,j∈Z>0

span{eij}.

The root system ∆ of sl(∞) with respect to hsl(∞) is

∆ = {εi − εj | i 6= j, i, j ∈ Z>0},

where
εi(ejj) = δij.

Let
∆+ = {εi − εj | i < j, i, j ∈ Z>0}

be the set of positive roots with the simple roots

{ε1 − ε2, ε2 − ε3, ε3 − ε4 . . . }.

Then the splitting Borel subalgebra bsl(∞) ⊃ hsl(∞) with positive roots
∆+ is the direct limit of lim−→ bsl(n).
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2) The Lie algebra o(∞) = o(∞,C) is a countable-dimensional Lie alge-
bra. Consider the embeddings

φ2i : o(2i)→ o(2i+ 2),

X 7−→

 0 01×i 0
0i×1 X 0i×1

0 01×i 0

 .

We set
o(∞) := lim−→ o(2i).

We use Z\{0} as the set of indices for matrices of o(∞). We can choose
a splitting Cartan subalgebra ho(∞) as the direct limit

ho(∞) := lim−→ ho(2i),

where
ho(∞) = span{vi = eii − e−i −i | 1 ≤ i}.

By
{ε1, ε2, ε3, . . . }

we denote set dual to the basis {vi} of ho(∞), i.e.

εi(vj) = δij

for 1 ≤ i, j and i, j ∈ Z>0.

The root system ∆ of o(∞) with respect to ho is

∆ = {±(εi ± εj) | i 6= j, i, j ∈ Z>0}.

Let
∆+ = {−εi ± εj | i > j, i, j ∈ Z>0}

be the set of positive roots; the corresponding simple roots are

{−ε1 − ε2, ε1 − ε2, ε2 − ε3, ε3 − ε4 . . . }.

3) The Lie algebra sp(∞) = sp(∞,C) is a countable-dimensional Lie al-
gebra. We consider the embedding

ψ2i : sp(2i)→ sp(2i+ 2),
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X 7−→

 0 01×i 0
0i×1 X 0i×1

0 01×i 0

 ,

and put
sp(∞) := lim−→ sp(2i).

We use the set Z\{0} as a set of indexes for matrices of sp(∞). One
can choose a splitting Cartan subalgebra hsp(∞) as the direct limit

hsp(∞) := lim−→ hsp(2i).

By construction,

hsp(∞) = span{vi = eii − e−i −i | 1 ≤ i}. (5)

The vectors εi are defined in the same way as for o(∞).

The root system ∆ of sp(∞) with respect to hsp(∞) is

∆ = {±(εi ± εj),±2εi | i 6= j, i, j ∈ Z>0}.

We set
∆+ = {−εi ± εj,−2εi | i > j, i, j ∈ Z>0}

as the set of positive roots; the corresponding simple roots are

{−2ε1, ε1 − ε2, ε2 − ε3, ε3 − ε4 . . . }.

2.4. Highest weight modules

In this subsection we introduce the notion of highest weight module, and
give some related definitions.

Definition 2.6. A Lie algebra g is simple if every ideal I ⊂ g is equal to
zero or to g.

For the purposes of this paper, we call a Lie algebra semisimple if it is
isomorphic to a direct of a simple Lie algebras. Let g be a semisimple Lie
algebra, h ⊂ g be a splitting Cartan subalgebra, b ⊂ g be a splitting Borel
subalgebra with b ⊃ h, and let n =

⊕
α∈∆+ gα. Fix a g-module M . For each

λ ∈ h∗, define Mλ to be the subspace

{v ∈M | h · v = λ(h)v : ∀h ∈ h} ⊂M.
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Definition 2.7. If

M =
⊕
λ∈h∗

Mλ

then M is a weight module over g. If Mλ 6= 0, then λ 6= 0 is said to be a
weight of M , Mλ is called a weight subspace of M , and the elements of Mλ

are called weight vectors of weight λ.

Definition 2.8. The set suppM of weights λ for which dimMλ > 0 is called
the support of the weight module M .

One can prove that submodules, quotients and direct sums of weight
g-modules are weight modules as well.

Definition 2.9. A g-module M is said to be a cyclic over g if M is generated
as an U(g)-module by a single nonzero vector.

Definition 2.10. A g-module M is called a highest weight module with
respect to a splitting Borel subalgebra b if it is generated by a vector v 6= 0
satisfying

n · v = 0,

and there exists a weight λ (which we will call the highest weight of M) such
that

h · v = λ(h)v

for each h ∈ g. The vector v is called a highest weight vector of M .

Each highest weight g-module is a weight g-module since g is an adh-
weight module.

Definition 2.11. For a fixed finite-dimensional semisimple Lie algebra g, a
splitting Borel sublagebra b ⊂ g, a splitting Cartan subalgebra h ⊂ b, and for
every λ ∈ h∗, we define the highest weight module M(λ) = M(λ; g, b, h) by
setting

M(λ; g, b, h) := U(g)/I,

where I is the left ideal in U(g) generated by n and by h − λ(h)1U(g) for all
h ∈ h. The modules M(λ; g, b, h) are known as Verma modules.

Each Verma module M(λ) has a unique maximal proper U(g)-submodule
N , which is the sum of all proper submodules of M(λ), [DP]. Accordingly,

L(λ) := M(λ)/N
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is the unique simple quotient of M(λ).
We denote by vλ the image of 1U(g) under the canonical projection

U(g) � U(g)/I. Clearly, vλ is a highest weight vector of M(λ) of weight
λ. Moreover, for any highest weight module M over g with highest weight
λ, there is a unique surjective homomorphism φ : M(λ) � M . Hence, up
to isomorpsim, L(λ) is the unique simple highest weight module over g with
highest weight λ.

2.5. BGG category O
Here we recall some basics concerning the BGG category O, which was

introduced in the early 1970s by Joseph Bernstein, Israel Gelfand, and Sergei
Gelfand.

Definition 2.12. The BGG category O is defined to be the full subcategory
of U(g)-modules whose objects are the modules satisfying the following three
conditions:

1) M is a finitely generated U(g)-module.

2) M is h-semisimple, that is, M is a weight module.

3) M is a locally n-finite: for each v ∈ M , the subspace U(n) · v of M is
finite dimensional.

We will call a weight λ dominant if 2(α,λ)
(α,α)

is not a negative integer for any

α ∈ ∆+. A weight λ is regular if 2(α,λ)
(α,α)

6= 0 for any α ∈ ∆+.

Definition 2.13. The dot action of W on h∗ is defined by letting

w · λ = w(λ+ ρg)− ρg.

Definition 2.14. The reflection group corresponding to a linear function λ
is the subgroup W[λ] of W which consists of the elements

w ∈ W such that w · λ− λ ∈ Λ∆,

where Λ∆ is the root lattice of g.

By definition, two weights γ and κ are linked by W[λ] whenever γ = w · κ
for w ∈ W[λ].

The blocks of the category O are precisely the subcategories consisting of
modules whose all composition factors have highest weights linked by W[λ]

to a weight λ such that −λ is dominant. Thus the blocks are in natural
bijection with the dominant weights.
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2.6. Duflo’s Theorem

In this subsection we recall the important Duflo Theorem, which allows
us to reduce the set of primitive ideals to the set of annihilators of simple
highest weight modules.

Let A be an associative algebra with identity, and I be an ideal of A.

Definition 2.15. The ideal I ⊂ A is primitive if I is the annihilator of a
simple left A-module.

This following statement is well known as Duflo’s Theorem.

Theorem 2.2. [D] Let g be a finite-dimensional reductive Lie algebra, I be
a primitive ideal of U(g), and b be a Borel subalgebra of g. Then there exists
an irreducible b-highest weight g-module whose annihilator is I.

2.7. Associated variety

Let g be a finite-dimensional Lie algebra. The following theorem is known
as the Poincaré–Birkhoff–Witt Theorem, and plays an important role in this
thesis.

Theorem 2.3. Let φ : g → U(g) be the canonical map. Denote by
{g1, g2, g3, . . . , gn} a basis of g. Then the monomials gv1

1 g
v2
2 g

v3
3 . . . gvnn , where

v1, v2, v3, . . . , vn ∈ Z≥0, constitute a basis of U(g).

Define U i to be the vector subspace of U(g) spanned by all monomi-
als gv1

1 g
v2
2 g

v3
3 . . . gvnn with

∑
vj ≤ i. The chain of subspaces {U i}i∈Z≥0

is a
filtration of U(g).

Definition 2.16. Put U−1 = {0}. Define the associated graded algebra of
U(g):

grU(g) :=
⊕
d∈Z≥0

(Ud/Ud−1)

As a consequence of the Poincaré–Birkhoff–Witt Theorem, we conclude
that this algebra is isomorphic to the symmetric algebra S•(g).

Definition 2.17. In the same way we define the associated graded ideal of
an ideal I ⊂ U(g):

grI :=
⊕
d∈Z≥0

(Ud ∩ I)/(Ud−1 ∩ I) ⊂ grU(g) ' S•(g).

Definition 2.18. We denote by V ar(I) the algebraic variety corresponding
to grI; by definition this is the set of common zeros of grI in g∗ (Here we
identify S•(g) with the algebra of polynomial functions of g∗). By identifying
g and g∗ via the Killing form, we can assume that V ar(I) ⊂ g.
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2.8. Weakly bounded ideals

In this subsection we give some definitions which are needed to state the
results of this work.

Here g(∞) is one of the Lie algebras sl(∞), o(∞) or sp(∞).

Definition 2.19. A g(∞)-module M is integrable if, for any finitely gener-
ated subalgebra U ′ ⊂ U(g(∞)) and any m ∈M , we have dim(U ′ ·m) <∞.

Definition 2.20. A two-sided ideal I ⊂ U(g(∞)) is integrable, if I is the
annihilator of an integrable g(∞)-module.

Definition 2.21. An ideal I ⊂ U(g(∞)) is locally integrable if, for any
finitely generated subalgebra A′ ⊂ U(g(∞)), the ideal I ∩ A′ is an integrable
ideal of A′.

One can check that an ideal I ⊂ U(g(∞)) is locally integrable if and
only if, for every n ∈ Z≥0, I ∩ U(g(2n)) is an intersection of ideals of finite
codimension in U(g(2n)).

Definition 2.22. Let g be a (possibly infinite-dimensional) Lie algebra. For
every weight g-module M we define the degree of module

deg(M) := supλ∈suppM(dimMλ).

Definition 2.23. Let g be a finite-dimensional Lie algebra. Then a weight
g-module M is called bounded if deg(M) <∞.

Definition 2.24. Let g be a finite-dimensional Lie algebra with a split-
ting Cartan subalgebra h. An ideal I ⊂ U(g) is an h-bounded ideal if
I = AnnU(g)(M) where M is a bounded h-weight g-module.

Further, we will simply say bounded instead of h-bounded since the sub-
algebra h will be fixed.

Let I be a bounded ideal such that I = AnnU(g)(M) for some simple
weight g-module M . Then M is a bounded module (see [PS]).

Note that there are no infinite-dimensional bounded o(2n)-modules [F].
There is a classification of bounded infinite-dimensional highest weight simple
g-modules, where g is one of Lie algebras sl(n), o(2n), o(2n + 1) or sp(2n)
(actually, such modules exist only for sl(n) and sp(2n)). In particular, for
sp(2n) we have

Lemma 2.4. [M] Let L(λ) be a simple infinite-dimensional highest weight
sp(2n)-module with highest weight λ. It is bounded if and only if
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1) λ(vi − vi+1) ∈ Z>0 for any 0 < i < n,

2) λ(vn) ∈ 1/2 + Z,

3) λ(vn−1 + vn) ∈ Z≥−2,

where vi is defined in Subsection 2.2 in formula (5).

The following bounded sp(2n)-modules will play an important role in this
thesis.

Example. Consider the ring C[x1, x2, . . . , xn] of polynomials in n variables.
The Lie algebra g(2n) = sp(2n) can be realized as follows:

g(2n) =
⊕

1≤i,j≤n

span{ ∂2

∂xi∂xj
}⊕

⊕
1≤k,l≤n

span{xk
∂

∂xl
+
δkl
2
}⊕

⊕
1≤m,n≤n

span{xmxn},

where δml is the Kronecker symbol. The space
⊕

i span{xi ∂
∂xi

+ 1
2
} is a splitting

Cartan sublagebra h ⊂ sp(2n), with simple coroots hi = −xi ∂
∂xi

+xi+1
∂

∂xi+1
for

i ≤ i ≤ n− 1 and hn = −xn ∂
∂xn
− 1

2
. As an sp(2n)-module, C[x1, x2, . . . , xn]

equals SW+(2n)⊕SW−(2n), where SW+(2n) is the subspace of homogeneous
polynomials of even degree, and SW−(2n) is the subspace of homogeneous
polynomials of odd degree. These two subspaces are simple bounded highest
weight modules with respective highest weights −1

2

∑n
i=1 εi and −1

2

∑n−1
i=1 εi−

3
2
εn. They are known as Shale–Weil (or oscillator) representations.

Definition 2.25. An ideal I ⊂ U(g(∞)) is weakly bounded if I ∩ Un
is an intersection of annihilators of bounded weight modules of Un for ev-
ery n ≥ 2, where Un = U(sl(n)) for g(∞) = sl(∞), Un = U(o(2n))
for g(∞) = o(∞), and Un = U(sp(2n)) for g(∞) = sp(∞).

The next theorem is one of the main results of the present work.

Theorem 2.5. Every primitive ideal of U(o(∞)) or U(sp(∞)) is weakly
bounded. Moreover, each primitive ideal of U(o(∞)) is integrable.

Note that this theorem is an analogue of the result for sl(∞) proved by
I. Penkov and A. Petukhov in [PP4].
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2.9. Integrable ideals and coherent local systems

As before, g(∞) = sl(∞), o(∞) or sp(∞). Also, in this subsection and the
next subsection, g(n) denotes one of the Lie algebras sl(n), o(2n) or sp(2n).
Since we express o(∞) as lim−→ o(2n), we do not need the
o(2n + 1)-series of Lie algebras. Let Irrn denote the set of isomorphism
classes of simple finite-dimensional g(n)-modules.

Definition 2.26. A coherent local system of modules (further c.l.s.) for
g(∞) is a collection of sets

{Qn}n∈Z≥1
⊂ Πn∈Z≥1

Irrn

such that Qm = 〈Qn〉m for any n > m, where 〈Qn〉m denotes the set of
isomorphism classes of all simple g(m)-constituents of the g(n)-modules from
Qn.

Definition 2.27. A c.l.s. Q is irreducible if Q 6= Q′ ∪Q′′ with Q′ 6⊂ Q′′ and
Q′ 6⊃ Q′′, where Q′ and Q′′ are nonempty coherent local systems of modules
for gl(∞).

Each c.l.s. Q can be represented uniquely as a finite union ∪iQ(i) [Zh1]
of some maximal (by inclusion within Q) irreducible c.l.s. Q(i); we call Q(i)
the irreducible components of Q.

Each integrable g(∞)-module M determines a c.l.s. Q := {Qn}n∈Z≥1
,

where

Qn := {z ∈ Irrn | Homg(n)(z,M) 6= {0}}
We denote this c.l.s. by Q(M).

Definition 2.28. We say that a c.l.s. Q is of finite type if the set Qn is
finite for all n ≥ 1.

Definition 2.29. An integrable g(∞)-module M is called locally simple if
M = lim−→Mn for a chain

M3 ⊂Mn ⊂Mn+1 ⊂ . . .

of simple finite-dimensional g(n)-submodules Mn of M .

For every c.l.s. Q = {Qn}n∈Z≥1
we can define the following ideal

I(Q) := ∪m(∩z∈Qm AnnU(g(m)) z) ⊂ U(g(∞)).

