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Abstract

We study the ideals in certain Mackey algebras EndWV and glM(V,W ),

where the complex vector space V is countable dimensional, but the

complex vector space W is not necessarily countable dimensional. We

show the existence of a 1-codimensional subspace H of V ∗, for which

the associative Mackey algebra EndHV has infinite length, see subsec-

tion 4.3. In addition, we compute the lengths of the Mackey algebras

End(V ∗⊕V∗)(V ⊕ V ) and glM ((V ∗ ⊕ V∗), (V ⊕ V )), see subsection 4.4.
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1 Introduction

For a finite-dimensional vector space V over C, Wedderburn’s theorem claims that the

associative algebra EndV has no nonzero proper two-sided ideals. Furthermore, the Lie

algebra gl(V ) associated with EndV has only two nonzero proper ideals – Cid and sl(V )

– of scalars and traceless elements, respectively. It is one of the basic facts in Lie theory

that the Lie algebra sl(V ) is simple.

For an infinite-dimensional vector space V , the two-sided ideals of EndV have been

described by N. Jacobson, for example in [J]. The characterization of ideals in the Lie

algebra gl(V ) has appeared in [S] and [BHO].

Mackey algebras, which we now define, generalize the endomorphism algebra EndV .

Let V,W be infinite-dimensional vector spaces over C and let V ×W → C be a non-

degenerate pairing. This fixes an embedding of W into the dual space V ∗. The associa-

tive Mackey algebra of this pairing is the algebra

EndWV := {ϕ ∈ EndV | ϕ∗(W ) ⊂ W} ,

where ϕ∗ denotes the operator dual to ϕ. The Mackey Lie algebra of the same pairing

is denoted by glM(V,W ), and is defined to be the vector space EndWV with Lie bracket

[φ, ψ] = φψ−ψφ. Mackey algebras have been introduced in [M] and have been considered

as Lie algebras in [PS]. The representation theory of infinite-dimensional Lie algebras has

been developing very actively in the last four decades, nevertheless the theory has made

only its first steps for Mackey Lie algebras, see [CP], [PS]. In particular, no reasonably

general categories of representations containing the adjoint representation of a Mackey

Lie algebra have been explored. In fact, the structure of the adjoint representation of a

general Mackey Lie algebra has not yet been understood.

The aim of this thesis is to study ideals in Mackey algebras EndWV and glM(V,W ),

beyond the case of EndV . Apart from our work, to the best of our knowledge, the ideals

of general Mackey algebras have been studied only in [PS], [PT], and in a recent unpub-

lished manuscript [C] by A. Chirvasitu. The paper [PS] addresses the characterization

of ideals in the Mackey Lie algebra glM(V, V∗) for a countable-dimensional vector space

V , where V∗ is a subspace of V ∗ defined as follows.

For any infinite-dimensional vector space V and a basis {vb}b∈B ⊂ V indexed by a set

B, define V∗ := span {v∗b}b∈B where v∗b ∈ V ∗ is given by v∗b (vb′) = δb
′

b . We call the family

{v∗b}b∈B the dual system of {vb}b∈B for brevity. We say that a non-degenerate pairing

V ×W → C splits if there exists a basis of V whose dual system is a basis of W (W being
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viewed as a subspace of V ∗). For a countable-dimensional V , the non-degenerate pairing

V ×V∗ → C becomes an important special case because of the following proposition from

[M]:

Proposition 1.1 (G. Mackey). Let V ×W → C be a non-degenerate pairing. If V,W

are both countable dimensional, then the pairing splits.

The paper [PT] (in progress) contains the characterization of ideals in the Mackey Lie

algebras glM(V, V∗), where dimV = ℵk for any natural number k.

In our work, we focus on non-degenerate pairings V ×W → C, where V is countable-

dimensinal, but W is not necessarily countable dimensional. Even with this restriction,

there exist Mackey algebras EndWV that have infinite length (an infinite chain of distinct

two-sided ideals), as was shown by A. Chirvasitu in [C]. As a first main point of this

thesis, we show that there exists a hyperplane Mackey algebra EndHV that has infinite

length, where H is a 1-codimensional subspace of V ∗, see subsection 4.3. As a second

main point, we compute the lengths of the Mackey algebras End(V ∗⊕V∗)(V ⊕ V ) and

glM ((V ∗ ⊕ V∗), (V ⊕ V )), described in subsection 4.4.

We state some needed preliminaries in section 2, and we give examples of different

Mackey algebras in section 3. We discuss ideals of Mackey algebras in section 4.

2 Preliminaries

In this section we gather a couple of already known propositions about Mackey algebras,

as well as some general facts about linear (co)filters, all to be used later on.

2.1 Generalities on Mackey algebras

Throughout this thesis, the ideals of an associative Mackey algebra EndWV are always

meant to be two-sided, while the ideals of a Mackey Lie algebra glM(V,W ) are always

meant to be Lie ideals. A Mackey algebra is meant to be any of the two algebras, and

is referred to in places where we make no distinction between the associative and Lie

cases. Finally, from now on, V is a fixed countable-dimensional vector space over C,

unless explicitly stated otherwise.

For our convenience, we say that a subspace W of V ∗ is non-degenerate if the corre-

sponding pairing V ×W → C is non-degenerate. With respect to a basis {vb}b∈B of V ,

the elements of V ∗ become (countable-)infinite rows of complex numbers, and W ⊂ V ∗
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becomes a subspace of such infinite rows. We state a criterion of non-degeneracy of such

a subspace W .

Lemma 2.1. Let {vb}b∈B be a basis of V with its dual system {v∗b}b∈B ⊂ V ∗, and let W

be a subspace of V ∗ viewed as a subspace of the space of infinite row-vectors indexed by

B. For any finite subset of indices A ⊂ B, let πA : V ∗ → span {v∗a}a∈A be the projection

that sends a row to its finite sub-row indexed by A. Then W is non-degenerate if and

only if for every finite A ⊂ B the restriction πA|W : W → span {v∗a}a∈A is surjective.

Proof. Assume first that for every finite subset A ⊂ B the restriction πA|W : W →
span {v∗a}a∈A is surjective. Any nonzero vector v ∈ V is a linear combination of vectors

{va}a∈A for some finite A ⊂ B. Choose a covector α ∈ span {v∗a}a∈A with α(v) 6= 0.

