ORBIT DUALITY IN IND-VARIETIES OF MAXIMAL GENERALIZED FLAGS

LUCAS FRESSE AND IVAN PENKOV

To Ernest Borisovich Vinberg on the occasion of his 80th birthday

ABSTRACT. We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety \mathbf{G}/\mathbf{B} for a classical ind-group \mathbf{G} and a splitting Borel ind-subgroup $\mathbf{B} \subset \mathbf{G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of K- and G^0 -orbits on G/B. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $\mathbf{B} \subset \mathbf{G}$ for the existence of open and closed \mathbf{K} - and \mathbf{G}^0 -orbits on \mathbf{G}/\mathbf{B} , where $(\mathbf{K}, \mathbf{G}^0)$ is an aligned pair of a symmetric ind-subgroup \mathbf{K} and a real form \mathbf{G}^0 of \mathbf{G} .

1. INTRODUCTION

In this paper we extend Matsuki duality to ind-varieties of maximal generalized flags, i.e., to homogeneous ind-spaces of the form \mathbf{G}/\mathbf{B} for $\mathbf{G} = \mathrm{GL}(\infty)$, $\mathrm{SL}(\infty)$, $\mathrm{SO}(\infty)$, $\mathrm{Sp}(\infty)$. In the case of a finite-dimensional reductive algebraic group G, Matsuki duality [6, 11, 12] is a bijection between the (finite) set of K-orbits on G/Band the set of G^0 -orbits on G/B, where K is a symmetric subgroup of G and G^0 is a properly chosen real form of G. Moreover, this bijection reverses the inclusion relation between orbit closures. In particular, the remarkable theorem about the uniqueness of a closed G^0 -orbit on G/B, see [19], follows via Matsuki duality from the uniqueness of a (Zariski) open K-orbit on G/B. In the monograph [7] on cycle spaces there is a self-contained treatment of Matsuki duality. In fact, the origins of Matsuki duality can be traced back to J. A. Wolf's work [19].

If $\mathbf{G} = \mathrm{GL}(\infty)$, $\mathrm{SL}(\infty)$, $\mathrm{SO}(\infty)$, $\mathrm{Sp}(\infty)$ is a classical ind-group, then its Borel ind-subgroups are neither \mathbf{G} -conjugate nor $\mathrm{Aut}(\mathbf{G})$ -conjugate, hence there are many ind-varieties of the form \mathbf{G}/\mathbf{B} . We show that Matsuki duality extends to any indvariety \mathbf{G}/\mathbf{B} where \mathbf{B} is a splitting Borel ind-subgroup of \mathbf{G} for $\mathbf{G} = \mathrm{GL}(\infty)$, $\mathrm{SL}(\infty)$, $\mathrm{SO}(\infty)$, $\mathrm{Sp}(\infty)$. In the infinite-dimensional case, the structure of \mathbf{G}^0 -orbits and \mathbf{K} -orbits on \mathbf{G}/\mathbf{B} is more complicated than in the finite-dimensional case, and there are always infinitely many orbits.

A first study of the \mathbf{G}^0 -orbits on \mathbf{G}/\mathbf{B} for $\mathbf{G} = \mathrm{GL}(\infty)$, $\mathrm{SL}(\infty)$ was done in [9] and was continued in [20]. In particular, in [9] it was shown that, for some real forms \mathbf{G}^0 , there are splitting Borel ind-subgroups $\mathbf{B} \subset \mathbf{G}$ such that \mathbf{G}/\mathbf{B} has neither an

²⁰¹⁰ Mathematics Subject Classification. 14L30; 14M15; 22E65; 22F30.

Key words and phrases. Classical ind-groups; generalized flags; symmetric pairs; real forms; Matsuki duality.

open nor a closed \mathbf{G}^0 -orbit. We know of no prior studies of the structure of **K**-orbits on \mathbf{G}/\mathbf{B} of $\mathbf{G} = \mathrm{GL}(\infty), \mathrm{SL}(\infty), \mathrm{SO}(\infty), \mathrm{Sp}(\infty)$. The duality we establish in this paper shows that the structure of **K**-orbits on \mathbf{G}/\mathbf{B} is a "mirror image" of the structure of \mathbf{G}^0 -orbits on \mathbf{G}/\mathbf{B} . In particular, the fact that \mathbf{G}/\mathbf{B} admits at most one closed \mathbf{G}^0 -orbit is now a corollary of the obvious statement that \mathbf{G}/\mathbf{B} admits at most one Zariski-open **K**-orbit.