We say that I(Q) is the annihilator of Q.
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Proposition 2.6. [Zh1, Lemma 1.1.2] If Q is an irreducible c.l.s., then I(Q)
is the annihilator of some locally simple integrable g(∞)-module. In particu-
lar, the ideal I(Q) is primitive.

Corollary 2.7. The ideal I(Q) is integrable for each c.l.s. Q.

Proof. Let Q = ∪iQ(i), where Q(i) are the irreducible components of Q. By
Proposition 2.6, the ideal I(Q(i)) is the annihilator of a simple integrable
g(∞)-module M(i). Therefore I(Q) is the annihilator of the integrable
g(∞)-module ⊕iMi.

Every isomorphism class z ∈ Irrn of simple g(n)-modules corresponds to
an integral dominant weight λ of g(n). Let z1, z2 be isomorphism classes of
simple g(n)-modules with respective highest weights λ1, λ2. We denote by
z1z2 the isomorphism class of a simple module with highest weight λ1 + λ2.
If S1, S2 ⊂ Irrn we set

S1S2 := {z ∈ Irrn | z = z1z2 for some z1 ∈ S1 and z2 ∈ S2}.

Let Q′ and Q′′ be c.l.s. We denote by Q′Q′′ the smallest c.l.s. such that
(Q′)n(Q′′)n ⊂ (Q′Q′′)n. By definition, Q′Q′′ is the product of Q′ and Q′′. The
definition implies that the operation of product is associative and commuta-
tive.

2.10. Zhilinskii’s classification of c.l.s.

We set V = lim−→V (n), where V (n) is the natural g(n)-module, and we
set (V )∗ = lim−→V (n)∗ where V (n)∗ is the conatural g(n)-module. We denote
by S•(K) and Λ•(K) the symmetric algebra and the exterior algebra of a
module K respectively. Also Sp(K) and Λp(K) denote respectively the pth
symmetric power and the pth exterior power of a module K. A simple highest
weight o(2n)-module with highest weight (1

2

∑n−1
1 εi)± 1

2
εn is called a spinor

module.
If K is a g(∞)-module, we define the c.l.s. Q(K) for which Q(K)n is pre-

cisely the set of isomorphism classes of all simple constituents of K considered
as a g(n)-module.

For simplicity we will use the following notations:

E := Q(Λ•V ), Lp := Q(ΛpV ), L∞p := Q(S•(V ⊗ Cp)),

Rp := Q(Λp(V )∗), R
∞
p := Q(S•((V )∗)⊗ Cp), R := {spinor modules},
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E∞ := {all irreducible modules, which highest weight consists integral entries }
where p, q ∈ Z≥1. Moreover, the following table defines the basic c.l.s. for
the Lie algebras sl(∞), o(∞) and sp(∞).

Lie algebra Basic c.l.s.
sl(∞) E, Lp , L∞p , Rp, R

∞
p , E∞

o(∞) E, Lp , L∞p , E∞, R

sp(∞) E, Lp , L∞p , E∞

By definition the trivial c.l.s. is the c.l.s. Q such that Qn = {C}, where
g · C = 0 for any g ∈ g(n).

Proposition 2.8. [Zh1] Any irreducible c.l.s. can be uniquely expressed as
a product of basic c.l.s. as follows:

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em(R∞w R
zw+1

w+1 R
zw+2

w+2 . . . R
zw+t

w+t )

for g(∞) = sl(∞),

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em or (L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )EmR

for g(∞) = o(∞),

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em

for g(∞) = sp(∞), where

m, r, v, w ∈ Z≥0,

xi, zj ∈ Z≥0 for v + 1 ≤ i ≤ n and w + 1 ≤ j ≤ t.

Here, for v = 0, L∞v is assumed to be trivial c.l.s., and, similarly, R∞w is
assumed to be trivial c.l.s. for w = 0.

2.11. Tensor product of c.l.s.

Here we reformulate the expression of Proposition 2.8 in terms of tensor
products.

Definition 2.30. Let S1, S2 ⊂ Irrn then

S1⊗S2 := {z ∈ Irrn | Homg(n)(z, z1⊗z2) 6= {0}for somez1 ∈ S1 andz2 ∈ S2}.

Given two c.l.s. Q′ and Q′′, their tensor product is the c.l.s. defined by
(Q′ ⊗Q′′)i = Q′i ⊗Q′′i .
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One can check that

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em(R∞w R
zw+1

w+1 R
zw+2

w+2 . . . R
zw+t

w+t ) =

(L∞1 )⊗v ⊗ (R∞1 )⊗w ⊗ ((L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em(R

zw+1

1 R
zw+2

2 . . . R
zw+t

t ))

for g(∞) = sl(∞),

(L∞v L
xv+1

v+1 L
xv+2
v+2 . . . L

xv+r

v+r )Em = (L∞1 )⊗v ⊗ (L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em

for g(∞) = o(∞), sp(∞), and

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )EmR = (L∞1 )⊗v ⊗ (L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )EmR

for g(∞) = o(∞).
We will call an irreducible c.l.s. Q for sl(∞) a left irreducible c.l.s. if

Q = (L∞1 )⊗v ⊗ ((L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em(R

zw+1

1 R
zw+2

2 . . . R
zw+t

t )).

Proposition 2.9. [PP1] Let g = sl(∞), o(∞), sp(∞). An integrable ideal
of U(g(∞)) is prime if and only if it is primitive.

For any integrable ideal I ⊂ U(g(∞)), let

Q(I)n := {z ∈ Irrn | I ∩ U(g(n)) ⊂ AnnU(g(n)) z}.

The collection {Q(I)n} is a well-defined c.l.s., which we denote by Q(I).
For g(∞) = sl(∞) we denote by Ql(I) the union of all irreducible com-

ponents of Q(I) which are left irreducible c.l.s.

Theorem 2.10. [PP1]

1) If g(∞) = o(∞), sp(∞), then the maps

I −→ Q(I),

Q −→ I(Q)

are mutually inverse bijections (which reverse the inclusion relation)
between the set of integrable ideals in U(g(∞)) and the set of c.l.s. for
g(∞).
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2) In case g(∞) = sl(∞) , then the maps

I −→ Ql(I)

Q −→ I(Q)

are mutually inverse bijection (which reverse the relation of inclusion)
between the set of prime ideals in U(g(∞)) and the set of left irreducible
c.l.s. for g(∞).

3) Each integrable ideal of U(sl(∞)) has the form I(Q) for some left
c.l.s. Q.

2.12. Robinson–Schensted algorithm

A partition λ of an integer n ∈ Z≥0 is a nonincreasing finite sequence
λ1 ≥ λ2 ≥ . . . of positive integers, whose sum |λ| = Σλi equals n. The terms
λi of this sequence are called the parts of the partition λ. Let Pn be the
(obviously finite) set of all partitions of n, and P be the union of all Pn for
n ∈ Z≥0.

To each λ ∈ Pn one can associate a subset of Z>0 × Z>0, called Young
diagram Y (λ); it is defined by (i, j) ∈ Y (λ) ⇐⇒ j < λi (so that #Y (λ) =
|λ|). The elements of a Young diagram will be called boxes, and we may
correspondingly depict the Young diagram as rows of boxes of respective
lengths λi, aligned by their left ends, the row of length λi lying higher then
the row of length λj for all i < j.

As an example we consider the partition λ = (7, 5, 3, 3, 1) in P19, and
draw its Young diagram

Y (λ) = .

Clearly, a partition λ ∈ P is determined by Y (λ). The principal reason
for referring to the elements of a Young diagram Y (λ) as boxes (rather than
as points), is that it allows one to represent maps f : Y (λ) → Z by filling
each box s ∈ Y (λ) with the number f(s). We shall call such a filled Young
diagram a standard Young tableau (or simply a standard tableau) of shape λ
if it satisfies the following condition: all numbers f(s) strictly decrease along
each row and weakly decrease along each column.
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Let’s describe the Robinson–Schensted (or Robinson–Schensted–Knuth)
algorithm. It starts from an ordered set d = {di} positive integer, where
1 ≤ i ≤ n, and produces as output two Young tableaux: the insertion tableau
Y and the recording tableau Y ′. This algorithm is based on a procedure
of inserting a new positive integer into a Young tableau, displacing certain
entries, and creating a tableau with one more box than the original one.

The starting Young tableaux Y0 = Y ′0 := {∅} are empty. We set the
counter of steps s to be equal to 1. From this moment, we will perform
subsequent steps until we reach s = n+ 1. The algorithm is as follows.

1) If the current step is s = n+ 1, then we finish the algorithm. If s < n,
we name e := ds the current number. Furthermore, we name the first
row the current row and assign r := 1 (r is the number of the current
row).

2) Find the leftmost number l which is less or equal than the current
number in the current row. If such l exists, then go to step (3). If
there is no such an element, then add a box filled by e to the end of
the current row of Ys−1, denote this new Young tableau by Ys and add
n− s+ 1 to the end of the current row of Y ′s−1. Set s := s+ 1. Return
to step (1).

3) Change l in Ys−1 by the current number e, assign e := l, and change
the current row to the next row (even if it the latter empty) by putting
r := r + 1. Return to step (2).

The Young tableaux Yn and Y ′n obtained at the last step constitute the
output of the Robinson–Schensted algorithm.

Here is an example. Set
{d1 = 5, d2 = 1, d3 = 3, d4 = 2, d5 = 3, d6 = 6, d7 = 4}. We start with
current step s = 0, current row r = 1, current number e = d1 = 5, and
Y0 = Y ′0 = ∅.

Below we list all Yi and Y ′i , which we obtain in the course of the Robinson–
Schensted algorithm.

Y0 = ∅, Y ′0 = ∅,

Y1 = 5 , Y ′1 = 7 ,

Y2 = 5 1 , Y ′2 = 7 6 ,
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Y3 =
5 3
1

, Y ′3 =
7 6
5

,

Y4 =
5 3 2
1

, Y ′4 =
7 6 4
5

,

Y5 =
5 3 2
3
1

, Y ′5 =
7 6 4
5
3

,

Y6 =

6 3 2
5
3
1

, Y ′6 =

7 6 4
5
3
2

,

Y7 =

6 4 2
5 3
3
1

, Y ′7 =

7 6 4
5 1
3
2

.

We also can apply the Robinson–Schensted algorithm to the elements of
the permutation group Sn. Let

δ =

(
1 2 . . . n
δ(1) δ(2) . . . δ(n)

)
be a permutation. Then we apply the Robinson–Schensted algorithm to the
sequence

{δ(1), δ(2), . . . , δ(n)}.

We denote the output Young tableaux by Y (δ) (insertion tableau) and Y ′(δ)
(recording tableau).
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3. Primitive ideals of U(o(∞)) and U(sp(∞))

Our main result in this section is that every primitive ideal of U(o(∞))
or U(sp(∞)) is weakly bounded. This implies that, every primitive ideal of
U(o(∞)) is a locally integrable.

Let U stand for U(o(∞)) or U(sp(∞)), g(2n) stand for o(2n) or sp(2n),
and W (2n) stand for the Weyl group of g(2n). From now on, we slightly
change the notation: we will denote o(2n) and sp(2n) by g(2n), while before
we used the notation g(n). This is needed in order to simplify some formulas.

3.1. Symbols

Define a symbol of type Cn to be a collection of nonnegative integers

Λ =

(
α
β

)
=

(
α1, . . . , αm+1

β1, . . . , βm

)
,

such that αi < αi+1, βi < βi+1 and
m+1∑
i=1

αi +
m∑
i=1

βi = n+m2. We consider the

following equivalence relation on the set of symbols of type Cn(
α1, . . . , αm+1

β1, . . . , βm

)
∼
(

0, α1 + 1, . . . , αm+1 + 1
0, β1 + 1, . . . , βm + 1

)
.

If αi ≤ βi ≤ αi+1 for 1 ≤ i ≤ m, then the symbol Λ is special. The
set of special symbols in a natural one-to-one correspondence with the set
of nilpotent orbits of sp(2n) (see [BV]). Take the set {2αi, 2βj + 1} for
1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m, order its elements in increasing order, and denote
it by {νj}2m+1

j=1 . Then νC(Λ) := {νj − j + 1} is a partition of 2n.
Define a symbol of type Dn as a collection of nonnegative integers

Λ =

(
α
β

)
=

(
α1, . . . , αm
β1, . . . , βm

)
,

such that αi < αi+1, βi < βi+1 and
m∑
i=1

αi +
m∑
i=1

βi = n+m(m− 1). Introduce

the equivalence relation on the set of symbols of type Dn :(
α
β

)
∼
(
β
α

)
,

(
α1, . . . , αm
β1, . . . , βm

)
∼
(

0, α1 + 1, . . . , αm + 1
0, β1 + 1, . . . , βm + 1

)
.
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If βi ≤ αi ≤ βi+1 or αi ≤ βi ≤ αi+1 for 1 ≤ i ≤ m − 1, and respectively
also βi ≤ αi or αi ≤ βi, then we call the symbol Λ special. The set of special
symbols in one-to-one correspondence with the set of nilpotent orbits of o(2n)
[BV]. Take the set {2αi + 1, 2βi} for all i, order its elements in increasing
order, and denote it by {νj}2m

j=1. Then νD(Λ) := {νj − j+ 1} is a partition of
2n.

3.2. Primitive ideals of U(o(2n)) and U(sp(2n))

In this section we recall the classification of primitive ideals of U(o(2n))
and U(sp(2n)).

Let L(λ) be the unique irreducible g(2n)-module with highest weight λ.
By W (2n) and ∆(2n) we denote the Weyl group and the root system of
g(2n) respectively. We fix a set of positive roots ∆(2n)+ as in Subsection
2.2. Then we denote I(λ) = Ann(L(λ− ρg(2n))). Recall that our notation for
the Killing form is (·, ·).

Let w be an element of W (2n). Recall of the Young tableau Y (w) from
Subsection 2.12. Let q1, q2, . . . , qs be the lengths of the rows of Y (w). Note
that the Young tableaux Y (w) and Y (w−1) have the same shape. We consider
the set {qi} as a partition p(w) of 2n.

Proposition 3.1. [BV, Proposition 17] Given w ∈ W (2n), there exists a
unique symbol Λ = Λ(w) such that p(w) = νD(Λ) (respectively, νC(Λ)) for
g(2n) = o(2n) (respectively, sp(2n)).

Let us describe the construction of Λ(w). For g(2n) = sp(2n), we consider
the set {q1, q2, . . . , qs} for odd s, and the set {0, q1, q2, . . . , qs} for even s. We
put µi := qi + i − 1 and split the set {µi} into two subsets: the set {ᾱj} of
even µi’s and the set {β̄j} of odd µi’s. The symbol Λ(w) is then defined as(

ᾱ1/2 . . . ᾱ[s/2]+1/2
(β̄1 − 1)/2 . . . (β̄[s/2] − 1)/2

)
.

For g(2n) = o(2n), we consider the set {q1, q2, . . . , qs} for even s, and the
set {0, q1, q2, . . . , qs} for odd s. We let µi := qi + i− 1 and split the set {µi}
into two subsets: the set {ᾱj} of even µi’s and the set {β̄j} of odd µi’s. The
symbol Λ(w) is then defined as

Λ(w) =

(
(ᾱ1 − 1)/2 . . . (ᾱ[s+1/2] − 1)/2
β̄1/2 . . . β̄[s+1/2]/2

)
.

In what follows we put νC,D(w) := νC,D(Λ(w)).
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From now on, we fix λ with the property that −λ is dominant. Then we
put

∆λ := {α ∈ ∆(2n) | 2(α, λ)

(α, α)
∈ Z},

∆+
λ := ∆(2n)+ ∩∆λ,

Wλ := W (∆λ) ⊆ W (2n).