Because πA|W : W → span {v∗a}a∈A is surjective, there exists w ∈ W with πA|W (w) =

α. We get w(v) = α(v) 6= 0, and so W is non-degenerate. On the other hand, if

W is non-degenerate, then for every nonzero vector v ∈ V there exists w ∈ W with

w(v) 6= 0. Take any finite subset A ⊂ B and consider span {va}a∈A ⊂ V . Since

every w ∈ W acts on every v ∈ span {va}a∈A with the indices A only, it must hold

that ∀v ∈ span {va}a∈A ∃α ∈ πA|W (W ) : α(v) 6= 0. This is only possible when |A| =

dim(span {va}a∈A) 6 dim(πA|W (W )). Since dim(πA|W (W )) is at most |A|, the map

πA|W : W → span {v∗a}a∈A must be surjective.

Let V ×W → C be a non-degenerate pairing. Then the classification of ideals of the

Mackey algebra EndWV yields the classification of ideals of the Mackey algebra EndVW ,

because of the following proposition.

Proposition 2.2 ([PS]). There is an anti-isomorphism of associative algebras

EndWV −→ EndVW, ϕ 7−→ ϕ∗|W .

We say that two pairings V1×W1 → C and V2×W2 → C are isomorphic (respectively,

anti-isomorphic) if there exist isomorphisms f : V1 → V2 and g : W1 → W2 (respectively,

isomorphisms f : V1 → W2 and g : W1 → V2) that commute with the two pairings.

Another important proposition is the following.

Proposition 2.3 ([PS], [Z]). Let V1×W1 → C and V2×W2 → C be two non-degenerate

pairings. The following statements are equivalent:

1. The pairings V1 ×W1 → C and V2 ×W2 → C are isomorphic or anti-isomorphic.
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2. The Mackey algebras EndW1V1 and EndW2V2 are isomorphic or anti-isomorphic as

associative algebras.

3. The Mackey algebras glM(V1,W1) and glM(V2,W2) are isomorphic as Lie algebras.

Moreover, for V1 = V2 = V , the pairings V ×W1 → C and V ×W2 → C are isomorphic

if and only if there exists an isomoprhism f ∈ GL(V ) with f ∗(W2) = W1, where the

spaces W1 and W2 are viewed as subspaces of V ∗.

Proof. By using proposition 1.1. from [PS], one can prove the equivalence 1. ⇐⇒ 3.,

see proposition 3.4. in [Z]. Since, clearly, 1. =⇒ 2. =⇒ 3., all three statements are

equivalent. The main part of the proof of the remaining statement can be found in the

proof of proposition 3.4. in [Z].

2.2 Linear (co)filters and one-sided ideals of EndV

Definition 2.4. Let GrV denote the set of all vector subspaces of V . A subset F ⊂ GrV

is a linear filter if F satisfies the following two conditions:

i) F is closed under finite intersections: w1, w2 ∈ F =⇒ w1 ∩ w2 ∈ F.

ii) F is upward closed: if w1 ∈ F,w2 ∈ GrV and w1 ⊂ w2 then w2 ∈ F.

A subset F ⊂ GrV is a linear cofilter if it satisfies the following two conditions:

i) F is closed under finite sums: w1, w2 ∈ F =⇒ w1 + w2 ∈ F.

ii) F is downward closed: if w1 ∈ F,w2 ∈ GrV and w2 ⊂ w1 then w2 ∈ F.

Lemma 2.5. A subset M ⊂ EndV is a left EndV -submodule (i.e., a left ideal) if and

only if there exists a linear filter F ⊂ GrV with M = {f ∈ EndV | kerf ∈ F} . Such a

filter F is unique.

Proof. The uniqueness of such a filter F , whenever it exists, is obvious. The direc-

tion (⇐=) is clear. For the other direction, assume that M ⊂ EndV is a left EndV -

submodule. It suffices to show that the set kerM := {kerm : m ∈M} is a filter, since

then this will be the filter we are looking for.

By definition of M , ∀a ∈ EndV and ∀m ∈ M holds am ∈ M . It is not hard to check

that EndV · m = {f ∈ EndV | kerm ⊂ kerf}. Because EndV · m ⊂ M , the set kerM

is upward closed. Moreover, let kerm1, kerm2 ∈ kerM . Then kerm1 ∩ kerm2 ∈ kerM .

Indeed, one just has to find m3 ∈ M with kerm3 = kerm1 ∩ kerm2, and this can be

achieved by adding some appropriate m1 and m2. Hence, kerM is a filter.
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Lemma 2.6. A subset M ⊂ EndV is a right EndV -submodule if and only if there exists

a linear cofilter F ⊂ GrV with M = {f ∈ EndV | imf ∈ F} . Such a cofilter F is unique.

Proof. The proof is analogous to the proof of the previous lemma.

Corollary 2.7. The set of all left EndV -submodules of EndV forms a complete lattice

under inclusion, isomorphic to the complete lattice formed by linear filters on GrV under

inclusion. Intersection of left submodules corresponds to the intersection of the corre-

sponding linear filters, and summation of left submodules corresponds to the join of the

corresponding linear filters. The correspondence is established by the map

ker : EndV → GrV.

Analogous statements hold for the right submodules and linear cofilters, the correspon-

dence being established by the map

im: EndV → GrV.

2.3 Linear filters and non-degenerate subspaces of V ∗

Here we show how linear filters on V relate to vector subspaces W of V ∗.

We note first that every vector subspace W ⊂ V ∗ is the sum of the annihilators that

it contains.

Lemma 2.8. Let W ⊂ V ∗ be any subspace of V ∗, and let FW ⊂ GrV be the linear filter

of subspaces of V whose annihilators are contained in W :

FW :=
{
U ∈ GrV | U⊥ ⊂ W

}
.

Then

W = +
U∈FW

U⊥.

Proof. The inclusion +U∈FW
U⊥ ⊂ W is obvious. For the other inclusion it is enough

to notice that each line contained in W is actually the annihilator of some hyperplane

in V , so the sum +U∈FW
U⊥ contains all lines of W .

On the other hand, any subset S ⊂ GrV of subspaces of V yields a subspace W of V ∗

by means of taking the sum of the annihilators of elements of S.
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Lemma 2.9. Let S ⊂ GrV be a subset of subspaces of V . Then the subspace

WS := +
U∈S

U⊥

of V ∗ is non-degenerate if and only if
⋂
U∈S U = 0.