Our main result can be stated as follows. Let $(\mathbf{G}, \mathbf{K}, \mathbf{G}^0)$ be one of the triples listed in Section 2.1 consisting of a classical (complex) ind-group \mathbf{G} , a symmetric ind-subgroup $\mathbf{K} \subset \mathbf{G}$, and the corresponding real form $\mathbf{G}^0 \subset \mathbf{G}$. Let $\mathbf{B} \subset \mathbf{G}$ be a splitting Borel ind-subgroup such that $\mathbf{X} := \mathbf{G}/\mathbf{B}$ is an ind-variety of maximal generalized flags (isotropic, in types B, C, D) weakly compatible with a basis of \mathbf{V} adapted to the choice of \mathbf{K}, \mathbf{G}^0 in the sense of Sections 2.1, 2.3. There are natural exhaustions $\mathbf{G} = \bigcup_{n\geq 1} G_n$ and $\mathbf{X} = \bigcup_{n\geq 1} X_n$. Here G_n is a finite-dimensional algebraic group, X_n is the full flag variety of G_n , and the inclusion $X_n \subset \mathbf{X}$ is in particular G_n -equivariant. The subgroups $K_n := \mathbf{K} \cap G_n$ and $G_n^0 := \mathbf{G}^0 \cap G_n$ are respectively a symmetric subgroup and the corresponding real form of G_n . See Section 4.4 for more details.

Theorem 1. (a) For every $n \ge 1$ the inclusion $X_n \subset \mathbf{X}$ induces embeddings of orbit sets $X_n/K_n \hookrightarrow \mathbf{X}/\mathbf{K}$ and $X_n/G_n^0 \hookrightarrow \mathbf{X}/\mathbf{G}^0$.

(b) There is a bijection $\Xi: \mathbf{X}'/\mathbf{K} \to \mathbf{X}/\mathbf{G}^0$ such that the diagram

is commutative, where Ξ_n stands for Matsuki duality.

- (c) For every **K**-orbit $\mathcal{O} \subset \mathbf{X}$ the intersection $\mathcal{O} \cap \Xi(\mathcal{O})$ consists of a single $\mathbf{K} \cap \mathbf{G}^0$ -orbit.
- (d) The bijection Ξ reverses the inclusion relation of orbit closures. In particular Ξ maps open (resp., closed) **K**-orbits to closed (resp., open) **G**⁰-orbits.

Actually our results are much more precise: in Propositions 7, 8, 9 we show that \mathbf{X}/\mathbf{K} and \mathbf{X}/\mathbf{G}^0 admit the same explicit parametrization which is nothing but the inductive limit of suitable joint parametrizations of X_n/K_n and X_n/G_n^0 . This yields the bijection Ξ of Theorem 1 (b). Parts (a) and (b) of Theorem 1 are implied by our claims (39), (42), (43) below. Theorem 1 (c) follows from the corresponding statements in Propositions 7, 8, 9. Finally, Theorem 1 (d) is implied by Theorem 1 (a)–(b), the definition of the ind-topology, and the fact that the duality Ξ_n reverses the inclusion relation between orbit closures.

As an example, if $\mathbf{G} = \mathbf{GL}(\infty)$ and $\mathbf{K} \subset \mathbf{G}$ is the ind-subgroup of transformations preserving an orthogonal form ω , we show that both orbit sets \mathbf{X}/\mathbf{K} and \mathbf{X}/\mathbf{G}^0 are parametrized by the involutions $w : \mathbb{N}^* \to \mathbb{N}^*$ such that $w(\ell) = \iota(\ell)$ for all but finitely many $\ell \in \mathbb{N}^*$, where ι is the involution induced by the matrix of ω in a suitable basis of the natural representation of \mathbf{G} (see Section 4.1).

Our methods are based on the classification of symmetric subgroups and real forms of the classical simple algebraic groups. Possibly one could provide a classificationfree proof of our results in a future study. **Organization of the paper.** In Section 2 we introduce the notation for classical ind-groups, symmetric ind-subgroups, and real forms. We recall some basic facts on finite-dimensional flag varieties, as well as the notion of ind-variety of generalized flags [4, 8]. In Section 3 we give the joint parametrization of K- and G^0 -orbits in a finite-dimensional flag variety. This parametrization should be known in principle (see [13, 21]) but we have not found a reference where it would appear exactly as we present it. For the sake of completeness we provide full proofs of these results. In Section 4 we state our main results on the parametrization of \mathbf{K} - and \mathbf{G}^0 -orbits in ind-varieties of generalized flags. Theorem 1 above is a consequence of these results. In Section 5 we point out some further corollaries of our main results.

In what follows \mathbb{N}^* stands for the set of positive integers. |A| stands for the cardinality of a set A. The symmetric group on n letters is denoted by \mathfrak{S}_n and $\mathfrak{S}_{\infty} = \lim_{K \to \infty} \mathfrak{S}_n$ stands for the infinite symmetric group. Often we write w_k for the image w(k) of k by a permutation w. By $(k; \ell)$ we denote the transposition that switches k and ℓ . We use boldface letters to denote ind-varieties. An index of notation can be found at the end of the paper.