One can show that Wλ = W[λ].
Let λ = λ−nε̄−n + · · · + λ−1ε̄−1 + λ1ε̄1 + · · · + λnε̄n (where λ−k = −λk)

be a weight of g(2n). We now introduce an equivalence relation on the set
of indices

[±n] := {−n,−n+ 1, . . . , n− 1, n}.

By definition two indices i and j are equivalent if λi − λj ∈ Z. Denote by
E1the equivalence class of indices of λi ∈ Z, by E2 the equivalence class of
indices of λi ∈ Z+ 1/2, and by E3, E4, . . . all other equivalence classes. Note
that the classes Ei are invariant under the action of Wλ. We can represent
Wλ as the direct product W1 ×W2 × · · · ×Ws, where

Wi = {w ∈ Wλ | w|[±n]\Ei = id}.

Let ∆i be the root subsystem of ∆λ, which corresponds to the subgroup Wi

and ∆+
i = ∆i ∩∆+

λ . Then each element w ∈ Wλ can be uniquely expressed
as w = w1w2 . . . ws where wi ∈ Wi.

We define the symbol Λλ(w) of an element w = w1w2 . . . ws ∈ Wλ to be
the pair of symbols Λλ(w) = (Λ(w1),Λ(w2)) We call Λλ(w) special if both
symbols Λ(w1) and Λ(w2) are special. If

Λ(w) =

(
α1, . . . , αs
β1, . . . , βm

)
, Λ(w′) =

(
α′1, . . . , α′s′
β′1, . . . , β′m′

)
are symbols (where s = m+ 1 or s = m and s′ = m′+ 1 or s′ = m′), then we
say that Λ(w′) is a permutation of Λ(w) if the sets {α1, α2, . . . αs, β1, β2, . . . , βm}
and {α′1, α′2, . . . α′s′ , β′1, β′2, . . . , β′m′} coincide.

Recall that the dot action of W (2n) on h∗g(2n) is defined in Subsection

2.4 by setting w · λ = w(λ + ρg(2n)) − ρg(2n). For an element w ∈ W (2n),
we denote I(w) := I(w · λ). Two elements w1 and w2 of W (2n) are called
equivalent, written w1 ∼ w2, if I(w1) = I(w2).

Theorem 3.2. [BV, Theorem 18] Let ∆(2n) be the root system of type Dn or
Cn, W (2n) be the Weyl group of ∆(2n), and w,w1, w2 be elements of W (2n).
Then the following holds.
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1) The elements w1 and w2 have the same tableaux Y (w1) = Y (w2) if and
only if w1 ∼ w2.

2) There exists w′ ∈ W (2n) such that w′ ∼ w and the symbol Λ(w′) of w′

is special and is a permutation of Λ(w).

Let Σλ be the set of simple roots in ∆+
λ , and let w ∈ Wλ. Put

Sλ(w) := {α ∈ ∆+
λ | w · α /∈ ∆+

λ },

τλ(w) := Sλ(w) ∩ Σλ.

Proposition 3.3. [J2] Let α ∈ Σλ and w ∈ Wλ. Suppose α ∈ τλ(w
−1) is

such that τλ(w
−1sα) * τλ(w

−1), where sα is the reflection corresponding to
the root α. Then

I(sαw) = I(w).

We should also note that, for g(2n) = sp(2n), W1 is a Weyl group of type
C, W2 is a Weyl group of type D, and Wi for i 6= 1, 2 is of type A. For the
case g(2n) = o(2n), W1 and W2 are Weyl groups of type D, and Wi is of
type A for i 6= 1, 2.

Corollary 3.4. Let Wj be of type Dn or Cn and let sα = s−i,−i+1 ∈ Wj be the
simple reflection corresponding to a root α = ε−i−ε−i+1, for −n+1 ≤ i ≤ −1.
Denote v = w−1 for w ∈ Wj. Then

I(s−i,−i+1w) = I(w)

whenever one of the following inequalities holds

1) v(i− 1) > v(i+ 1) > v(i) > 0 where −n < i < −1,

2) v(i) > v(i+ 1) > v(i− 1) > 0 where −n < i < −1,

3) v(i− 1) > v(i− 2) > v(i) > 0 where −n+ 1 < i < 0,

4) v(i) > v(i− 2) > v(i− 1) > 0 where −n+ 1 < i < 0,

5) v(i) > 0, v(i− 1) < 0 and v(i− 1) > v(i+ 1) where −n < i < −1,

6) v(i) < 0, v(i− 1) > 0 and v(i+ 1) > v(i) where −n < i < −1,

7) v(i) > 0, v(i− 1) < 0 and v(i− 2) > v(i) where −n+ 1 < i < −1,

8) v(i) < 0, v(i− 1) > 0 and v(i− 2) > v(i− 1) where −n+ 1 < i < −1.
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Proof. Recall the choice of the sets of positive and simple roots from Sub-
section 2.2. We will argue simultaneously in both cases Dn and Cn. This is
possible because in the proof we only use short roots.

Assume ε−i − ε−i+1 ∈ τλ(v), v(ε−i − ε−i+1) /∈ ∆+
λ . This implies exactly

one of the three inequalities:

a) v(i− 1) > v(i) > 0,

b) v(i) < v(i− 1) < 0,

c) v(i) > 0 > v(i− 1).

Clearly, we have I(s−i,−i+1w) = I(w) if τλ(vsα) * τλ(v), i.e., if there exists a
simple root β = ε−j − ε−j+1 such that vsα · β /∈ ∆+

λ and v · β ∈ ∆+
λ .

First, assume that v satisfies inequality 1), and hence also inequality a).
We have,

v · (ε−i−1 − ε−i) = −εv(i+1) + εv(i) ∈ ∆+
λ ,

because v(i− 1) > v(i− 2) > 0, and

vs−i,−i+1 · (ε−i−1 − ε−i) = v · (ε−i−1 − ε−i+1) = −εv(i+1) + εv(i−1) /∈ ∆+
λ ,

because v(i− 1) > v(i+ 1) > 0.
Next, assume that v satisfies inequality 3), and hence also inequality a).

Then,
v · (ε−i+1 − ε−i+2) = −ε−v(i−1) + εv(i−2) ∈ ∆+

λ ,

because v(i− 2) > v(i) > 0, and

vs−i,−i+1 · (ε−i+1 − ε−i+2) = v · (ε−i − ε−i+2) = −εv(i) + εv(i−2) /∈ ∆+
λ ,

because v(i− 2) > v(i) > 0.
Now, assume that v satisfies inequality 5), hence also inequality c). In

this case,
v · (ε−i−1 − ε−i) = ε−v(i+1) + εv(i) ∈ ∆+

λ ,

because v(i) > 0 > v(i+ 1), and

vs−i,−i+1 · (ε−i−1 − ε−i) = v · (ε−i−1 − ε−i+1) = ε−v(i+1) − ε−v(i−1) /∈ ∆+
λ ,

because v(i+ 1) < v(i− 1) < 0.
Finally, assume that v satisfies inequality 7), hence also inequality c).

Then,
v · (ε−i+1 − ε−i+2) = ε−v(i−1) + εv(i−2) ∈ ∆+

λ ,
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because v(i− 2) > 0 > v(i− 1), and

vsi,i+1 · (ε−i+1 − ε−i+2) = v · (ε−i − ε−i+2) = −εv(i) + εv(i+2) /∈ ∆+
λ ,

because v(i+ 2) > 0 > v(i).
Thus we proved the corollary for the inequalities 1), 3), 5), 7). Note that if

I(si,i+1w) = I(w) then I(s2
i,i+1w) = I(si,i+1w). Hence, the element w satisfies

inequality 2), 4), 6 or 8) if and only of the element wsi,i+1 satisfies inequality
1), 3), 5), 7) respectively. The proof is complete.

3.3. Primitive ideals of U(o(∞)) and U(sp(∞))

In this section we show that every primitive ideal of U(o(∞)) and U(sp(∞))
is weakly bounded.

Let g(∞) be equal to o(∞) or sp(∞), and g(2n) be the Lie algebra o(2n)
or sp(2n) respectively. As usual, denote by SL(2n,C) the group of 2n × 2n
complex matrices with determinant equal to 1. Recall that g(2n) = {X ∈
gl(2n) | XF + FX t = 0}, where F is defined in Subsection 2.3. Put

G(2n) = {g ∈ SL(2n,C) | gtFg = F}.

Then g(2n) is the Lie algebra of the Lie group G(2n).
Set U := U(g) and U2n := U(g(2n)).
Our goal in this subsection is to prove the following proposition.

Proposition 3.5. Let I be an ideal of U , and let I2n = I ∩ U2n. Then there
exists r ∈ Z>0 such that, for n � 0 (i.e, for each sufficiently large n) the
intersection J(2n)∩U2f(2n) for an arbitrary primitive ideal J(2n) containing

I2n, is a bounded ideal of U2f(2n) where f(2n) =
[
n−3r/2
r+1

]
− r/2.

For the proof of Proposition 3.5 we need to discuss some facts related to
the associated variety of a primitive ideal defined in Subsection 2.18.

It is clear that

if J1 ⊂ J2 then Var(J2) ⊂ Var(J1).

If I is an ideal of U , then the intersections I2n = I∩U2n determine a sequence
of G(2n)-stable varieties Var(I2n) ⊂ g(2n)∗, and we have

φ2m,2n(Var(I2m)) ⊂ Var(I2n) (6)
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for m ≥ n, where the map φ2m,2n : g(2m)∗ → g(2n)∗ is induced by the natural
inclusion g(2n) ↪→ g(2m).

For any n ≥ 2 and any r′ ∈ Z≥0 we put

g(2n)≤r
′
:= {x ∈ g(2n) | rk(x) ≤ r′},

where rk refers to the rank of a matrix. We identify g(2n) and g(2n)∗ via
the Killing form, and so we consider g(2n)≤r

′
as a subset of g(2n)∗.

Lemma 3.6. Let I be a nonzero ideal of U . Then there exists r ∈ Z≥0 such
that

Var(I2n) ⊂ (g(2n))≤r

for all n� 0.

Proof. If I is nonzero then Var(I2m) 6= g(2m)∗ for some m ≥ 2. For every
n ≥ m and every X ∈ Var(I2m), formula (6) shows that

φ2n,2m(G(2n) ·X) ⊂ Var(I2m) 6= g(2m)∗,

where G(2n)·X is the coadjoint orbit of X in g(2n)∗. Hence φ2n,2m(G(2n)·X)
is not dense in g(2n)∗. This, together with [PP2, Lemma 4.12], implies the
required result for r = m under the assumption that n > 3m.

Further, without loss of generality, we assume that the number r is even
(we reassign r := r + 1 in the case of odd r).

A well-known theorem of A. Joseph [J1] implies that the associated vari-
ety of a primitive ideal J(2n) ⊂ U2n equals the closure of a nilpotent coad-
joint orbit. The natural inclusion g(2n) ↪→ gl(2n) induces the surjection
gl∗(2n) � g∗(2n). The conjugacy classes of nilpotent (2n × 2n)-matrices
surject naturally to the nilpotent coadjoint orbits of g(2n). Moreover, these
conjugacy classes are related to partitions of 2n: the partition attached to
a conjugacy class comes from the Jordan normal form of a representative of
this class. In this way we attach the partition s(J(2n)) of 2n to J(2n). By
p(J(2n)) we denote the partition conjugate to that partition. Let r(J(2n))
be the difference between 2n and the maximal element of p(J(2n)). It is easy
to check that r(2n) : = r(J(2n)) equals the rank of an arbitrary element in
the orbit defined by the partition p(2n) := p(J(2n)). Note that, given w ∈ W
we have µC,D(Λ(w)) = p(I(w)) if Λ(w) is special, [BV, Theorem 7].

Lemma 3.7. Let X ∈ g(2n)≤r be a nilpotent matrix and p(2n) be the parti-
tion attached to the conjugacy class of X. Then r(2n) ≤ r.

Proof. We have rk(X) ≤ r. Then r(2n) = rkX ≤ r
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Let J(2n) = Ann(L(λ′−ρg(2n))) be a primitive ideal as in Proposition 3.5
for a weight λ′ ∈ h∗g(2n). Then there exists w ∈ W such that λ = w−1λ′ and
−λ is a dominant weight. Decompose the subgroup Wλ ' W1×W2×· · ·×Ws

as in Subsection 3.2. In what follows, given an element w′ ∈ Wλ, we write
w′ = w′1w

′
2 . . . w

′
s for w′i ∈ Wi. In particular, w = w1w2 . . . ws for wi ∈ Wi. Let

Y (wi) be the Young tableaux defined in Subsection 2.8. Lemmas 3.6, 3.5 and
Theorem 3.2 allow us to conclude that 2n− r is the number of Jordan blocks
of the conjugacy class corresponding to the nilpotent orbit whose closure is
the associated variety of I(λ). Next, let li be the length of the longest row
of Y (wi). Then max{l1, . . . , ls} = 2n− r, and one can easily see that in fact
2n− r equals l1 or l2.

Choose an element w′ = w′1w
′
2 . . . w

′
s such that w ∼ w′ and the symbol

Λλ(w′) is special (i.e., Λ(w′1) and Λ(w′2) are special). Since w ∼ w′, we have

l := max{l1, . . . , ls} = max{l′1, . . . , l′s} = 2n− r,

where l′1, . . . , l
′
s are defined with respect to the decomposition w′ = w′1w

′
2 . . . w

′
s.

Moreover l = l′1 or l = l′2. Therefore l′1 6= l′2 for 2n > 2r. In what follows we
assume that Y (w′c), for c = 1 or 2, has a row of length l . Note that tableaux
of types C and D have even number of elements, and let 2h be the number
of elements of Y (w′c).

In order to state the next result we need the following definition.

Definition 3.1. A weight γ =
∑
γiεi ∈ h∗g(2n) is half-integral if γi − γj ∈ Z

and γi + γj ∈ Z for all i, j.

Lemma 3.8. There exist an element w̃ ∈ Wλ, satisfying w̃ ∼ w′, and an
integer k(2n) ∈ 2Z>0 such that, after erasing the first and last k(2n) + r
coordinates of w̃λ, as well as the 2n − 2k(2n) − 2f(2n) − 2r central coordi-
nates, we obtain a half-integral dominant regular weight of g(2f(2n)) (where

f(2n) = [n−3r/2
r+1

]− r/2 as in Proposition 3.3).

Proof. According to Theorem 3.2 we can suppose without loss of generality
that the symbols Λ(w′1) and Λ(w′2) are special. Recall that the set of indices of
the weight λ is {−n,−n+1, . . . ,−1, 1, . . . , n− 1, n}. Note that interchanging
of coordinates of λ without changing the order within the classes Ei preserves
the primitive ideal I(λ). Therefore we can assume that the equivalence class
Ec has the form{

−#Ec
2

,
−#Ec

2
+ 1, . . . ,−1, 1, . . . ,

#Ec
2
− 1,

#Ec
2

}
.

Lemma 3.7 implies #Ec ≥ 2n− r, hence after erasing the first and last r/2
coordinates of λ we obtain a half-integral weight λ′.
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Let r′ = 2h− l. Note that r′ ≤ r. The length of the longest row of Y (wc)
equals the length of the longest decreasing subsequence of the sequence

a = (w′c(−h), w′c(−h+ 1), . . . , w′c(−1), w′c(1), . . . , w′c(h− 1), w′c(h)).

Set k = #{i | w′c(i) > 0, i > 0}. Obviously, the length of the longest
decreasing subsequence of a is less or equal to 2h − k, because a cannot
contain both w′(i) and w′(−i) if i > 0 and w′(i) < 0.