Proof. The subspace WS ⊂ V ∗ is non-degenerate if and only if there is no nonzero sub-

space U ′ ⊂ V whose annihilator contains WS. Since WS = +U∈S U
⊥, this is equivalent

to saying that there is no nonzero subspace U ′ ⊂ V whose annihilator contains each U⊥

for U ∈ S, or that there is no nonzero U ′ ⊂ V contained in each U ∈ S. The latter

holds if and only if
⋂
U∈S U = 0.

Lemma 2.9 implies that any linear filter F ⊂ GrV with nonzero intersection yields a

non-degenerate subspace WF of V ∗.

The above two lemmas establish a correspondence between subspaces W ⊂ V ∗ of V ∗

and linear filters F ⊂ GrV on V . It also follows that WFW
= W and FWF

⊃ F .

Let Ffc ⊂ GrV denote the linear filter of finite-codimensional subspaces of V . The

fact that each W is determined by the lines it contains is reflected in the following

proposition.

Proposition 2.10. Let W ⊂ V ∗. Under the above correspondence, consider the set of

all filters FW corresponding to W , which is a poset under inclusion. Then the maximum

element of FW is FW , the minimum element of FW is FW ∩ Ffc.

Proof. FW is clearly the greatest filter corrsponding to W . It is also clear that FW ∩Ffc
corresponds to W . It is left to show that FW ∩ Ffc is minimum. Assume some filter

F ∈ FW corresponds to W . Then +U∈F U
⊥ = W , and so any line l ⊂ W is contained

in some finite sum U⊥1 + · · · + U⊥n = (U1 ∩ · · · ∩ Un)⊥, where each U i ∈ F . But then

U1 ∩ · · · ∩ Un is contained in H, where l = H⊥, and so H ∈ F . Therefore, F contains

every hyperplane from FW ∩ Ffc, yielding the result.

Definition 2.11. Let F ⊂ GrV be a linear filter on V . Following [BH], define

R(F ) :=
{
f ∈ EndV | ∀U ∈ F : f−1(U) ∈ F

}
.

It is not hard to check that R(F ) is a subalgebra of EndV .

The next proposition links this work with the paper[BH].
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Proposition 2.12. Let W ⊂ V ∗ be any subspace. Then EndWV = R(FW ).

Proof. Let f ∈ EndWV . We have f ∗(U⊥) ⊂ W , whenever U⊥ ⊂ W . It is not hard to

check that

f ∗(U⊥) = U⊥ ◦ f = (f−1(U))⊥.

Hence, f−1(U) ∈ FW ∀U ∈ FW , and so f ∈ R(FW ). On the other hand, if f ∈ R(FW ),

then f ∗(U⊥) ⊂ W for any U ∈ FW . By lemma 2.8, we have W = +U∈FW
U⊥, implying

f ∗(W ) ⊂ W .

We do not know much about the structure of the algebras R(F ) for general linear

filters F , and in what follows we restrict ourselves to the study of Mackey algebras

EndWV and glM(V,W ).

3 Examples of Mackey algebras

Any non-degenerate subspace W of V ∗ defines a non-degenerate pairing V ×W → C,

thus defining the Mackey algebra of this pairing. In this section we give examples of

Mackey algebras by specifying such non-degenerate subspaces W .

3.1 First examples of Mackey algebras

Let B = (v1, v2, v3, . . . ) be an ordered basis of V . With respect to B, the elements of

V can be viewed as finitary column-vectors, the elements of V ∗ – as (countably-)infinite

row-vectors. Apart from V ∗ and V∗, following [C], we define V ∗fv ⊂ V ∗ to be the subspace

of rows with finitely many different entries:

V ∗fv := {f : B → C | f has finite range} .

We have the inclusions V∗ ⊂ V ∗fv ⊂ V ∗, the three spaces are non-degenerate, and it is

easy to check that the three Mackey algebras EndV ∗V,EndV∗V,EndV ∗fvV are pairwise

non-isomorphic.

Here are some non-degenerate subspaces of V ∗ whose definitions use the fact that

C is a normed field. A first example is given by the subspace V ∗B,b of V ∗ of bounded

sequences, and a second one – by the subspace V ∗B,c0 of V ∗ of sequences convergent to

0. A third example is given by the subspace V ∗B,s of V ∗ of summable sequences, and a

fourth one – by the subspace V ∗B,as of V ∗ of absolutely summable sequences. Note that
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each of the four subspaces

V ∗B,as ⊂ V ∗B,s ⊂ V ∗B,c0 ⊂ V ∗B,b

is non-degenerate. Finally, for any real number p ∈ (1,∞), the space of pth-power-

summable sequences lp is also a non-degenerate subspace of V ∗, with inclusions lp ⊂ lq

for any p < q.

3.2 Hyperplane Mackey algebras

One of the main results of this thesis deals with hyperplanes in V ∗, i.e., subspaces of

codimension 1 in V ∗. Each hyperplane H ⊂ V ∗ is given by an element φ ∈ V ∗∗ via

H = kerφ. The corresponding pairing V × H → C is non-degenerate if and only if

φ /∈ V ↪→ V ∗∗. We call the corresponding Mackey algebra EndHV a hyperplane Mackey

algebra. By proposition 2.3, two hyperplane Mackey algebras EndH1V and EndH2V

are isomorphic if and only if there exists f ∈ GL(V ) with f ∗(H2) = H1. Therefore,

there are 22ℵ0 pairwise non-isomoprhic hyperplane Mackey algebras as |V ∗∗| = 22ℵ0 and

|GL(V )| = 2ℵ0 .

3.3 Mixed Mackey algebras

For any two Mackey algebras EndW1V1 and EndW2V2, consider the mixed Mackey algebra

End(W1⊕W2)(V1 ⊕ V2),

the corresponding non-degenerate pairing (W1 ⊕ W2) × (V1 ⊕ V2) → C being defined

as the direct sum of non-degenerate pairings W1 × V1 → C and W2 × V2 → C. This

operation enables us to construct new Mackey algebras out of already known ones.

Definition 3.1. We call a Mackey algebra EndWV Mackey-idempotent if

End(W⊕W )(V ⊕ V ) is isomorphic to EndWV .

Proposition 3.2. The Mackey algebras EndV ∗V , EndV∗V , and EndV ∗fvV are Mackey-

idempotent.