Note that the simple reflections satisfying one of conditions 1) − 4) of
Corollary 3.4 preserve the shape of the Young tableau Y (w′c) (see [K]). For
each t ∈ Z>0 and each w ∈ W (2t), we define the sequence of integers

σ(w) = {w(−t), w(−t+ 1) . . . w(−1), w(1), . . . , w(t− 1), w(t)}.

Let sα be a simple reflection satisfying one of conditions 1) − 4) of Corol-
lary 3.4. Then, by the very definition of the transformation sα, we can
change σ(w′c) to σ(sαw

′
c) without changing the ideal I(w′). Furthermore,

sα(σ(w′c)) = σ(sαw
′
c). Denote h(δ) := {δ(−t), δ(−t + 1), . . . , δ(−1)} for

δ ∈ W (2t) or δ ∈ W (2t). Observe that h(w′c) determines σ(δ) since δ(j) =
−δ(−j).

We call a subsequence A of a finite sequence of numbers {a1, a2 . . . , av}
positive interval if A has the form {au, au+1, . . . aw−1, aw} for
1 ≤ u < w ≤ v and any aj ∈ A is positive. The notation |A| stands for
the number of elements of a positive interval A. Note that maxA⊂h(w′c) |A| ≥
[n−3r/2

r+1
]. Indeed, the sequence h(w′c) consists of n−r/2 elements with no more

than r negative elements. Consequently, h(w′c) contains at least n−3/2r pos-
itive elements and at most r + 1 positive intervals. Hence, there exists at
least one positive interval with at least [n−3r/2

r+1
] elements.

Next, we find the leftmost maximal (by inclusion) positive interval A0 of

the sequence h(w′c) such that |A0| ≥ [n−3r/2
r+1

]. Then we apply the Robinson–
Schensted algorithm to the interval A0 of h(w′c), and denote by Y0 the output
insertion Young tableau. Starting from the bottom left corner of Y0, we place
all rows one after another in increasing length order. This transforms the
sequence h(w′c) to a new sequence h′, and the interval A0 to an interval A′0.
As a next step, we express the sequence h′ as h(w̃c) for some w̃c ∈ W (2h).

Now, we extend w̃c to w̃ ∈ W (2n) by putting w̃i = w′i for all i 6= c. Then
I(w̃) = I(w′), because w̃(w′)−1 equals a product of simple reflections satis-
fying some condition among 1)− 4) (see [K]).

After that, we erase in h(w̃c) all elements to the left of A′0 and denote the
number of these elements by k(2n). Next, we erase all elements to the right
of A′0 and denote the number of these elements by m(2n). Note that

m(2n) < n− r/2− k(2n)− [
n− 3r/2

r + 1
] = n− k(2n)− f(2n).
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In this way we get a sequence which equals A′0. Since A′0 consists of positive
integers or half-integers ordered as described above (A′0 is comprised of the
rows of the Young tableau Y0 in the opposite order), Lemmas 3.6, 3.7 show
that after erasing the first r/2 elements of A′0 we obtain a strictly decreasing
sequence A′′0. This means precisely that after erasing the first and last k(2n)+
r coordinates, as well as the 2n− 2k(2n)− 2f(2n) central coordinates of w̃λ,
we obtain a half-integral dominant regular weight of g(2f(2n)).

Let w̃ be as in Lemma 3.8. Denote by λ̄ the weight obtained from w̃λ
via replacing by zeros the first and last k(2n) + r coordinates, as well as the
2n− 2k(2n)− 2f(2n) central coordinates.

Denote by g(λ̄) the root subalgebra of g(2n) whose dual Cartan subalge-
bra h(λ̄) is spanned by all elements εi such that (λ̄, εi) 6= 0.

Let I be a primitive ideal of U(g(∞)), and J(2n) be as in Proposition
3.5.

Corollary 3.9. In the notation of Proposition 3.5, J(2n) ∩ U(g(λ̄)) is a
bounded ideal of U(g(λ̄)). Moreover, this ideal is integrable if g(2n) = o(2n)

or if λ̄
2f(2n)
i ∈ Z.

Proof. By Lemma 3.8 we can construct an element w̃ ∈ Wg(2n) satisfying

J(2n) = AnnU2n L(w̃λ− ρg(2n)),

and such that after erasing the first and last k(2n)+r coordinates, as well as
the 2n−2k(2n)−2f(2n) central coordinates of w̃λ, we obtain a half-integral
dominant weight λ̄2f(2n) of g(2f(2n)) (so that λ̄

∣∣
hg(2f(2n))

= λ2f(2n)).

The module L(λ̄2f(2n)−ρg(2f(2n))) is a simple g(2f(2n))-module with high-
est weight λ̄2f(2n) − ρg(2f(2n)). The ideal J(2n) ∩ U(g(λ̄)) is a bounded ideal
of U(g(λ̄)). Indeed, in the case of g(2n) = o(2n) a half-integral dominant
weight is integral dominant, and hence the ideal J(2n) ∩ U(g(λ̄)) is inte-

grable. If g(2n) = sp(2n) and λ̄
2f(2n)
i ∈ Z, then the weight λ̄2f(2n) is integral

dominant hence J(2n) ∩ U(g(λ̄)) is an integrable ideal. For the last case,

where g(2n) = sp(2n) and λ̄
2f(2n)
i ∈ Z − 1

2
, the fact that J(2n) ∩ U(g(λ̄)) is

bounded follows from Lemma 2.4.

Let I be an ideal of an associative algebra A. We denote by
√
I the

intersection of all primitive ideals of A containing I. Note that
√
I is the

pullback in A of the Jacobson radical of the ring A/I. If I is a primitive
ideal then I =

√
I.
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Lemma 3.10. [PP4] Assume that the dimension of A is finite or countable.
Then the following conditions on an element z ∈ A are equivalent:

1) z ∈
√
I,

2) for every a ∈ A there is k ∈ Z>0, such that (az)k ∈ I.

Proof. The fact that 1) implies 2) follows from [MR, Corollary 1.8]. We will
show that 2) implies 1).

Let z ∈ A satisfy 2), and let x̄ be the image of x ∈ A in A/I. Assume to
the contrary that there exists a simple A/I-module M such that z̄ ·M 6= 0.
Pick m ∈ M with z̄ · m 6= 0. There is a ∈ A such that ā · (z̄ · m) = m.
Let k ∈ Z>0 satisfy (āz̄)k = 0. Then 0 = (z̄(āz̄)k) · m = z̄ · m 6= 0. This
contradiction concludes the proof.

Now we have all tools to prove Proposition 3.5.

Proof. Consider the primitive ideal J(2n) = AnnU2n L(w̃λ−ρg(2n)) such that
I2n ⊂ J(2n). The associated variety Var(J(2n)) is the closure of a nilpotent
orbit, and there exists an integer r such that the rank of any X ∈ Var(J(2n))
is less or equal r for all n. More precisely, according to Lemma 3.6, there
exists r ∈ Z≥0 such that Var(I2n) ⊂ g(2n)≤r for n � 0. Since J(2n) ⊃ I2n,
we have

Var(J(2n)) ⊂ Var(I2n) ⊂ g(2n)≤r. (7)

Corollary 3.9 states that J(2n) ∩ U(g(λ̄)) is a bounded ideal of U(g(λ̄)),

where g(λ̄) ' g(2f(2n)) for f(2n) = [n−3r/2
r+1

] − r/2. In order to conclude
that the ideal J(2n) ∩ U(2f(2n)) is bounded, it suffices to observe that the
root subalgebra g(λ̄) of g(2n) is conjugate to g(2f(2n)) naturally embedded
in g(2n).

Theorem 3.11. If g(∞) = o(∞), sp(∞) then any primitive ideal I ⊂ U(g(∞))
is weakly bounded. Moreover, each primitive ideal of U(o(∞)) is locally in-
tegrable.

Proof. Note that 2f((r + 1)(2n + r) + 3r) = 2n. Hence, Proposition 3.5
implies the existence of r ≥ 0 such that

√
I(r+1)(2n+r)+3r ∩ U2n is a bounded

(integrable for g(∞) = o(∞)) ideal of U2n for n � 0. Next, Lemma 3.10
shows that (

√
I)2n = ∩2n′≥2n

√
I2n′ for all n ≥ 2. However,

∩2n′≥2n

√
I2n′ = (∩2n′≥(r+1)(2n+r)+3r

√
I2n′) ∩ U2n.

Being bounded (integrable for g(∞) = o(∞)) in U2f(n′), the ideal
√
I2n′ ∩

U2f(n′) is an intersection of bounded ideals (ideals of finite codimension for
g(∞) = o(∞)) in U2f(2n′), hence

(
√
I)2n = (∩2n′≥(r+1)(2n+r)+3r

√
I2n′) ∩ U2n
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is an intersection of bounded ideals (ideals of finite codimension for g(∞) =
o(∞)) in U2n. This means that the ideal (

√
I)2n is bounded (integrable for

g(∞) = o(∞)) for n � 0. A very similar argument shows that (
√
I)2n is

bounded (integrable for g(∞) = o(∞)) for all n ≥ 2.
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4. Integrable ideals and c.l.s. for U(o(∞)) and

U(sp(∞))

In this section we recall the notion of precoherent local system. It al-
lows us to show that each primitive locally integrable ideal of U(o(∞)) and
U(sp(∞)) is integrable.

4.1. Precoherent local systems and integrability of lo-
cally integrable ideals

Let g(∞) = o(∞), sp(∞). Our next goal is to establish that the condi-
tions on an ideal I in U(g(∞)) to be integrable and locally integrable are
equivalent, see Theorem 4.1 below.

Let I be a locally integrable ideal of U(g(∞)). For every n ∈ Z≥0,
I ∩ U(g(2n)) is an intersection of ideals of finite codimension in U(g(2n)).
Thus, I ∩ U(g(2n)) is an intersection of annihilators of finite-dimensional
g(2n)-modules. Since any finite-dimensional module of a semisimple finite-
dimensional Lie algebra is semisimple, it follows that I ∩ U(g(2n)) is an
intersection of annihilators of simple finite-dimensional U(g(2n))-modules.
Recall that by Irr2n we denote the set of classes of isomorphism of simple
g(2n)-modules.

Definition 4.1. A precoherent local system of modules (further p.l.s.) for
g(∞) is a collection of sets

{Qn}n∈Z≥1
⊂ Πn∈Z≥1

Irr2n

such that Qm ⊃ 〈Qn〉m for any n ≥ m, where 〈Qn〉m denotes the set of all
simple g(2m)-constituents of the g(2n)-modules from Qn.

The fact that, for any locally integrable ideal I, the intersection I ∩
U(g(2n)) is an intersection of annihilators of simple finite-dimensional
U(g(2n))-modules implies that we can extend the definition of Q(I) (see
Section 2.11) to locally integrable ideals. Namely, if I ⊂ U(g(∞)) is locally
integrable ideal we define the p.l.s. Q(I) by putting

Q(I)n := {z ∈ Irr2n | I ∩ U(g(2n)) ⊂ AnnU(g(2n)) z}.

It is clear that Q(I) is a p.l.s., because if I∩U(g(2n)) annihilates a module M
from a class z ∈ Irr2n then I ∩ U(g(2m)) annihilates all simple constituents
of M as g(2m)-module, for n ≥ m.
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Moreover, we claim that I(Q(I)) = I (see Subsection 2.9 for the defi-
nition I(Q)). Indeed, from the definitions of Q(I) and I(Q) we have that
I(Q(I))∩U(g(2n)) equals the intersection of the annihilators of simple mod-
ules annihilated by I ∩ U(g(2n)) and, possibly, some annihilators of isomor-
phism classes z̄ such that AnnU(g(2n)) z̄ ⊃ I ∩ U(g(2n)). Since

I ∩ U(g(2n)) ∩ AnnU(g(2n)) z̄ = I ∩ U(g(2n))

for any z̄, we conclude I(Q(I)) ∩ U(g(2n)) = I ∩ U(g(2n)).
Now we are ready to formulate the main result of this section. This is an

analogue of I. Penkov’s and A. Petukhov’s result for sl(∞) [PP4, Theorem
4.2].

Theorem 4.1. If I ⊂ U(g(∞)) is a locally integrable ideal then I is inte-
grable.

Since I(Q(I)) = I for any locally integrable ideal I, Theorem 4.1 follows
from the following proposition.

Proposition 4.2. If Q is a p.l.s. then I(Q) is an integrable ideal.

Definition 4.2. Two p.l.s. Q and Q′ are equivalent if there exists an integer
n such that Qn′ = Q′n′ for any n′ > n.

It follows directly from the definition of equivalence of p.l.s. that
I(Q) = I(Q′) whenever Q and Q′ are equivalent p.l.s. Thus, to prove Propo-
sition 4.2 it is enough to prove the following proposition.

Proposition 4.3. For any p.l.s. Q, there exists a c.l.s. Q′ such that Q and
Q′ are equivalent.

The rest of this section is devoted to the proof of Proposition 4.2.

4.2. Equivalence of p.l.s. and c.l.s.

In this subsection we provide a somewhat explicit construction of a c.l.s.
Q′ which is equivalent to a given p.l.s. Q, and in this way give a proof of
Proposition 4.3.

Finite-dimensional o(2n)-modules are in one-to-one correspondence with
n-tuples λ = (λ1, ..., λn) of numbers λi which are simultaneously either inte-
gers or half-integers and satisfy

λ1 > λ2 > ... > λn−1 > |λn|. (8)
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Finite-dimensional sp(2n)-modules are in one-to-one correspondence with n-
tuples λ = (λ1, ..., λn) of integers λi satisfying

λ1 > λ2 > ... > λn−1 > λn > 0. (9)

This correspondence is nothing but the assigment of the highest weight λ
to a simple finite-dimensional module L so that L = L(λ). In what follows we
call n-tuples satisfying (8) in the case of o(2n) and (9) in the case of sp(2n)
admissible n-tuples. We refer to n as the width of λ, and write #λ = n.

The Gelfand–Tsetlin rule [Mo] claims that, for two admissible n-tuples λ
and µ with #λ = n, #µ = n− 1, the following conditions are equivalent.

• Homg(2#µ)(L(µ), L(λ)) 6= 0.

• There exists an n-tuple of integers ν = (ν1, . . . , νn) which satisfy the
inequalities

λ1 > ν1 > λ2 > ν2 > . . . > λn−1 > νn−1 > λn > νn > 0,

ν1 > µ1 > ν2 > µ2 > . . . > νn−1 > µn−1 > νn > 0

in the case of sp(2n).

• There exists a (n− 1)-tuple of integers or half-integers ν = (ν1, . . . , νn)
which satisfy the inequalities

λ1 > ν1 > λ2 > ν2 > . . . > νn−2 > λn−1 > νn−1 > |λn|,
ν1 > µ1 > ν2 > µ2 > . . . > µn−2 > νn−1 > |µn−1|

in the case of o(2n) .

We note that the set of admissible n-tuples for sp(2n) is a subset of the
set of admissible n-tuples for o(2n). Furthermore, the Gelfand–Tsetlin rule
for the set of admissible n-tuples for sp(2n) can be obtained by restriction
of the Gelfand–Tsetlin rule for o(2n). We will write λ > µ whenever a pair
(λ, µ) as above satisfies the Gelfand–Tsetlin rule. For tuples λ and µ with
#λ > #µ, the Gelfand–Tsetlin rule implies that the following conditions are
equivalent.