Proof. Recall that V ∗, V∗, V
∗
fv are subspaces of infinite rows with certain properties,

described in subsection 3.1, and do not depend on the order of the basis B. Each of the

three subspaces V ∗⊕V ∗, V∗⊕V∗, V ∗fv⊕V ∗fv of V ⊕V is, again, a subspace of infinite rows
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with respect to the concatenated basis B t B. Since the defining properties of infinite

rows from V ∗, V∗, V
∗
fv are preserved under concatenation of bases, the claim follows.

Definition 3.3. Let EndW1V1 be Mackey-idempotent. We say that a Mackey algebra

EndW2V2 is EndW1V1-saturated if End(W1⊕W2)(V1 ⊕ V2) is isomorphic to EndW2V2.

To explain the term “saturated” we have a simple lemma.

Lemma 3.4. Let EndW2V2 be a Mackey algebra, and let EndW1V1 be Mackey-idempotent.

Then EndW2V2 is EndW1V1-saturated if and only if there exists a Mackey algebra EndW3V3

such that EndW2V2 is isomorphic to End(W1⊕W3)(V1 ⊕ V3).

Proof. One direction is obvious. For the other one, if EndW2V2
∼= End(W1⊕W3)(V1 ⊕ V3),

then clearly

End(W1⊕W2)(V1⊕V2) ∼= End(W1⊕W1⊕W3)(V1⊕V1⊕V3) ∼= End(W1⊕W3)(V1⊕V3) ∼= EndW2V2,

so, End(W1⊕W2)(V1 ⊕ V2) is isomorphic to EndW2V2.

In other words, EndW2V2 is EndW1V1-saturated if the pairing V1 ×W1 → C splits off

within the pairing V2 ×W2 → C as a direct summand. Can it split off infinitely many

times? We simultaneously give an example of an EndV ∗V -saturated Mackey algebra and

answer this question.

Consider the Mackey algebra

EndV ∗∞V := End(V ∗⊕V ∗⊕V ∗⊕... )(V ⊕ V ⊕ V ⊕ . . . ),

where the direct sums have countably many summands. In this case, V ⊕V ⊕V ⊕ . . . is

still isomorphic to V , while V ∗⊕V ∗⊕V ∗⊕ . . . is not isomorphic to (V ⊕V ⊕V ⊕ . . . )∗.
This example is similar to EndV∗V in the way that the latter is given by a direct-sum

decomposition of V into one-dimensional subspaces (via the choice of a basis of V ), while

the new example is given by a direct-sum decomposition of V into countable-dimensional

subspaces (each thus being isomorphic to V itself).

One can generalize this further by considering

A := End(V ∗1 ⊕V ∗2 ⊕V ∗3 ⊕... )(V1 ⊕ V2 ⊕ V3 ⊕ . . . ),

where each Vi 6= 0 is either finite dimensional or countable dimensional, and the direct

sums have countably many summands.
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Proposition 3.5.

• If among the Vis there are infinitely many countable-dimensional spaces, then A ∼=
EndV ∗∞V .

• If among the Vis there are finitely many countable-dimensional spaces and at least

one finite-dimensional space, then A ∼= EndV ∗V ⊕ EndV∗V .

• If each of the Vis is finite dimensional, then A ∼= EndV∗V .

Proof. We will only prove the first point, in the case when among the Vis there are

infinitely many countable dimensional and infinitely-many finite dimensional spaces.

All other cases are similar. We write V for each countable-dimensional summand, U

– for each finite dimensional. We use the fact that the order of summation does not

matter and, without loss of generality, assume that we are dealing with

End(V ∗⊕U∗⊕V ∗⊕U∗⊕... )(V ⊕ U ⊕ V ⊕ U ⊕ . . . ).

We observe that each pair V ⊕ U is countable dimensional with V ∗ ⊕ U∗ = (V ⊕ U)∗

and write instead

End((V⊕U)∗⊕(V⊕U)∗⊕... )((V ⊕ U)⊕ (V ⊕ U)⊕ . . . ),

which is isomorphic to EndV ∗∞V .

Proposition 3.6. EndV ∗∞V is Mackey-idempotent, EndV ∗V -saturated, and EndV∗V -

saturated.

Proof. Since the first two statements are quite obvious, we move to the third one. As

we have shown above,

EndV ∗∞V
∼= End(V ∗⊕U∗⊕V ∗⊕U∗⊕... )(V ⊕ U ⊕ V ⊕ U ⊕ . . . ).

We again use the fact that order of summation does not matter and rewrite as

EndV ∗∞V
∼=
(
End(V ∗⊕V ∗⊕... )(V ⊕ V ⊕ . . . )

)
⊕
(
End(U∗⊕U∗⊕... )(U ⊕ U ⊕ . . . )

)
∼=
(
EndV ∗∞V

)
⊕
(
End(U∗⊕U∗⊕... )(U ⊕ U ⊕ . . . )

)
∼=
(
EndV ∗∞V

)
⊕
(
End(U∗⊕U∗⊕... )(U ⊕ U ⊕ . . . )

)
∼= EndV ∗∞V ⊕ EndV∗V,
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where in the last two transitions we used the fact that U is finite dimensional.

4 Ideals in certain Mackey algebras

In this section we state the main results of this thesis regarding the ideals of Mackey

algebras. We start with some general properties of Mackey algebras and then proceed

to characterizing the ideals of certain Mackey algebras.

4.1 On ideals in general Mackey algebras

Every ideal of EndWV is automatically an ideal in glM(V,W ).

Each Mackey algebra EndWV posseses the ideal V ⊗W = EndWV ∩ Iℵ0 , where Iℵ0

is the ideal of EndV of elements of finite rank (i.e., of rank < ℵ0). In addition, each

Mackey algebra glM(V,W ) posseses the ideal sl(V,W ) ⊂ V ⊗W of traceless elements of

V ⊗W . It was shown in [PS] that every nonzero ideal I 6= Cid of glM(V,W ) contains

sl(V,W ). We briefly prove an analogous statement for the associative case.

Proposition 4.1. V ⊗W is the unique simple ideal in EndWV .

Proof. We will prove that every nonzero ideal I of EndWV contains V ⊗W . Since I

and V ⊗W are also ideals in glM(V,W ), the intersection I ∩ V ⊗W contains sl(V,W ).

Choose 0 6= v ∈ V and 0 6= w ∈ W with w(v) = 0, so that v⊗w ∈ sl(V,W ) ⊂ I∩V ⊗W .