• Homg(2#µ)(L(µ), L(λ)) 6= 0

• There exists a sequence of admissible tuples λ = λ0, λ1, . . . , λ#λ−#µ = µ
such that #λi = #λ− i and

λ = λ0 > λ1 > . . . > λ#λ−#µ = µ

We write λ � µ whenever these conditions hold.
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By writing {a1, a2} > {b1, b2} we indicate the validity of all inequalities
ai > bj for all i and j. Using this notation we can rewrite the Gelfand–Tsetlin
rule in a more convenient form. It is easy to check that the following two
conditions are equivalent:

• λ � µ and #λ−#µ = 1,

• {λ1, λ1} > {λ2, µ1} > {λ3, µ2} > . . . > {λn−1, µn−2} > {|λn|, |µn−1|}.

We can now rephrase the definitions of p.l.s. and c.l.s.
a) The following conditions are equivalent:

• Q is a p.l.s.

• for all λ, µ such that λ � µ and λ ∈ Q#λ, we have µ ∈ Q#µ.

b) The following conditions are equivalent:

• Q a is c.l.s.

• Q a is p.l.s. and for every µ ∈ Q#µ there is λ ∈ Q#µ such that λ � µ.

We denote by Q∨(λ) the largest p.l.s. Q which does not contain a given
tuple λ.

Proposition 4.4. For any admissible n-tuple λ, the p.l.s. Q∨(λ) is equiva-
lent to the c.l.s.

Q(λ) :=
⋃

16k6#λ

Q(k, λk),

where the collection of sets Q(k, a) for k ∈ Z≥0 and a ∈ Z/2 is defined by
putting

Q(k, a)m := {µ ∈ Irr2m | µk < a, if k ≤ #µ}.

Note that Proposition 4.4 implies Proposition 4.3. Indeed, let Q be a
p.l.s. Then

Q = ∩λ/∈QQ∨(λ).

According to Proposition 4.4, each p.l.s. Q∨(λ) is equivalent to a c.l.s. Q(λ).
The lattice of c.l.s. is artinian [Zh3], and therefore we conclude that the p.l.s.
Q is equivalent to the c.l.s.

Q(λ1) ∩Q(λ2) ∩ . . . ∩Q(λs)

for some finite set of elements λ1, λ2, . . . , λs /∈ Q.
It remains to prove Proposition 4.4. It is clear that Proposition 4.4 follows

from the following lemma.
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Lemma 4.5. Let λ and µ be admissible tuples such that #µ > 2#λ. Then
the following conditions are equivalent:

1) µ � λ,

2) µk > λk for each 1 6 k 6 #λ.

Without loss of generality, we can consider our admissible tuples as ad-
missible tuples of integers. Indeed, if λ � µ and both admissible tuples
consist of half-integers, we can add 1/2 to all entires of the corresponding
admissible tuples.

Let λ = (λ1, . . . , λn) be an admissible tuple and k ∈ Z. Set

R(λ, k) :=

{
(λ1, . . . , λi, k, λi+2, . . . λn) if k ≥ |λn|
λ if k < |λn|,

so that R(λ, k) is an admissible tuple and i+1 is maximal possible such that
k ≥ λi+1. Set

L(λ, k) :=

{
(λ1, . . . , λi, k, λi+2, . . . λn) if k ≤ λ1

λ if k > λ1,

so that L(λ, k) is an admissible tuple and i is maximal possible such that
k ≤ λi+1 .

Let us prove the following technical lemma.
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Lemma 4.6. Let λ and µ be admissible tuples such that #µ−#λ = 1, µ > λ
and let k ∈ Z. Then

1) R(µ, k) > R(λ, k),

2) L(µ, k) > L(λ, k),

3) L(µ, k) > R(λ, k) whenever one of the following conditions is satisfied

µi+1 > k > µi+2,

µi+2 > k > µi+3.

for i such that λi > k > λi+1.

Proof. 1) Obviously, µi > k > µi+3. There are three possibilities:

µi > k > µi+1, (∗)

µi+1 > k > µi+2, (∗ ∗)

µi+2 > k > µi+3. (∗ ∗ ∗)

In the case (∗) we have R(λ, k) = {λ1, . . . , λi, k, λi+2, . . . , λn}, R(µ, k) =
{µ1, . . . , µi, k, µi+2, . . . , µn}. To check that R(µ, k) > R(λ, k), we need to
check that the corresponding inequalities hold. But all inequalities not in-
volving k follow from the inequality µ > λ. Hence it remains to check that

{µi, λi−1} > {k, λi} > {µi+2, k} > {µi+3, λi+2}.

These inequalities are implied by (∗). The cases (∗ ∗) and (∗ ∗ ∗) can be
verified in a similar way.

2) The proof is similar to case 1).
3) We have

λi > k > λi+1

and one of the three cases (∗), (∗ ∗), (∗ ∗ ∗) holds.
For cases (∗ ∗) and (∗ ∗ ∗) one can easily check the following inequalities

{µi, λi−1} > {k, λi} > {µi+2, k} > {µi+3, λi+2},

{µi+1, λi} > {k, k} > {µi+3, λi+2}.

So, L(µ, k) > R(λ, k) whenever one of the conditions (∗ ∗) and (∗ ∗ ∗) is
satisfied.
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Note that in the case (∗) the inequality L(µ, k) > R(λ, k) may be false.
Indeed

{µi−1, λi−2} > {k, λi−1} > {µi+1, λi} > {µi+2, k} > {µi+3, λi+2}.

We see that λi > k and k > λi. So k = λi, which is false in the general case.
We are now ready to prove Lemma 4.5. We may assume without loss of

generality that #µ = 2#λ. Indeed, the entries λi are independent of the
entries µ2n+j for i, j ∈ Z>0.

Proof of Lemma 4.5. The implication 1) ⇒ 2) is obvious. We need to show
that 2)⇒ 1).

Let λ = (λ1, λ2, . . . , λn) and k 6 λn. Put λ[k] = (λ1, λ2, . . . , λn, k).
Obviously, if λ ≺ µ then λ[k] < µ[k]. We will proceed by induction on #λ.
The base: if #λ = 1, #µ = 2 and µ1 > λ1, then, clearly, µ > λ.

To perform the inductive step, we introduce the following notation: for
admissible tuples λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µ2n) such that
µ � λ, and for µn+1 > λn+1, µ2n ≥ µ2n+1 ≥ µ2n+2, we set

λ∗ := (λ1, λ2, . . . , λn, λn+1),

µ∗ := (µ1, µ2, . . . , µ2n, µ2n+1, µ2n+2).

The inequality µ � λ means that we have a chain of admissible tuples

µ = λ0 > λ1 > . . . > λn = λ.

Without loss of generality, we can assume that the last entries of all λi for
0 6 i 6 n− 1 all equal to µ2n. Denote µ2n by m. Put

µ[m] = λ0[m] > λ1[m] > . . . > λn[m] = λ[m].

By Lemma 4.6 we have

R(µ[m], λn+1) =R(λ0[m], λn+1) > R(λ1[m], λn+1) > . . .

> R(λn[m], λn+1) = R(λ[m], λn+1),

L(µ[m], λn+1) =L(λ0[m], λn+1) > L(λ1[m], λn+1) > . . .

> L(λn[m], λn+1) = L(λ[m], λn+1).

(10)

Now we are going to show that there exists a pair (i−1, i), where 1 6 i 6
n, for which λi−1 and λi satisfy conditions (∗ ∗) or (∗ ∗ ∗), i.e., if λi−1[m]k ≥
λn+1 ≥ λi−1[m]k+1 then

λi[m]k+1 ≥ λn+1 ≥ λi[m]k+2
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or
λi[m]k+2 ≥ λn+1 ≥ λi[m]k+3.

Indeed, if for all pairs (i− 1, i) condition (∗) is satisfied, then

λn+1 > λ[m]n−1
n+1, λn+1 > λ[m]n−2

n+1, . . . , λn+1 > λ[m]0n+1.

We can rewrite the last inequality as λn+1 > µn+1. But we also have λn+1 6
µn+1. This is a contradiction.

Therefore, a pair (i−1, i) exists as required. This means that L(µ[m], λn+1) �
R(λ[m], λn+1). If λn+1 > m then R(λ[m], λn+1) = λ∗, because λn > λn+1 >
m. If λn+1 6 m, we replace m by λn+1, and then L(µ[m], λn+1) � λ∗. This
implies

L(µ[m], λn+1) = {µ1, . . . , µj−1, λn+1, µj+1, . . . , µ2n,m = µ2n+1},

where
µj > λn+1 > µj+1 (11)

for some j > n+ 1.
The last thing we need to prove is that µ∗ � L(µ[m], λn+1). For this we

need to check the inequalities

µ1 > {µ2, µ1} > . . . > {µj, µj−1} > {µj+1, λn+1} >
{µj+2, µj+1} > . . . > {µ2n+1, µ2n} > {µ2n+2, µ2n+1}.

All inequalities except

µj ≥ λn+1, µj − 1 ≥ λn+1, µj + 1 ≤ λn+1, µj + 2 ≤ λn+1

are obvious, and these latter inequalities follow from inequality (3). This
proves the inductive step and hence the lemma.
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5. Coherent local systems of bounded ideals

for U(sp(∞))

In this section we generalize the construction of c.l.s. of simple finite-
dimensional sp(2n)-modules to collections of bounded ideals in U(sp(2n))
when n runs over Z>0. To do this, we use some tools from Kazhdan–Lusztig
theory.

5.1. Kazhdan–Lusztig theory

Here we introduce some basic definitions and facts related to Coxeter
groups and Kazhdan–Lusztig theory.

Definition 5.1. Let G be a group with identity 1G. For a (not necessarily
finite) subset S of G, we say that G is a (generalized) Coxeter group with re-
spect to S, or that (G,S) is a (generalized) Coxeter system, if G is generated
by S with a presentation of the form

G = 〈S | (st)ms,t = 1G for s, t ∈ S〉 ,

where, for each s, t ∈ S, ms,t = mt,s is a positive integer or ∞, and, for all
s ∈ S, ms,s = 1 . The condition ms,t =∞ means that no relation of the form
(st)m = 1G should be imposed.

The Coxeter matrix of G is given by [ms,t]s,t∈S. We write S̄ for the set{
gsg−1 | s ∈ S and g ∈ G

}
.

Definition 5.2. The Bruhat length `G of a Coxeter system (G,S) is given by
the function `G : G → Z≥0 defined in the following way: for all
g ∈ G, `G(g) is the smallest integer k ≥ 0 such that g = s1s2 · · · sk for
some s1, s2, . . . , sk ∈ S. We say that g = s1s2 · · · sk is a reduced expression
for g ∈ G if s1, s2, . . . , sk ∈ S and k = `G(g).

Definition 5.3. Let (G,S) be a Coxeter system and g, h ∈ G. Then, we
write g 4 h if there is a reduced expression h = s1s2 . . . sk, where k ∈ Z≥0

and s1, s2, . . . , sk ∈ S, such that g is a subword of s1s2 . . . sk, i.e., there exist
j ∈ Z≥0 and integers i1, i2, . . . , ij with 1 ≤ i1 < i2 < . . . < ij ≤ k such that
g = si1si2 . . . sij . The relation 4 is called the Bruhat order on G. It is a
well-known fact that this is a partial order.

We will write g ≺ h if g 4 h and g 6= h.
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Definition 5.4. Let (G,S) be a Coxeter system and q be an indeterminate.

The ring Z
[
q−

1
2 , q+ 1

2

]
of Laurent polynomials in q

1
2 is denoted by A. The

Hecke algebra H is an associative algebra which is a free module over A
with generating set {Tg | g ∈ G}, such that the multiplicative identity of H
is 1H = T1G and that the following multiplicative relations are satisfied:

T 2
s = (q − 1)Ts + q T1G ,

Tg Ts = Tgs if g ≺ gs ,

Ts Tg = Tsg if g ≺ sg ,

for each s ∈ S and g ∈ G.

This algebra has an involution v 7→ v̄ for v ∈ H which sends q1/2 to q−1/2

and each Ts to T−1
s .

Theorem 5.1. [KL] Let (G,S) be a Coxeter system with associated Hecke
algebra H. Denote l(g) = lG(g) for g ∈ G. For each g ∈ G, there is a unique
CG
g ∈ H fixed by the involution on H and satisfying the condition

CG
g = q−

`(g)
2

∑
x4g

(−1)`(x)−`(g)q`(x)−`(g) PG
x,g(q)Tx , (12)

where, for each x, y ∈ G,

(i) PG
x,y(q) ∈ Z[q],

(ii) PG
x,y(q) = 0 if x 64 y,

(iii) PG
x,x(q) = 1, and

(iv) deg
(
PG
x,y(q)

)
≤ `(y)−`(x)−1

2
if x ≺ y.

The polynomials PG
x,y(q), where x, y ∈ G for x 4 y, are known as the

Kazhdan–Lusztig (KL) polynomials of G.

5.2. Kazhdan–Lusztig multiplicities for sp(2n) and o(2n)

In this subsection we recall the equalities which are commonly known as
the Kazhdan-Lusztig conjecture. This will allow us to establish a connec-
tion between simple bounded infinite-dimensional highest weight modules
of sp(2n) and simple finite-dimensional modules with half-integral highest
weights of o(∞).
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Let g(2n) equal o(2n) or sp(2n). Let λ be an integral dominant weight
with half-integral entries for the Lie algebra o(2n), and let λ be a dominant
integral weight, or a weight satisfying the conditions of Lemma 2.4, for the
Lie algebra sp(2n). Denote by Mw the Verma module with highest weight
w · λ, and by Lw the unique simple quotient of Mw. If V is a weight g(2n)-
module then the formal character ch(V ) equals the formal sum

∑
µmµe

µ,
where mµ is the dimension of the weight space V µ for mµ ∈ Z≥0 ∪ {∞}. We
can define in a similar way the formal character of a weight module over any
reductive finite-dimensional Lie algebra.

The following equality is often referred to as Kazhdan–Lusztig conjecture:

ch(Lw) =
∑
y<w

(−1)−`(w)−`(y)PW
yw0,ww0

(1)ch(My),

ch(Mw) =
∑
y<w

PW
w,y(1)ch(Ly),

where W is the Weyl group of g(2n), the Coxeter system is defined by the
set of simple reflections, and w0 ∈ W is the element of maximal length. The
Kazhdan-Lusztig conjecture was proved independently in [BB] and [BK].

We put ε(2n) =′ ρsp(2n) − ρ′o(2n) = (1, 1, . . . , 1).
The subgroup of W which preserves λ is called the isotropy group of λ.

Theorem 5.2. [H, page 267] Let g′ and g′′ be finite-dimensional semisimple
Lie algebras, with respective Weyl groups W ′ and W ′′. Fix weights λ′ for g′

and λ′′ for g′′, with corresponding blocks O′λ′ and O′′λ′′ and reflection subgroups
W ′

[λ′] and W ′′
[λ′′]. If there is an isomorphism between these Weyl groups as

Coxeter groups, which sends the isotropy group of λ′ to the isotropy group of
λ′′, then the category O′λ′ is equivalent to O′′λ′′, with L(λ′) sent to L(λ′′) and
M(λ′) sent to M(λ′′).