Since I ∩ V ⊗W is two-sided, f · v ⊗ w ∈ I ∩ V ⊗W for any f ∈ EndWV . Choose

v′ ∈ V for which w(v′) 6= 0, as well as w′ ∈ W for which w′(v) 6= 0 (the latter is possible

because V ×W → C is non-degenerate). Put f := v′ ⊗ w′ and obtain v′ ⊗ w′ · v ⊗ w =

w′(v)v′ ⊗ w ∈ I ∩ V ⊗W , where tr(w′(v)v′ ⊗ w) = w′(v)w(v′) 6= 0. Because sl(V,W ) is

1-codimensional in V ⊗W , we get V ⊗W ⊂ I ∩ V ⊗W ⊂ I.

Next, here is the subspace of EndWV

EndV ∗→WV := {ϕ ∈ EndV | ϕ∗(V ∗) ⊂ W} ,

that is easily seen to be an ideal of EndWV . Note that the ideal EndV ∗→WV is not

always different from the ideal V ⊗W .

Proposition 4.2. Let EndWV be a Mackey algebra with the ideals V⊗W and EndV ∗→WV

defined as above. The following statements are equivalent:

1. V ⊗W = EndV ∗→WV .
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2. EndWV is not EndV ∗V -saturated.

3. W does not contain any infinite-dimensional annihilator U⊥ of U ⊂ V .

Proof. We will first show 1.⇐⇒ 3., then 3.⇐⇒ 2..

(1. ⇐⇒ 3.) First assume that W contains an infinite-dimensional annihilator U⊥ of

a subspace U ⊂ V . Choose any endomorphism f ∈ EndV with kerf = U . Since W ⊃
U⊥ = (kerf)⊥ = imf ∗, we conclude that f ∈ EndV ∗→WV . Moreover, since U⊥ = (kerf)⊥

was assumed to be infinite dimensional, it follows that kerf is infinite codimensional,

equivalently, that imf is infinite dimensional. Hence, EndV ∗→WV 6= V ⊗W , as the ideal

EndV ∗→WV contains an endomorphism of infinite rank. On the other hand, if the ideal

EndV ∗→WV contains an endomorphism of infinite rank f , then the annihilator of its

kernel (kerf)⊥ ⊂ W is an infinite-dimensional annihilator in W .

(3. ⇐⇒ 2.) First assume that there exists an infinite-dimensional U⊥ ⊂ W for some

infinite-codimensional U ⊂ V . Consider any direct-sum decomposition U⊕U0 = V of V

(where U0 is infinite dimensional), so that V ∗ = U∗ ⊕U∗0 = U∗ ⊕U⊥. Since W contains

U⊥, the image of the projection of W to U∗ equals W ∩U∗, and we denote this subspace

of U∗ by W1. Then W = W1 ⊕ U⊥ = W1 ⊕ U∗0 , and

EndWV = End(W1⊕U∗0 )(U ⊕ U0) ∼= End(W1⊕V ∗)(U ⊕ V ).

By lemma 3.4, EndWV is EndV ∗V -saturated. Note that non-degeneracy of the pairing

U ×W1 → C follows from the non-degeneracy of the pairing (U ⊕U0)× (W1×U∗0 )→ C.

On the other hand, if EndWV is EndV ∗V -saturated, then

EndWV ∼= End(W⊕V ∗)(V ⊕ V ).

Since Mackey algebras are isomorphic if and only if their corresponding pairings are

isomorphic, W ⊕ V ∗ is isomorphically sent to W , and hence W contains an infinite-

dimensional annihilator, which is the image of V ∗ under this isomorphism.

We may now conclude that for EndV ∗V -saturated Mackey algebras the ideals V ⊗W
and EndV ∗→WV are distinct.

Proposition 4.3. Let EndWV be a Mackey algebra. Let FW ⊂ GrV be the linear

filter corresponding to W , and let Ffc ⊂ GrV be the linear filter of finite-codimensional

subspaces of V . Then the left EndV -submodules EndV ∗→WV and V ⊗ W of EndV

correspond respectively to the linear filters FW and FW ∩ Ffc.
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Proof. Obvious.

Let us digress to the most general Mackey algebra EndWV , where V is not necessarily

countable dimensional. For some cardinal number ℵ > ℵ0, define Iℵ to be the two-

sided ideal in EndV of elements with rank < ℵ. Then the Mackey algebra EndWV

contains the ideals EndWV ∩ Iℵ for all cardinal numbers ℵ > ℵ0. By the definition

of EndWV , each φ ∈ EndWV induces and element φ∗|W of EndW . Moreover, ϕ also

induces an element of End(V ∗/W ), and an element of End(W ∗/V ). We thus have

four maps: 1 : EndWV → EndV , 2 : EndWV → EndW , 3 : EndWV → End(V ∗/W ),

4 : EndWV → End(W ∗/V ), each of which sends an element φ to the element it induces.

The first map is the inclusion map, and the second map is the composition of the

first one with the anti-isomorphism from proposition 2.2. It is also not hard to check

that the third map is an anti-homomorphism of algebras, while the fourth map is a

homomorphism of algebras. Each of the four endomorphism spaces – EndV , EndW ,

End(V ∗/W ), End(W ∗/V ) – has the above-defined ideals Iℵ. By picking a quadruple

of cardinal numbers (α, β, γ, δ), we pick four ideals in the respective four algebras, and

each of the four ideals yields an ideal of EndWV by pullback along the corresponding

map. We denote the intersection of these four ideals in EndWV by I(α,β,γ,δ) ⊂ EndWV .

For an ideal Iℵ ⊂ EndX, let I0 denote the zero ideal {0}, and let I∞ denote the entire

algebra EndX. It is then easy to see that

V ⊗W = I(ℵ0,∞,∞,∞), while EndV ∗→WV = I(∞,∞,0,∞).

The anti-isomorphism between EndWV and EndVW sends the (α, β, γ, δ)-ideal on the

left to the (β, α, δ, γ)-ideal on the right.

We would like to note that two different quadruples may yield the same ideal, and

that not every ideal of EndWV is given by some quadruple.

Finally, we point out that, while it is not clear when an associative Mackey algebra

EndWV has infinitely many ideals, every Mackey Lie algebra glM(V,W ) has uncountably

many ideals. Indeed, as it is shown in [S], [BHO], every vector space U between sl(V,W )

and gl(V,W ) ⊕ Cid is an ideal of glM(V,W ). Since sl(V,W ) has codimension 2 in

gl(V,W )⊕ Cid, there are uncountably many such vector spaces U .

4.2 Ideals in Mackey Lie algebras glM(V, V ∗), glM(V, V∗), gl
M(V, V ∗fv)

The characterizations of ideals in the Mackey Lie algebras glM(V, V ∗), glM(V, V∗), gl
M(V, V ∗fv)

can be deduced from [BHO], [PS], [C], respectively. More precisely, [BHO] presents
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the complete characterization of ideals in glM(V, V ∗), while the characterizations for

glM(V, V∗) and glM(V, V ∗fv) follow easily from [PS] and [C], respectively. All these char-

acterizations are similar, as we shall now describe.

Let W be any of the three subspaces V ∗, V∗, V
∗
fv of V ∗. Then every ideal I 6= Cid in

glM(V,W ) is one of the following:

(0) ⊂ sl(V,W ) ⊂ U ⊂ gl(V,W )⊕ Cid ⊂ glM(V,W ),

where U is any vector subspace between sl(V,W ) and gl(V,W )⊕Cid. In particular, each

of the three Mackey Lie algebras has uncountably many ideals, and, moreover, has length

4. Among the above Lie ideals, only (0), gl(V,W ) = V ⊗W, and glM(V,W ) = EndWV

are two-sided ideals. Thus, the corresponding associative Mackey algebras have length

2.

4.3 Infinite-length hyperplane associative Mackey algebra

Here we present an associative hyperplane Mackey algebra that has uncountably many

ideals, as well as infinite length.

Let EndHV be a hyperplane Mackey algebra, and let φ ∈ V ∗∗ be such that kerφ = H.

We first prove some general statements about hyperplane Mackey algebras.

Lemma 4.4 ([C]). V ∗∗ is a left EndV -module given by the map

EndV × V ∗∗ → V ∗∗

(a, φ) 7→ φ ◦ a∗

Proof. Indeed,

(ba)φ = φ ◦ (ba)∗ = φ ◦ a∗ ◦ b∗ = b(aφ).

Proposition 4.5 ([C]). Let EndHV be a hyperplane Mackey algebra, let φ ∈ V ∗∗ be such

that kerφ = H, and let a ∈ EndV . Then

a ∈ EndV ∗→HV ⇐⇒ aφ = 0,

and

a ∈ EndHV ⇐⇒ ∃λ ∈ C such that (a− λid)φ = 0.
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Proof. The first equivalence follows from the definition of φ and lemma 4.4. In particular,

we see that EndV ∗→HV is exactly the annihilator (with respect to the module structure

EndV ×V ∗∗ → V ∗∗) of φ. For the second equivalence, let a ∈ EndHV . Then a∗(H) ⊂ H,

which is equivalent to ker(aφ) = kerφ or aφ = 0. In other words, there exists λ ∈ C
such that aφ = λφ, or (a− λid)φ = 0. In particular,

EndHV = EndV ∗→HV ⊕ Cid.

This is already interesting, because it means that the ideal Cid is a direct summand

in glM(V,H). This property does not hold for a general Mackey Lie algebra glM(V,W ).

The following result is due to A. Chirvasitu.

Theorem 4.6 ([C]). There exists a non-degenerate hyperplane H in V ∗ for which

EndV ∗→HV = V ⊗H.

This means that there exists a hyperplane Mackey algebra with associative length 2

and Lie length 3:

(0) ⊂ sl(V,H) ⊂ (V ⊗H = EndV ∗→HV ) ⊂
(
EndV ∗→HV ⊕ Cid = glM(V,H)

)
.

We call such a hyperplane (pairing) Mackey-minimal.

Theorem 4.7. Let H be a Mackey-minimal hyperplane. The Mackey algebra End(V ∗⊕H)(V⊕
V ) has infinite length and uncountably many ideals.

Proof. We start by considering the block matrix form of the algebra End(V ∗⊕H)(V ⊕V ):

End(V ∗⊕H)(V ⊕ V ) =
EndV ∗→V ∗V EndV ∗→HV

EndH→V ∗V EndH→HV
=

EndV V ⊗H
EndV V ⊗H ⊕ Cid

.

Let f ⊂ EndV be the ideal of endomorphisms of finite rank. Consider the following

chain of subspaces in End(V ∗⊕H)(V ⊕ V ):

(0) ⊂
f V ⊗H
f V ⊗H

⊂
f V ⊗H

EndV V ⊗H
⊂

EndV V ⊗H
EndV V ⊗H

⊂
EndV V ⊗H
EndV V ⊗H ⊕ Cid

.

18



One can check that these subspaces are, in fact, two-sided ideals. To make the checking

easier, one should keep in mind two facts:

• V ⊗H is a left EndV -submodule of EndV , as it is the annihilator of φ, see propo-

sition 4.5;

• V ⊗H is a subset of f , that is, elements of V ⊗H have finite rank.

We enumerate the above ideals as 0, 1, 2, 3, and 4. Note that 1 is just the ideal

(V ⊕ V )⊗ (V ∗ ⊕H), and 3 is just the ideal End(V ∗⊕V ∗)→(V ∗⊕H)(V ⊕ V ).

We will show that the quotient 2/1 of the ideals is not simple (in fact, that it has

infinite length), meaning that there exists a subspace f (M ( EndV for which

f V ⊗H
M V ⊗H

is an ideal in
EndV V ⊗H
EndV V ⊗H ⊕ Cid

.

By straightforwardly multiplying the ideal with the whole algebra from the left and

from the right, we obtain that M must be a right EndV -submodule and a left EndHV -

submodule, respectively. Clearly, this condition is also sufficient for the subalgebra to

be an ideal.

Hence, it is enough to find some (EndHV, EndV )-sub-bimodule M of EndV strictly

between f and EndV . For this we need a lemma.

Lemma 4.8. M is a (EndHV, EndV )-sub-bimodule of EndV if and only if it is a

(EndV ∗→HV, EndV )-sub-bimodule of EndV .

Proof. We will prove the non-obvious direction. Assume ∀k ∈ EndV ∗→HV and m ∈ M
holds km ∈M . Since EndHV = EndV ∗→HV ⊕Cid, it suffices to check (k+c · id)m ∈M .

But

(k + c · id)m = km+ c · id ·m = km+m · c · id ∈M,

because c · id commutes with everything and because M is an EndV -module from the

right.