Let λ′ be a sp(2n)-weight with λ′i ∈ Z + 1
2

satisfying the conditions of
Lemma 2.4 and let λ′′ = λ′+ ε(2n). Put W ′ = Wsp(2n) and W ′′ = Wo(2n). We
consider λ′′ as an integral dominant o(2n)-weight. Moreover, the reflection
subgroup W ′′

[λ′′] equals W ′′, and W ′
[λ′] is a subgroup of index 2 of the group

W ′consisting of permutations w ∈ S2n such that w(−i) = −w(i), 1 ≤ i ≤ n,
for which the number #{i > 0 | w(i) < 0} is even (here we consider W ′ as a
subgroup of S2n, see Subsection 2.2). The Coxeter groups W ′′

[λ′′] and W ′
[λ′] are

isomorphic. These facts and the definition of Kazhdan–Lusztig polynomials
imply the following

Corollary 5.3. After identifying W ′
[λ′] with W ′′

[λ′′] = W ′′, one has P
W ′

[λ′]
w,v (q) =

P
W ′′

[λ′′]
w,v (q) for all elements w, v ∈ W ′′.
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Let L(λ) be a simple finite-dimensional sp(2n)-module with highest weight
λ. Then we set $i :=

∑i
j=1 εj, for 1 ≤ j ≤ n. Then λ =

∑n
i=1 vi$i for some

vi ∈ Z≥0, where $i =
∑i

j=1 εi. Also we denote by T jλ the set of all weights of
the form λ −

∑n
i=1 diεi, where di are nonnegative integers,

∑n
i=1 di is even,

0 ≤ di ≤ vi for 1 ≤ i ≤ n − 1 and 0 ≤ dn + δj1 ≤ 2vn + 1, δj1 being the
Kronecker delta.

Lemma 5.4. [BHL, Theorem 5.5] Denote ν0 = −1
2
$n and ν1 = $n−1− 3

2
$n.

The sp(2n)-module L(νj) ⊗ L(λ) is completely reducible with the decompo-
sition

L(νj)⊗ L(λ) '
⊕
κ∈T jλ

L(νj + κ).

Lemmas 2.4 and 5.4 imply that each simple bounded highest weight
infinite-dimensional module could be constructed as a simple constituent of
the above tensor product for some λ. Then it follows that the tensor product
of L(νj) with any simple bounded infinite-dimensional highest weight module
is completely reducible.

Corollary 5.5. Let L(λ) be a simple bounded sp(2n)-module with highest
weight λ. Then the module L(λ) is completely reducible as a module over
sp(2n− 2), where the embedding ψ2n−2 : sp(2n− 2)→ sp(2n) is described in
Subsection 2.3.

Proof. Recall the definition of Shale-Weil modules from Subsection 2.8. Set
λ0 = 1

2
$n. Then there exists a simple finite-dimensional module L(µ) with

highest weight µ, such that L(λ) is a simple constituent of
SW+(2n)⊗L(µ), because of Lemma 5.4 and the fact that the highest weight
of SW+(2n) equals −λ0. Decompose L(µ) =

⊕k
j=1 L(µ̄j) for some simple

finite-dimensional sp(2n − 2)-modules L(µ̄j). Next, one can check directly
that L(λ0) as sp(2n − 2)-module is isomorphic to a countable direct sum
of copies of SW+(2n − 2) ⊕ SW−(2n − 2). Therefore the tensor product
SW+(2n)⊗ L(µ) is isomorphic to a direct sum of countably many copies of
SW+(2n− 2)⊗ L(µ̄j))⊕ (SW−(2n− 2)⊗ L(µ̄j)).

The tensor products SW+(2n− 2)⊗L(µ̄j) and SW−(2n− 2)⊗L(µ̄j) are
completely reducible by Lemma 5.4. In this way, we see that L(µ)⊗SW+(2n)
is completely reducible over sp(2n−2), and the same holds for its submodule
L(λ).

Next, we consider the Lie subalgebra Im(ψ2n−2)+hsp(2n) of sp(2n). We set
sph(2n− 2) = Im(ψ2n−2) + h(2n). Analogously, we define the Lie subalgebra
oh(2n− 2) of o(2n).
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Proposition 5.6. Let λ be a weight of sp(2n) satisfying the conditions of
Lemma 2.4, and µ be a weight of sp(2n−2) satisfying Lemma 2.4. Moreover,
let λ′ = λ + ε(2n) be an integral dominant weight of o(2n) with half-integral
marks, and µ′ = µ + ε(2n − 2) be an integral dominant weight of o(2n − 2)
with half-integral marks. Then Homsp(2n−2)(L(µ), L(λ)) 6= 0 if and only if
Homo(2n−2)(L(µ′), L(λ′)) 6= 0.

Proof. Consider the decomposition

L(λ′) =
k⊕
j=1

L(λ′j),

over the Lie algebra oh(2n−2), where each L(λ′j) is a simple finite-dimensional
representation of oh(2n− 2) with highest weight λ′j. Note, that as an o(2n−
2)-module L(λ′j) is isomorphic to the simple finite-dimensional o(2n − 2)-
module L(λ̄′j) for
λ̄′j =

∑n
i=2 λ

j
iεi−1, where λ′j =

∑n
i=1 λ

j
iεi. This implies

ch(L(λ′)) =
k∑
j=1

ch(L(λ′j)). (13)

We apply the Kazhdan–Lusztig conjecture for w = id ∈ Wo2n−2 to each
o(2n − 2)-module L(λ̄′j). Since each λ̄′j is an integral dominant weight, we
get

ch(L(λ̄′j)) =
∑

y∈Wo(2n−2)

(−1)−`(y)P
Wo(2n−2)
yw0,w0 (1)ch(M(y · λ̄′j)).

Now we denote by M h(τ) the oh(2n − 2)-module with highest weight τ
such that as o(2n − 2)-module M h(τ) is isomorphic to M(τ̄), where τ̄ =∑n

i=2 τiεi−1. By M h(α, γ) we denote the Verma module over oh(2n − 2)
with highest weight αε1 +

∑n
i=2 γi−1εi, where γ =

∑n−1
i=1 γiεi is a weight of

o(2n− 2) for α ∈ C. Clearly, M(τ) = M h(τ1, τ̄). Therefore we can write the
decomposition

ch(L(λ′j)) =
∑

y∈Wo(2n−2)

(−1)−`(y)P
Wo(2n−2)
yw0,w0 (1)ch(M h(λ′j1 , y · λ̄′j)) (14)

Combining formulas (13) and (14), we obtain

ch(L(λ′)) =
k∑
j=1

∑
y∈Wo(2n−2)

(−1)−`(y)P
Wo(2n−2)
yw0,w0 (1)ch(M h(λ′j1 , y · λ̄′j)) (15)
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On the other hand, we may apply the Kazhdan–Lusztig conjecture to the
o(2n)-module L(λ′). This yields

ch(L(λ′)) =
∑

y∈Wo(2n)

(−1)−`(y)P
Wo(2n)
yw0,w0 (1)ch(M(y · λ′)). (16)

Next, for an o(2n)-weight τ we set

τ(a1, a2, . . . , a2n−2) := τ −
n−1∑
i=1

ai(ε1 − εi+1)−
2n−2∑
i=n

ai(ε1 + εi−n+2)

for ai ∈ Z≥0. We decompose the character of each Verma module M(y · λ′)
over oh(2n− 2):

ch(M(y · λ′)) =
∞∑

a1,a2...,an−1=0

ch(M h((y · λ′)(a1, a2, . . . , an−1))). (17)

This is a direct consequence of the definition of Verma module. Note that,
if we consider the restriction of (17) to each weight subspace of M(y · λ′) as
an equality of dimensions then the left-hand side is a positive integer, while
the right-hand side is a sum of positive integers. This means that each such
restriction has only finitely many terms.

Combining formulas (16) and (17), we get

ch(L′(λ)) =

=
∑

y∈Wo(2n)

∞∑
a1,a2...,an−1=0

(−1)−`(y)P
Wo(2n)
yw0,w0 (1)ch(M h((y · λ′)(a1, a2, . . . , an−1))).

(18)

From equations (15) and (18) we obtain

k∑
j=1

∑
y∈Wo(2n−2)

(−1)−`(y)P
Wo(2n−2)
yw0,w0 (1)ch(M h(λ′j1 , y · λ̄′j)) =

=
∑

y∈Wo(2n)

∞∑
a1,a2...,an−1=0

(−1)−`(y)P
Wo(2n)
yw0,w0 (1)ch(M h((y · λ′)(a1, a2, . . . , an−1))).

(19)
We rewrite this equation as
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k∑
j=1

∑
y∈Wo(2n−2)

(−1)−`(y)P
Wo(2n−2)
yw0,w0 (1)ch(M h(λ′j1 , y · λ̄′j))−

−
∑

y∈Wo(2n)

∞∑
a1,a2...,an−1=0

(−1)−`(y)P
Wo(2n)
yw0,w0 (1)ch(M h((y·λ′)(a1, a2, . . . , an−1))) = 0.

(20)
Now we will show that the sum of coefficients in front of ch(M h(γ)), for

each γ appearing in formula (20), equals 0. If a weight γ0 appears in (20) and
is maximal (for the order defined by the fixed Borel subalgebra), then the
above claim is obvious. Moreover, finitely many maximal weights γ0 exist
because of formulas (16) and (17). Therefore we can erase from formula (20)
all terms of the form ch(M(γ0)) for maximal γ0. For any fixed γ we prove
our claim after finitely many iterations.

In this way, we see that in equation (19) the coefficients in front of ev-
ery character of Verma module at the left-hand and right-hand sides of the
equation are equal.

Next, we apply the Kazhdan–Lusztig conjecture to the sp(2n)-module
L(λ). By Corollary 5.3 we have that the Kazhdan–Lusztig polynomials ap-
pearing in (21) below are the same as in formula (16) for L(λ′):

ch(L(λ)) =
∑
y∈W[λ]

(−1)−`(y)P
W[λ]
yw0,w0(1)ch(M(y · λ)). (21)

For a sp(2n)-weight τ we set

τ(a1, a2, . . . , an) := τ − 2a1ε1 −
n∑
i=2

ai(ε1 − εi).

Also we denote by M h(τ) the sph(2n− 2)-module with highest weight τ . As
sp(2n − 2)-module, M h(τ) is isomorphic to M(τ̄) for τ̄ =

∑n
i=2 τiεi−1. Now

we decompose the character of each Verma module M(y ·λ) over sph(2n− 2)
similarly to formula (17):

ch(M(y · λ)) =
∞∑

a1,a2,...,an=0

ch(M h((y · λ)(a1, a2, . . . , an))). (22)

Analogously to the case of o(2n) we combine formulas (21) and (22):
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ch(L(λ)) =

=
∑
y∈W[λ]

(−1)−`(y)P
W[λ]
yw0,w0(1)

∞∑
a1,a2,...,an=0

ch(M h((y · λ)(a1, a2, . . . , an))) =

=
∞∑
a1=0

∑
y∈W[λ]

∞∑
a2,...,an=0

(−1)−`(y)P
W[λ]
yw0,w0(1)ch(M h((y · λ− 2a1ε1)(a2, . . . , an))).

(23)

From the fact that the Kazhdan–Lusztig polynomials are the same as for
o(2n), and from our observation concerning the coefficients of each Verma
module appearing in formula (19), we can rewrite formula (23) as

ch(L(λ)) =
∞∑
a1=0

k∑
j=1

∑
y∈W

[λ̄j ]

(−1)−`(y)P
W[λ]
yw0,w0(1)ch(M h(λj1 − 2a1, y · λ̄j)), (24)

where λj = λ′j−ε(2n) and λ̄j = λ̄′j−ε(2n−2). Now we apply the Kazhdan–
Lusztig conjecture to each inner sum, and keeping in mind that the Kazhdan–
Lusztig polynomials here and for o(2n− 2) are the same, we obtain

ch(L(λ)) =
∞∑
a1=0

k∑
j=1

ch(L(λj − 2a1ε1)). (25)

It is easy to check that if M is a weight module over sph(2n−2), and is
semisimple as an sp(2n− 2)-module, then M is semisimple over sph(2n− 2).
Therefore, L(λ) is semisimple over sph(2n− 2).

We will show that L(λj − 2a1ε1) is a simple constituent of L(λ) for all j.
Denote by A1 the set of all weights λj − 2a1ε1 for 1 ≤ j ≤ k, j, a1 ∈ Z≥0.
Note that this set is partially ordered (α ≥ β ⇐⇒ α− β is a sum of positive
roots from ∆sp(2n)). Also this set is bounded from above. Moreover, it is clear
that if a weight ζ ∈ A1 is maximal then ζ = λp for some p, and therefore
there are finitely many maximal weights in A1. Denote this set of maximal
weights by T1. Consider now the set A1\T1 and repeat the procedure for
this set. We obtain a set T2 ⊂ A1\T1, and after i − 1 steps — a set Ti. Let
Ai := A1\

⋃
j<i Tj. By definition, Ti is the set of all maximal weights of Ai.

Next, we consider the subspace MT1 of L(λ) spanned by all weight spaces
with weights χp ∈ T1 and choose a weight basis B of MT1 . By each vector
b ∈ B we generate the submodule Lb of L(λ). Each such module is a highest
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weight module with respective highest weight χp ∈ T1. The semisimplicity
of L(λ) implies that Lb is simple, and we set Lb = L(χp).

Denote by LT1 the submodule generated by MT1 . Each vector u ∈ LT1 can
be obtained as u = gv for some v ∈MT

1 and some g ∈ U(sph(2n− 2)). Since
v is contained in the span of B, the vector u lies in the sum of modules Lb.
Therefore, LT1 is isomorphic to the direct sum of the sph(2n − 2)-modules
L(χp). Consider a complement L1 in L(λ) to LT1 . This is a submodule of
L(λ) with character

∞∑
a1=0

k∑
j=1

ch(L(λj − 2a1ε1))−
∑
p∈T1

ch(L(χp)) =
∑
p∈A2

ch(L(χp)).

This character is well-defined because all weight spaces are finite-dimensional.
Denote by LTe+1 the submodule of Le generated by MTe+1 , where MTe+1 is

the subspace spanned by all weight spaces with weights χj ∈ Te+1. Let Le+1

be a complement to LTe+1 in Le. One can show that the following formula
holds for any e ∈ Z≥1 (by repeating above decomposition of L(λ) for all Lj,
j ≤ e):

L(λ) =
e⊕
i=1

LTi ⊕ Le.

Since the set A1 is ordered as described above, each χ ∈ A1 is an element
of Ti for some i. Therefore, L(λj − 2a1ε1) is a simple constituent of LTi for
some i as well as a simple constituent of L(λ). Hence,

F =
∞⊕
a1=0

k⊕
j=1

L(λj − 2a1ε1)

is a submodule of L(λ). However, F has the same character as L(λ) therefore
L(λ) = F .

Now, we note that the modules L(λj − 2a1ε1) and L(λ̄j) are isomorphic
as sp(2n − 2)-modules for λ̄j =

∑n
i=2 λiεi−1. We obtain an isomorphism of

sp(2n− 2)-modules

L(λ) '
k⊕
j=1

mjL(λ̄j),

where mj equals the cardinality ℵ0 for all j.
In this way we proved that

Homo(2n−2)(L(µ′), L(λ′)) 6= 0⇐⇒ µ′ = λ̄′j, for some j ⇐⇒
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⇐⇒ L(µ) is a simple constituent of L(λ) over sp(2n− 2)⇐⇒

⇐⇒ Homsp(2n−2)(L(µ), L(λ)) 6= 0

Thus we proved the proposition.

We have now shown that, for weights λ and µ respectively of sp(2n) and
sp(2n− 2), satisfying Lemma 2.4, the following conditions are equivalent:

• Homsp(2n−2)(L(µ), L(λ)) 6= 0.

• There exists an n-tuple of half-integers ν = (ν1, . . . , νn) which satisfy
the inequalities

λ1 + 1 >ν1 > λ2 + 1 > ν2 > . . . > λn−1 + 1 > νn−1 > |λn + 1| > νn >
1

2
,

ν1 > µ1 + 1 > ν2 > µ2 + 1 > . . . > νn−1 > |µn−1 + 1| > νn >
1

2
.

In conclusion we would like to recall the following proposition. The degree
of a weight module is given in Definition 2.22.

Proposition 5.7. [M, Theorem 12.2(ii)] Let L(λ) be a simple module of
sp(2n) with highest weight λ satisfying Lemma 2.4 and L(λ+ε) be the simple
finite-dimensional module of o(2n) with highest weight λ+ ε(2n). Then

deg(L(λ)) = dim(L(λ+ ε(2n)))/2n−1.

5.3. Coherent local systems of bounded ideals: defini-
tion and classification

In this subsection we introduce the notion of coherent local systems of
bounded ideals, which we abbreviate as c.l.s.b. This is a generalization of
the notion of a c.l.s. Also we obtain a classification of irreducible c.l.s.b.
based on Zhilinskii’s classification of irreducible of c.l.s. As above, g(2n)
denotes the Lie algebra o(2n) or sp(2n), and g(∞) denotes the Lie algebra
o(∞) or sp(∞). Also we assume that splitting Cartan subalgebras and Borel
subalgebras of g(2n) are fixed as in Subsection 2.2.

Recall that simple bounded highest weight o(2n)-modules are finite di-
mensional, and that simple bounded highest weight sp(2n)-modules are either
finite dimensional, or are modules with highest weights satisfying Lemma 2.4.

Let Jn denote the set of annihilators of simple bounded highest weight
g(2n)-modules (in fact, Jn coincides with the set of annihilators of all bounded
g(2n)-modules). Next, let Rn denote the set of isomorphism classes of simple
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bounded highest weight modules. Note that the annihilator A of a simple
bounded o(2n)-module determines the simple module annihilated by A up to
isomorphism. Also, the annihilator A of a finite-dimensional sp(2n)-module
determines this module up to isomorphism. However, one can show that,
for a fixed splitting Borel subalgebra of sp(2n), there are precisely two sim-
ple bounded infinite-dimensional highest weight sp(2n)-modules with a given
annihilator A ∈ Jn.

Definition 5.5. A coherent local system of bounded ideals (further c.l.s.b.)
for g(∞) is a collection of sets

{In}n∈Z≥2
⊂ Πn∈Z≥2

Jn

such that Im = 〈In〉m for n > m, where 〈In〉m denotes the set of all annihila-
tors of simple g(2m)-constituents of the g(2n)-modules which are annihilated
by at least one ideal from In.

Definition 5.6. A c.l.s.b. I is irreducible if I 6= I′ ∪ I′′ with I′ 6⊂ I′′ and
I′ 6⊃ I′′, I′, I′′ being c.l.s.b.

Any annihilator z ∈ Jn of a simple bounded g(2n)-module corresponds to
one or two classes in Rn (i.e., either to an integral dominant weight or to two
half-integral weights of g(2n)). Denote by {λ(z)} the set of weights λ such
that L(λ) is annihilated by z. If the set {λ(z)} contains only one weight,
then we denote this weight by λ(z) (otherwise #{λ(z)} = 2).

Let z1, z2 ∈ Jn and #{λ(z1)} = 1. We denote by z1z2 the set if anni-
hilators of the modules L(λ(z1) + µ) for µ ∈ {λ(z2)}. For S1, S2 ⊂ Jn we
put

S1S2 := {z ∈ Jn | z ∈ z1z2 for some z1 ∈ S1 with#{λ(z1)} = 1 and z2 ∈ S2}.

Let Q′ and Q′′ be c.l.s.b.. We denote by Q′Q′′ the smallest c.l.s.b. such
that (Q′)n(Q′′)n ⊂ (Q′Q′′)n. By definition, Q′Q′′ is the product of Q′ and Q′′.

For any ideal I ⊂ U(g(∞)), define the collection of sets Q(I) by putting

Q(I)n := {z ∈ Jn | I ∩ U(g(2n)) ⊂ z}.

Recall that the natural g(∞)-module V is the direct limit lim−→Vn, where
Vn is the natural g(2n)-module. Furthermore, Λ•(M) and S•(M) denote
respectively the symmetric and the exterior algebras of a module M , and
Λp(M) and Sp(M) denote respectively the pth symmetric and the pth exterior
powers M .
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For simplicity we will use the following notations: given p ∈ Z≥0,

E := Q(Ann(Λ•V )), Lp := Q(Ann(ΛpV )), L∞p := Q(Ann(S•(V ⊗ Cp))),

E∞ := {annihilators of all modules with integral highest weight},

R :=

{
{annihilators of spinor modules} for o(∞)

{ or annihilators of Shale–Weil modules for sp(∞)}

Then the following table describes the set of basic c.l.s.b. for the Lie algebras
o(∞) and sp(∞).

Lie algebra C.l.s.b.
o(∞) E, Lp, L

∞
p , E∞, R

sp(∞) E, Lp, L
∞
p , E∞, R

Proposition 5.8. Any irreducible c.l.s.b. can be expressed uniquely as a
product as follows:

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em

or
(L∞v L

xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )EmR

where
r, v ∈ Z≥0, xi ∈ Z≥0 for v + 1 ≤ i ≤ v + r.

Here, for v = 0, L∞v is assumed to be the empty c.l.s.b.

Proof. A. Zhilinskii proved the analogous statement for c.l.s., see Theorem
2.8. Hence, for o(∞) the proposition is obvious because in this case c.l.s.
and c.l.s.b. are the same objects.

In Proposition 5.6 we showed that the sp(2n−2)-branching of a bounded
sp(2n)-module L(λ) yields a set of highest weights which is obtained by
translation via

∑n
i=1 εi from the set of highest weights obtained from the

o(2n− 2)-branching of the o(2n)-module L(λ+
∑n

i−1 εi).
Thus, there is a one-to-one correspondence between the set of c.l.s. for

o(∞) and the set of c.l.s.b. for sp(∞), that respects the relation of inclusion,
and the product operation. This completes the proof.
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5.4. Classification of precoherent local systems
of bounded ideals

In this subsection we show that the collection of sets Q(I) corresponding
to a primitive ideal I ∈ U(g(∞)) is equivalent to a c.l.s.b. The respective
notion of equivalence is defined below. Recall that every primitive ideal of
U(g(∞)) is a weakly bounded ideal, as proved in Theorem 3.11.

Definition 5.7. A precoherent local system of bounded ideals (further p.l.s.b.)
for g(∞) is a collection of sets

{In}n∈Z≥2
⊂ Πn∈Z≥2

Jn

such that Im ⊃ 〈In〉m for any n > m, where 〈In〉m denotes the set of all
annihilators of simple g(2m)-constituents of the g(2n)-module which are an-
nihilated by at least one ideal from In.

The definition of a weakly bounded ideal implies that Q(I) is a p.l.s.b
whenever I is a weakly bounded ideal.

Definition 5.8. Two p.l.s.b. I and I′ are equivalent if there exists an inte-
ger n such that In′ = I′n′ for any n′ > n.

As we pointed out above, there is a one-to-one correspondence between
the set of c.l.s. for o(∞) and the set of c.l.s.b. for sp(∞) which respects
the relation of inclusion, and product operation. If we consider a c.l.s.b. Q
as a purely combinatorial object (i.e., as a set of highest sp(2n)-weights for
n ≥ 2) then we can describe the corresponding c.l.s. as follows. If our c.l.s.b.
consists of integral sp(2n)-weights for n ≥ 2 then the corresponding c.l.s. be
the same set of weights considered as o(2n)-weights. If our c.l.s.b. consists
of sp(2n)-weights with half-integral entries for n ≥ 2 then the corresponding
c.l.s. is obtained by adding ε(2n) to each sp(2n)-weight and considering new
weights as o(2n)-weights. Hence, the proofs of the Lemmas 4.4, 4.5, 4.6
are precisely the same as in Subsection 4.2 (we us all the notion from this
subsection).

Lemma 5.9. For any admissible n-tuple λ, the p.l.s. Q∨(λ) is equivalent to
the c.l.s.

Q(λ) :=
⋃

16k6#λ

Q(k, λk),

where the collection of sets Q(k, a) for k ∈ Z≥0 and a ∈ Z/2 is defined by
putting

Q(k, a)m := {µ ∈ Am | µk < a, if k ≤ #µ}.
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Lemma 5.10. Let λ and µ be admissible tuples such that #µ > 2#λ. Then
the following conditions are equivalent:

1) µ � λ,

2) µk > λk for each 1 6 k 6 #λ.

Lemma 5.11. Let λ and µ be admissible tuples such that #µ − #λ = 1,
µ > λ and let k ∈ Z. Then

1) R(µ, k) > R(λ, k),

2) L(µ, k) > L(λ, k),

3) L(µ, k) > R(λ, k) whenever one of the following conditions is satisfied

µi+1 > k > µi+2, (∗ ∗)

µi+2 > k > µi+3. (∗ ∗ ∗)

for i such that λi > k > λi+1.

The following proposition is a corollary of the above three lemmas.

Proposition 5.12. For any p.l.s.b. I there exists a c.l.s.b. I′ such that I
and I′ are equivalent.

Theorem 5.13. Let I be a primitive ideal of U(g(∞)). Then Q(I) is equiv-
alent to a c.l.s.b.

Proof. Follows from Theorem 3.11 and Proposition 5.12.
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6. Classification of primitive ideals of U(o(∞))

and U(sp(∞))

Here we introduce a set of modules such that each primitive ideal of
U(o(∞)) and U(sp(∞)) equals the annihilator of a unique module from this
set. Also, for a module from this set we formulate a criterion for integrability
of its annihilator.

In this subsection g(2n) denotes the Lie algebra o(2n) or sp(2n), and
g(∞) denotes the Lie algebra o(∞) or sp(∞).

Let Z be a Young diagram with row lengths

l1 ≥ l2 ≥ · · · ≥ ls > 0.

Then we denote by VZ(n) the g(2n)-module with highest weight

(l1, l2, . . . , ls, 0, 0, . . . , 0)︸ ︷︷ ︸
n numbers

.

The g(2n)-module VZ(n) is isomorphic to a simple direct constituent of the
tensor product

Sl1(V (n))⊗ Sl2(V (n))⊗ · · · ⊗ Sls(V (n)),

where Sli(V (n)) denotes the lith symmetric power of the natural module
V (n). In this way, the g(∞)-module VZ is defined as the direct limit lim−→VZ(n).
We denote by R the o(∞)-module which is equal to the direct limit lim−→R(2n),

where R(2n) is the o(2n)-module with highest weight (1
2

∑n
1 εi). Also we de-

note by R the sp(∞)-module which is equal to the direct limit lim−→SW+(2n).

Proposition 6.1. [PP3] Any nonzero prime integrable ideal I ( U(g(∞)) is
the annihilator of a unique g(∞)-module of the form

(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ for g(∞) = sp(∞),
(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ or

(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ ⊗R
for g(∞) = o(∞),

where x, y ∈ Z≥0, and Z is an arbitrary Young diagram.

Definition 6.1. Let S1, S2 ⊂ Jn and s1, s2 ⊂ Rn be respective sets of iso-
morphism classes of g(2n)-modules. Put

S1 ⊗ S2 := {z ∈ Jn | z = Ann r for some r ∈ Rn such that

Homg(2n)(r, r1 ⊗ r2) 6= 0 for some r1 ∈ s1 and r2 ∈ s2}
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Let I′ be a c.l.s.b. of the form

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em

and I′′ be a c.l.s.b. of the form

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )EmR or (L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )Em

Then the tensor product I′ ⊗ I′′ of this two c.l.s.b. is the collection of sets
defined by (I′ ⊗ I′′)i = I′i ⊗ I′′i .

Lemma 6.2. Let Q be a c.l.s.b of Lie algebra sp(∞) which can be expressed
as

Q = (L∞1 )⊗v ⊗ (L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em.

Then tensor product of c.l.s.b. Q⊗R is a c.l.s.b.

Proof. One can show that the statement follows from Lemma 5.4.

One can easily deduce that

(L∞v L
xv+1

v+1 L
xv+2
v+2 . . . L

xv+r

v+r )Em = (L∞1 )⊗v ⊗ (L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em,

(L∞v L
xv+1

v+1 L
xv+2

v+2 . . . L
xv+r

v+r )EmR = (L∞1 )⊗v ⊗ (L
xv+1

1 L
xv+2

2 . . . Lxv+r
r )Em ⊗R.

For every c.l.s.b. Q = {Qn}n∈Z≥1
we can define the ideal

I(Q) :=
⋃
m

(
⋂
z∈Qm

z) ⊂ U(g(∞)).

We say that I(Q) is the globalization of Q.
Let Z be a Young diagram with row lengths

l1 ≥ l2 ≥ · · · ≥ ls > 0.

For each positive number x we denote by {x} the fractional part of x. Let
V (x, y, Z)(2n), for x ∈ Z≥0, y ∈ 1

2
Z≥0, denote the simple g(2n)-module with

highest weight

x∑
i=1

(n+ {y})εi +
x+s∑
i=x+1

(li−x + y)εi +
n∑

i=x+s+1

yεi

for g(2n) = o(2n),

x∑
i=1

(n− {y})εi +
x+s∑
i=x+1

(li−x + y − 2{y})εi +
n∑

i=x+s+1

(y − 2{y})εi
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for g(2n) = sp(2n), where n ≥ x + s. It is clear that we can embed
V (x, y, Z)(2n) ↪→ V (x, y, Z)(2n + 2) as g(2n) submodule. Now, we can
define g(∞)-module V (x, y, Z) as the direct limit lim−→V (x, y, Z)(2n). Let Q
be a c.l.s.b of the form

• (L∞x L
l1
x+1L

l2
x+2 . . . L

ls
x+s)E

y, then I(Q) = Ann(V (x, y, Z)) ⊂ U(g(∞))
for y ∈ Z≥0,

• (L∞x L
l1
x+1L

l2
x+2 . . . L

ls
x+s)E

y− 1
2R, then I(Q) = Ann(V (x, y, Z)) ⊂ U(g(∞))

for y ∈ Z≥0 + 1
2

.

The following is the main result of this section.

Theorem 6.3. a) Any nonzero primitive ideal I ( U(g(∞)) is the anni-
hilator I(x, y, Z) of an sp(∞)-module of the form

(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ for y ∈ Z≥0,

(S•(V ))⊗x ⊗ (Λ•(V ))⊗y ⊗ VZ ⊗R for y ∈ Z≥0 +
1

2
,

where x ∈ Z≥0, and Z is an arbitrary Young diagram. Moreover,
I(x1, y1, Z1) = I(x2, y2, Z2) if and only if x1 = x2, y1 = y2 and Z1 = Z2.

b) The ideal I(x, y, Z) is integrable if and only if y ∈ Z≥0.

Theorem 6.3 follows form Proposition 6.4, Propositon 6.5 and Corollary
6.6 which we prove below.

Proposition 6.4. Every primitive ideal I ⊂ U(sp(∞)) is of the form I(x, y, Z)
for some x ∈ Z≥0, some y ∈ Z≥0/2, and some Young diagram Z.

Proof. We claim that I = I(Q(I)). Indeed, the p.l.s.b. Q(I) consists of all
bounded ideals z ⊃ I ∩ U(sp(2n)). Since I is weakly bounded, i.e., is such
that every intersection I ∩U(sp(2n)) is an intersection of bounded ideals, we
have

⋂
z∈Q(I)n

z = I ∩ U(sp(2n)). Thus,

I(Q(I)) =
⋃
n

I ∩ U(sp(2n)) = I.

Recall, that for every p.l.s.b. Q(I) we can find an equivalent c.l.s.b.
Q(I)′. Therefore, there exists a bijection φ between the set of primitive
ideals I ⊂ U(sp(2n)) and the set of c.l.s.b. Q, such that if φ(I) = Q then
I(Q) = I. Lemma 6.2 and the above classification of c.l.s.b. in Proposition
5.8 complete the proof.
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For our next proposition we need some preliminary considerations.
Let Z(U(sp(2n))) be the center of U(sp(2n)), i.e., the set of all elements

g ∈ U(sp(2n)) such that gu = ug for each u ∈ U(sp(2n)).