We are now ready to construct a (EndHV, EndV )-sub-bimodule M of EndV with

f ( M ( EndV. Take the cofilter Ffd ⊂ GrV of all finite-dimensional subspaces of V

and adjoin to it any infinite-dimensional and infinite-codimensional subspace w1 ∈ GrV .

That is, take the cofilter (Ffd, w1) generated by Ffd and w1, and call it F1.

Proposition 4.9. F1 is strictly between Ffd and GrV .

19



Proof. The right EndV -submodule of EndV corresponding to Ffd is f . Let the right

EndV -submodule corresponding to (w1) (which is the cofilter of subspaces of w1) be f1.

Since the lattice of cofilters is isomorphic to the lattice of right EndV -submodules, the

join (Ffd, w1) corresponds to f + f1. Because all elements of f have finite rank and all

elements of f1 have infinite corank, f + f1 is not EndV . Therefore, (Ffd, w1) is strictly

between Ffd and GrV .

Take M := {m ∈ EndV | im(m) ∈ F1} . By lemma 2.6, M is a right EndV -submodule.

It is also a left EndV ∗→HV -submodule, because every element k of EndV ∗→HV = V ⊗H
has finite image, and so any composition km has finite image, which is included in F1.

By lemma 4.8, M is a left EndHV -submodule. Finally, by proposition 4.9, M is strictly

between f and EndV .

It is not hard to show that by choosing different w1 ∈ GrV we can achieve uncountably

many distinct linear cofilters F1. We now sketch a proof of this. Let B ⊂ V be any basis,

so that B is a countable set. Define an equivalence relation on the power set P(B) of B by

saying that two subsets B1, B2 of B are equivalent if their symmetric difference B1∆B2 is

finite. Each equivalence class is then countable, because, to obtain a subset equivalent to

B1, one has to choose a finite subset outside of B1 and a finite subset inside of B1. Since

the set P(B) in uncountable, there are uncountably many equivalence classes. Choose

their representatives {Bi}i∈I , so that the symmetric difference of any pair of them is

countable. Some of these Bis might be finite or cofinite in B – we ignore such. Thus

we ignore countably many among {Bi}i∈I , and the rest is still an uncountable family

{Bj}j∈J . Consider the family of subspaces {spanBj}j∈J of V ∗. Adjoining Ffd to each

of the linear cofilters {(spanBj)}j∈J , we obtain an uncountable family of distinct linear

cofilters {Fj}j∈J . Hence, End(V ∗⊕H)(V ⊕V ) has uncountably many distinct ideals, which

is the first part of theorem 4.7.

For the second part of theorem 4.7, take an infinite chain of subspaces w1 ⊂ w2 ⊂ . . .

such that each of them is infinite codimensional in its successor, obtaining an infinite

chain of linear cofilters F1 ⊂ F2(= (Ffd, w2)) ⊂ . . . . Again, because of infinite codimen-

sionality, the inclusions in the chain of linear cofilters are strict. Hence, End(V ∗⊕H)(V⊕V )

has infinite length.
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4.4 The ideals of the Mackey algebra End(V ∗⊕V∗)(V ⊕ V )

In this subsection we characterize the ideals of the Mackey algebra End(V ∗⊕V∗)(V ⊕ V ).

We start by considering the matrix form of End(V ∗⊕V∗)(V ⊕ V ):

End(V ∗⊕V∗)(V ⊕ V ) =
EndV ∗→V ∗V EndV ∗→V∗V

EndV∗→V ∗V EndV∗→V∗V
=

EndV V ⊗ V∗
EndV EndV∗V

,

where EndV ∗→V∗V = V ⊗ V∗ by proposition 4.2.

Let f ⊂ EndV be the ideal of endomorphisms of finite rank. Consider the following

chain of ideals in End(V ∗⊕V∗)(V ⊕ V ):

(0) ⊂
f V ⊗ V∗
f V ⊗ V∗

⊂
f V ⊗ V∗

EndV V ⊗ V∗
⊂

EndV V ⊗ V∗
EndV V ⊗ V∗

⊂
EndV V ⊗ V∗
EndV EndV∗V

.

We enumerate these ideals as 0, 1, 2, 3, and 4. Note that 1 is just the ideal (V ⊕V )⊗
(V ∗⊕V∗), and 3 is just the ideal End(V ∗⊕V ∗)→(V ∗⊕V∗)(V ⊕V ). Notice also that the chain

above is almost the same chain as we had for End(V ∗⊕H)(V ⊕V ) in the previous section.

However, the overall situation with ideals is different from that of the previous section,

as the following theorem suggests.

Theorem 4.10 ([C]). The quotient 2/1 of the ideals is simple, meaning that there is no

subspace f (M ( EndV for which

f V ⊗ V∗
M V ⊗ V∗

is an ideal in
EndV V ⊗ V∗
EndV EndV∗V

.

Proof. As we have seen earlier, this amounts to showing that there is no (EndV∗V, EndV )-

sub-bimodule M of EndV strictly between f and EndV . This is shown by A. Chirvasitu

in [C].

We draw attention to yet another ideal of End(V ∗⊕V∗)(V ⊕ V ) that could be placed in

the chain instead of the ideal 3:

f V ⊗ V∗
EndV EndV∗V

.

We name it 3′.
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Theorem 4.11. All nonzero ideals of End(V ∗⊕V∗)(V ⊕ V ) are 1, 2, 3, 3′, and 4. The

length of End(V ∗⊕V∗)(V ⊕ V ) is thus 4.

Proof. We first need a lemma.

Lemma 4.12. Let End(W1⊕W2)(V ⊕ V ) be a Mackey algebra and let

EndW1V EndW1→W2V

EndW2→W1V EndW2V

be its block matrix form. Then every ideal I of End(W1⊕W2)(V ⊕ V ) has the form

A B

C D
:=

{
a b

c d
| a ∈ A, b ∈ B, c ∈ C, d ∈ D

}
,

where A,B,C,D are some vector subspaces of EndW1V , EndW1→W2V , EndW2→W1V ,

EndW2V , respectively.