Definition 6.2. Let L(λ) be a simple sp(2n)-module with highest weight λ,
a wnd let v+ be a highest weight vector of L(λ). For z ∈ Z(U(sp(2n))) we
have z · v+ = χ(λ)(z) · v+ for χ(λ)(z) ∈ C. Since z is a central element, it
acts as χ(λ)(z) on L(λ). The map

χ(λ) : Z(U(sp(2n))) 7→ C

is called the central character of weight λ.

For a Young diagram Z, we denote the length of the ith row of Z by
Zi. Let I(x, y, Z) be a primitive ideal of U(sp(∞)). One can check that the
work of Zhiliskii [Zh3], together with Lemma 2.4 and Proposition 5.6 imply
the following fact: Q(I(x, y, Z))n consists of all weights λ =

∑n
i=1 λiεi such

that λi − λj ∈ Z≥0 for i > j, λn−1 + λn ≥ −2 for λn ∈ Z + 1
2
, λn ∈ Z≥0 for

λn ∈ Z, and y + Zi − λx+i ∈ Z≥0 for all i ∈ Z≥1. We call the c.l.s.b. Q(I)
integral whenever the entries of any λ ∈ Q(I) are integers. If the entries of
any λ ∈ Q(I) are half-integers, then Q(I) is half-integral.

Proposition 6.5. Two primitive ideals I1 = I(x1, y1, Z1), I2 = I(x2, y2, Z2)
of U(sp(∞)) are equal if and only if x1 = x2, y1 = y2 and Z1 = Z2.

Proof. Assume that the triplet (x1, y1, Z1) does not equal (x2, y2, Z2). We
will consider Q(I) as a set of weights as in Subsections 5.3 and 5.4. Then
there exists such n that Q(I1)n 6= Q(I2)n. This is equivalent to the following.
We may assume without loss of generality that x1 ≥ x2 with n > x2, and
that there exist a weight λ′ ∈ Qn(I1) and an integer x2 < k ≤ n, such that
λ′i ≥ λi for x2 < i < k and λ′k > λk for any λ ∈ Q(I2)n. Since the choice of λ′

is not unique, we choose one with minimal possible k. Also, without loss of
generality, we assume that k = n because of the fact that a sp(2m)-module
L(β) always has an sp(2l)-submodule isomorphic to L(γ), for m > l and
γ =

∑l
i=1 βiεi.

Suppose that I1 = I2. Obviously, then I1 ∩ U(sp(2n)) = I2 ∩ U(sp(2n)).
This implies ⋂

λ∈Q(I1)n

AnnL(λ) =
⋂

λ∈Q(I2)n

AnnL(λ). (26)

Next, we consider the intersections I1∩Z(U(sp(2n))) and I2∩Z(U(sp(2n))).
These intersections are equal because I1 = I2. By Harish-Chandra’s Theo-
rem, Z(U(sp(2n))) is isomorphic to the polynomial algebra C[a1, a2, . . . , an]
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in n variables. A maximal ideal F of Z(U(sp(2n))) has the form

F = F (a) = {f ∈ Z(U(sp(2n))) | f(a) = 0},

for some a ∈ Cn. Moreover, it is well known that the intersection of the
annihilator of a simple highest weight sp(2n)-module L(λ) with Z(U(sp(2n)))
equals to the maximal ideal F (χ(λ)) of Z(U(sp(2n))). This fact and formula
(26) imply ⋂

λ∈Q(I1)n

F (χ(λ)) =
⋂

λ∈Q(I2)n

F (χ(λ)).

The latter holds if and only if the Zariski closures of the sets {χ(λ) | λ ∈
Q(I1)n} and {χ(λ) | λ ∈ Q(I2)n} coincide.

We now choose the variables a1, a2, . . . , an to equal the independent Casimir
elements Gs for 1 ≤ s ≤ n, which act on the module L(λ) by the constants

gs(λ) = (−1)s
∑

1≤i1≤i2≤...≤is≤n

Πs
j=1((λij + n− ij + 1)2 − (ij − j + 1)2).

The expressions gs(λ) are symmetric polynomials in the variables
(λij + n− ij + 1)2, see [IMR, Theorem 3.8]. Therefore,

χ(λ) = (g1(λ), g2(λ), . . . , gn(λ)).

Next, we define the following equivalence relation on the set Q(I2)n:

λ ∼x2 µ⇐⇒ λi = µi for i > x2,

where λ, µ ∈ Q(I2)n. In this way, we obtain finitely many equivalence classes.
The class of λ is denoted by K[λx2+1, λx2+2, . . . , λn].

Given u,m, j ∈ Z≥0, m > x2, we set

dm,j = ((λm + n−m+ 1)2 − (m− j + 1)2), (27)

bu,j = (u− j + 1)2.

Furthermore, we consider the subset S[λx2+1, λx2+2, . . . , λn] of Cn defined as
the set of all points (a1, a2, . . . , an) such that

as = fs = (−1)s
∑

1≤i1≤i2≤...≤is≤n

(
∏
ij≤x2

(yij − bij ,j)
∏
ij>x2

dij ,j)

for all 1 ≤ s ≤ n, and for all (y1, y2, . . . , yx2) ∈ Cx2 . It is clear that if
λ ∈ K[λx2+1, λx2+2, . . . , λn], then χ(λ) belongs to S[λx2+1, λx2+2, . . . , λn].
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Now, we will show that S[λx2+1, λx2+2, . . . , λn] is an affine subspace of
Cn. The fact that the polynomials gs(λ) are symmetric implies that the
polynomials fs are symmetric in the variables y1, y2, . . . , yx2 . Note that the
degree of fs for s ≤ x2 is equal to s. In addition, the polynomial fs is linear
in each yj, 1 ≤ j ≤ x2. Thus, fs for 1 ≤ s ≤ x2 are linearly independent.

Hence, the polynomials fs for 1 ≤ s ≤ n are linear combinations of the
polynomials ft for 1 ≤ t ≤ x2. Let s satisfy x2 < s ≤ n. Denote by
ls(a1, a2 . . . , ax2) the affine-linear function such that fs = ls(f1, f2 . . . , fx2).
Then S[λx2+1, λx2+2, . . . , λn] coincides with the affine subspace of Cn defined
by the system of equations

ax2+1 = lx2+1(a1, a2, . . . , ax2),
ax2+2 = lx2+2(a1, a2, . . . , ax2),
. . . ,
an = ln(a1, a2, . . . , ax2).

(28)

Next, we will show that S[λx2+1, λx2+2, . . . , λn] is the Zariski closure of
K[λx2+1, λx2+2, . . . , λn]. Indeed, assume that there is an equation
f(a1, a2, . . . , an) = 0 such that f(χλ) = 0 for every λ ∈ K[λx2+1, λx2+2, . . . , λn].
Then we consider the function

f̄(a1, a2 . . . , ax2) = (a1, . . . , ax2 , lx2+1(a1, . . . , ax2), . . . , ln(a1, . . . , ax2)),

and note that f̄(χ(λ)1, χ(λ)2, . . . , χ(λ)x2) = 0 for all λ ∈ K[λx2+1, λx2+2, . . . , λn].
However,the Combinatorial Nullstellensatz [A] claims that such polynomial is
equal to 0. Thus S[λx2+1, λx2+2, . . . , λn] is the Zariski closure of
K[λx2+1, λx2+2, . . . , λn].

Now, we consider the functions

ut =
∑

1≤i1≤i2≤...≤is≤x2

(
s∏
j=1

(yij − bij ,j)

for 1 ≤ t ≤ x2. Each ut can be expressed as linear combination of the
functions f1, f2, . . . ft with a nonzero coefficient of ft. Hence, the functions
ut for 1 ≤ t ≤ x2 are linearly independent. Note that dij ,j 6= 0 for λi /∈ Z.
This and formula (28) implies that the functions ft for n − x2 < t ≤ n are
linearly independent whenever Q(I2) is half-integral.

Consider the point h0 of S[λx2+1, λx2+2, . . . , λn] defined by the parameters
yi = bi,1. One can check that h0 = (

∑
i>x2

di,1, c2, c3, . . . , cn−x2 , 0, . . . , 0)
for some c1, c2, . . . , cn−x2 ∈ C. The fact, that fs for n − x2 < s ≤ n are
linearly independent whenever Q(I2) is half-integral, implies that a point
h1 ∈ S[λx2+1, λx2+2, . . . , λn] with h1

i = 0 for i > n − x2 must be equal to
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h0 whenever Q(I2) is half-integral. Denote di,1 by di(λ) and h0 by h0(λ).
Clearly, di(λ

1) > di(λ
2) if λ1

i > λ2
i .

Recall that the proposition we are proving has already been proved by
Zhilinskii in the work [Zh3] under the assumption that the c.l.s.b. Q(I1) and
Q(I2) are integral, i.e. Q(I1) and Q(I2) are c.l.s. Hence it remains to prove
our proposition for I1 and I2 such that at least one of the c.l.s.b. Q(I1) and
Q(I2) is half-integral.

Denote by Z(S) the Zariski closure of S in Cn . Let V be a set of sp(2n)-
weights. We denote the respective set of central characters χλ for λ ∈ V by
H(V ).

In what follows we denote by ∼x2 the equivalence relation on the set
Q(I1)n, constructed exactly as the equivalence relation on Q(I2)n denoted
above by ∼x2 . We abbreviate

K[λ] := K[λn−x2+1, λn−x2+2, . . . , λn]

and
S[λ] := S[λn−x2+1, λn−x2+2, . . . , λn].

Finally, we prove that I1 6= I2 by considering the following cases:

• Q(I1) is integral, Q(I2) is half-integral, and x1 > x2. It is clear that
n = x2 + 1. This implies that Z(H(Q(I1)n)) = 0, while the Zariski
closure Z(H(Q(I2)n)) is finite union of proper affine subspaces, and
hence I1 6= I2.

• Q(I1) is half-integral, Q(I2) is integral or half-integral, and x1 > x2. We
obtain that n = x2 + 1 and that Z(H(Q(I1)n)) = 0, Z(H(Q(I2)n)) 6= 0
similarly to the case when Q(I1) is integral, Q(I2) is half-integral, and
x1 > x2.

• Q(I1) is half-integral, Q(I2) is integral or half-integral, and x1 = x2.
Then Z(H(Q(I1)n)) =

⋂y
i=1 S(λi) for some λi ∈ Q(I1)n, and denote

Si := S(λi). Also we obtain Z(H(Q(I2)n)) =
⋂u
j=1 S(λj) for some λj ∈

Q(I2)n, and put S ′j = S(λj). Therefore, Z(H(Q(I1)n)) = Z(H(Q(I2)n))
if and only if the sets {S1, S2, . . . , Sy} and {S ′1, S ′2, . . . , S ′u} are equal.
We show that S(λ′) 6= S ′j for any 1 ≤ j ≤ u. There are two possibilities
for S ′j: first, the coordinates with indices n− x2 + 1, n− x2 + 2, . . . , n
of points in S ′ are not linearly independent; second, the coordinates
with indices n − x2 + 1, n − x2 + 2, . . . , n of points in S ′ are lin-
early independent. In the first case, we have S(λ′) 6= Sj because
the last x2 coordinates of points in S(λ′) are linearly independent.
In the second case, we note that S(λ′) contains the point h0(λ′) =
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(
∑

i>x2
di(λ

′), c′2, c
′
3, . . . , c

′
n−x2

, 0, . . . , 0). Since λ′i ≥ λi for x2 ≤ i ≤ n,
we have

∑
i>x2

di(λ
′) >

∑
i>x2

di(λ) where λ ∈ Q(I2)n. Therefore
h0(λj) 6= h0(λ′) for λj ∈ Q(I2)n. As h0(λj) is the unique point with
λjs = 0 for n−x2 + 1 ≤ s ≤ n, we conclude that S(λ) does not coincide
with S ′j for all j, and hence I1 6= I2.

• Q(I1) is integral, Q(I2) is half-integral, and x1 = x2. Then it is clear
that k = n = x2 + 1. Note that, if dn,n(λ′) = 0 then an = 0 for each
a ∈ S(λ′). On the other hand, formula (27) implies dn,n(λ′) is equal to
zero if and only if λ′n = 0. This implies Q(I1) = S(λ′). Thus the Zariski
closures Z(H(Q(I2)n)) and Z(H(Q(I1)n)) do not coincide because there
exists a ∈ Z(H(Q(I2))) such that an 6= 0. For dn,n(λ′) 6= 0 proof is the
same as for the case when Q(I1) is half-integral, Q(I2) is integral or
half-integral, and x1 = x2.

Corollary 6.6. Every primitive ideal I = I(x, y, Z) ⊂ U(sp(∞)) with y ∈
Z + 1

2
, is nonintegrable.

Proof. Follows from the Proposition 6.5 and the classification of integrable
ideals given by Zhilinskii in [Zh1], [Zh2] and [Zh3].

We conclude this thesis by the remark that we have now established that
the primitive ideals of U(o(∞)) and U(sp(∞)) are described by the same
triplets (x, y, Z). This follows from a direct comparison of Proposition 4.8
in [PP3] and Theorem 6.3 above. The only difference between the two cases
that the primitive ideals I(x, y, Z) with y ∈ Z≥0 + 1

2
are integrable in the

case of U(o(∞)), and nonintegrable in the case of U(sp(∞)). This remark is
a strong hint for the conjecture that the isomorphism of the lattices of ideals
in U(o(∞)) and U(sp(∞)) constructed in [PP3] preserves primitivity.
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veloppante d’une algèbre de Lie semisimple, Ann. of Math. 105
(1977), 107–120.

[DP] I. Dimitrov, I. Penkov, Weight modules of direct limit Lie algebras,
IMRN 5 (1999), 223-249.

[F] S. L. Fernando, Lie algebra modules with finite-dimensional weight
spaces. I, Trans. Amer. Math. Soc. 322 (1990), 757–781.

[GP] D. Grantcharov, I. Penkov, Simple bounded weight modules of
sl(∞), o(∞), sp(∞), arXiv: 1807.01899, preprint, 2018.

[H] J. Humphreys, Representations of semisimple Lie algebras in the
BGG category O, Graduate Studies in Mathematics 94, AMS, 1991.

[IMR] N. Iorgov, A. Molev, E. Ragoucy, Casimir elements from the
Brauer–Schur–Weyl duality, Journal of Algebra 387 (2013), 144-
159.

[J1] A. Joseph, On the associated variety of a primitive ideal, Journal
of Algebra 93 (1985), 509–523.

[J2] A. Joseph, A characteristic variety for the primitive spectrum
of the enveloping algebra of a semisimple Lie algebra, In: Non-
Commutative Harmonic Analysis, Lecture Notes in Mathematics
587, New York, Springer, 1978, 116–135.

75



[K] D. Knuth, The art of computer programming. Fundamental algo-
rithms, Volume 3, Sorting and searching, Addison–Wesley Series
in Computer Science and Information Processing, Addison–Wesley,
1973.

[KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and
Hecke algebras, Invent. Math. 53 (1979), 165–184.

[M] O. Mathieu, Classification of irreducible weight modules, Annales
de l’institut Fourier 50 (2000), 537–592.

[Mo] A. Molev, On Gelfand–Tsetlin bases for representations of classical
Lie algebras. In: Formal Power Series and Algebraic Combinatorics,
12th International Conference, 2000, 300–308.

[MR] J. McConnell, J. Robson, Noncommutative Nötherian rings, Grad-
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