Proof. Let

a b

c d

be and element of I. Because I is a two-sided ideal in End(W1⊕W2)(V ⊕V ), the following

four elements also belong to I:

a 0

0 0
=

idV 0

0 0
·
a b

c d
·

idV 0

0 0
,

0 b

0 0
=

idV 0

0 0
·
a b

c d
·

0 0

0 idV
,

0 0

c 0
=

0 0

0 idV
·
a b

c d
·

idV 0

0 0
,

0 0

0 d
=

0 0

0 idV
·
a b

c d
·

0 0

0 idV
.

The claim easily follows.

We start the proof of theorem 4.11 by showing that the chain

(0) ⊂
f V ⊗ V∗
f V ⊗ V∗

⊂
f V ⊗ V∗

EndV V ⊗ V∗
⊂

EndV V ⊗ V∗
EndV V ⊗ V∗

⊂
EndV V ⊗ V∗
EndV EndV∗V

.

is a composition series, i.e., that the quotients 1/0, 2/1, 3/2, 4/3 are simple. By propo-

sition 4.1 and theorem 4.10, the quotients 1/0 and 2/1 are simple.
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Assume there is a two-sided ideal I between the ideals 2 and 3, so it has the form

M V ⊗ V∗
EndV V ⊗ V∗

for some vector subspace M between f and EndV . Multiplication by End(V ∗⊕V∗)(V ⊕V )

from both sides

EndV V ⊗ V∗
EndV EndV∗V

·
M V ⊗ V∗

EndV V ⊗ V∗
·

EndV V ⊗ V∗
EndV EndV∗V

shows that then M is a (EndV, EndV )-sub-bimodule of EndV , and hence M is either

f or EndV (here we use the assumption dimV = ℵ0). Therefore, the quotient 3/2 is

simple.

Assume there is a two-sided ideal I between the ideals 3 and 4, so it has the form

EndV V ⊗ V∗
EndV M

for some vector subspace M between V ⊗ V∗ and EndV∗V . Using the same strategy, we

deduce that M is a (EndV∗V, EndV∗V )-sub-bimodule of EndV∗V , and hence M is either

V ⊗ V∗ or EndV∗V . Therefore, the quotient 4/3 is simple.

As a result, the chain is a composition series, and so the length of End(V ∗⊕V∗)(V ⊕ V )

is 4.

We are left showing that there is no other ideal except of 0, 1, 2, 3, 3′, 4. Keeping lemma

4.12 in mind, let

I =
A B

C D
=

A V ⊗ V∗
C D

be a two-sided ideal in End(V ∗⊕V∗)(V ⊕ V ). Then there are five cases:

• case 0: I equals 0.

• case 1: I contains 1 but not 2;

• case 2: I contains 2 but not 3;

• case 3: I contains 3 but not 4;

• case 4: I equals 4.
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CASE 1: Consider the ideal I ∩ 2. Since the quotient 2/1 is simple, the ideal I ∩ 2 equals 1,

which implies C = f . Multiplication by End(V ∗⊕V∗)(V ⊕ V ) from both sides

EndV V ⊗ V∗
EndV EndV∗V

·
A V ⊗ V∗
f D

·
EndV V ⊗ V∗
EndV EndV∗V

shows thatA is a (EndV, EndV )-sub-bimodule of EndV , and thatD is a (EndV∗V, EndV∗V )-

sub-bimodule of EndV∗V . Hence, A = f or EndV , and D = V ⊗ V∗ or EndV∗V .

It is easy to check that only A = f and D = V ⊗ V∗ forms an ideal. We conclude

that I = 1.

CASE 2: Consider the ideal I ∩ 3. Since the quotient 3/2 is simple, the ideal I ∩ 3 equals 2,

which implies C = f and A = EndV . Multiplication by End(V ∗⊕V∗)(V ⊕ V ) from

both sides

EndV V ⊗ V∗
EndV EndV∗V

·
f V ⊗ V∗

EndV D
·

EndV V ⊗ V∗
EndV EndV∗V

shows that D is a (EndV∗V, EndV∗V )-sub-bimodule of EndV∗V . Hence, D = V ⊗V∗
or EndV∗V . We conclude that I = 2 or I = 3′.

CASE 3: Consider the ideal I ∩ 4. Since the quotient 4/3 is simple, the ideal I ∩ 4 equals 3,

which implies I = 3.

Therefore, I = 0, 1, 2, 3, 3′, or 4.

Theorem 4.13. The Mackey Lie algebra glM((V ⊕ V ), (V ∗ ⊕ V∗)) has length 7.

Proof. The two-sided ideals 1, 2, 3, 3′, and 4 are also Lie ideals of our Lie algebra, and

we denote them by g1, g2, g3, g3′ , and g4(= g), respectively. Let sl denote the ideal of

traceless elements of g. In addition, consider the following two Lie ideals:

gsc3 :=
EndV V ⊗ V∗
EndV V ⊗ V∗ ⊕ Cid

= g3 ⊕ Cid, gsc3′ :=
f ⊕ Cid V ⊗ V∗
EndV EndV∗V

= g3′ ⊕ Cid,

where “sc” stands for semi-complex. Consider the following chain of ideals:

(0) ⊂ sl ⊂ g1 ⊂ g2 ⊂ gsc3 ∩ g3′ ⊂ g3 ⊂ gsc3 ⊂ g4 = g.
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The proof that the above chain is a composition series is similar to the proof of the

respective part of theorem 4.11. The length of the Lie algebra glM((V ⊕ V ), (V ∗ ⊕ V∗))
is thus 7.

5 Outlook

As we could see, there are many Mackey algebras EndWV whose ideals it would be

interesting to determine, even for the case of a countable-dimensional vector space V .

At this point, we do not know much about the ideals in several examples mentioned in

subsection 3.1 that were not considered later on in this work.

Knowing the ideals of two Mackey algebras EndW1V1 and EndW2V2, we still do not

know a general procedure characterizing the ideals of the mixed Mackey algebra

End(W1⊕W2)(V1⊕V2). Theorems 4.7 and 4.11 suggest that the length of a mixed Mackey

algebra behaves rather unpredictably. It would be quite interesting if, under some ad-

ditional conditions, the length of a mixed Mackey algebra could be deduced from the

lengths of the constituent Mackey algebras.

There are many further questions, in particular the following. What Mackey Lie

algebras, apart from glM(V,H) for a Mackey-minimal hyperplane H, have length 3?

Can one characterize all Mackey Lie algebras of length 4? What are the possible lengths

of Mackey Lie algebras glM(V,H) for a hyperplane H? For what Mackey Lie algebras

is the ideal Cid a direct summand?
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