Acknowledgement. We thank Alan Huckleberry and Mikhail Ignatyev for their encouragement to study Matsuki duality. We also acknowledge a referee's thought-ful comments. The first author was supported in part by ISF Grant Nr. 797/14 and by ANR project GeoLie (ANR-15-CE40-0012). The second author was supported in part by DFG Grant PE 980/6-1.

2. NOTATION AND PRELIMINARY FACTS

2.1. Classical groups and classical ind-groups. Let V be a complex vector space of countable dimension, with an ordered basis $E = (e_1, e_2, \ldots) = (e_\ell)_{\ell \in \mathbb{N}^*}$. Every vector $x \in \mathbf{V}$ is identified with the column of its coordinates in the basis E, and $x \mapsto \overline{x}$ stands for complex conjugation with respect to E. We also consider the finite dimensional subspace $V = V_n := \langle e_1, \ldots, e_n \rangle_{\mathbb{C}}$ of V.

The classical ind-group $\operatorname{GL}(\infty)$ is defined as

$$\operatorname{GL}(\infty) = \mathbf{G}(E) := \{g \in \operatorname{Aut}(\mathbf{V}) : g(e_{\ell}) = e_{\ell} \text{ for all } \ell \gg 1\} = \bigcup_{n \ge 1} \operatorname{GL}(V_n).$$

The real forms of $\operatorname{GL}(\infty)$ are well known and can be traced back to the work of Baranov [1]. Below we list aligned pairs $(\mathbf{K}, \mathbf{G}^0)$, where \mathbf{G}^0 is a real form of \mathbf{G} and $\mathbf{K} \subset \mathbf{G}$ is a symmetric ind-subgroup of \mathbf{G} . The pairs $(\mathbf{K}, \mathbf{G}^0)$ we consider are aligned in the following way: for the exhaustion of \mathbf{G} as a union $\bigcup_n \operatorname{GL}(V_n)$, the subgroup $K_n := \mathbf{K} \cap \operatorname{GL}(V_n)$ is a symmetric subgroup of $\operatorname{GL}(V_n)$, $G_0^n :=$ $\mathbf{G}^0 \cap \operatorname{GL}(V_n)$ is a real form of $\operatorname{GL}(V_n)$, and $K_n \cap G_n^0$ is a maximal compact subgroup of G_n^0 .

2.1.1. Types A1 and A2. Let Ω be a $\mathbb{N}^* \times \mathbb{N}^*$ -matrix of the form

(2)
$$\Omega = \begin{pmatrix} J_1 & (0) \\ & J_2 & \\ & (0) & \ddots \end{pmatrix} \text{ where } \begin{cases} J_k \in \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (1) \right\} & \text{(orthogonal case,} \\ & \text{type A1),} \\ J_k = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} & \text{(symplectic case,} \\ & \text{type A2).} \end{cases}$$

The bilinear form

$$\omega(x,y) := {}^{t} x \Omega y \quad (x,y \in \mathbf{V})$$

is symmetric in type A1 and symplectic in type A2, whereas the map

$$\gamma(x) := \Omega \overline{x} \quad (x \in \mathbf{V})$$

is an involution of V in type A1 and satisfies $\gamma^2 = -id_V$ in type A2. Let

$$\mathbf{K} = \mathbf{G}(E, \omega) := \{g \in \mathbf{G}(E) : \omega(gx, gy) = \omega(x, y) \ \forall x, y \in \mathbf{V} \}$$

and

$$\mathbf{G}^0 := \{ g \in \mathbf{G}(E) : \gamma(gx) = g\gamma(x) \ \forall x \in \mathbf{V} \}.$$

2.1.2. Type A3. Fix a (proper) decomposition $\mathbb{N}^* = N_+ \sqcup N_-$ and let

(3)
$$\Phi = \begin{pmatrix} \epsilon_1 & (0) \\ & \epsilon_2 \\ & & \\ (0) & & \ddots \end{pmatrix}$$

where $\epsilon_{\ell} = 1$ for $\ell \in N_+$ and $\epsilon_{\ell} = -1$ for $\ell \in N_-$. Thus

 $\phi(x,y) := {}^{t}\overline{x}\Phi y \quad (x,y \in \mathbf{V})$

is a Hermitian form of signature $(|N_+|, |N_-|)$ and

$$\delta(x) := \Phi x \quad (x \in \mathbf{V})$$

is an involution. Finally let

$$\mathbf{K} := \{ g \in \mathbf{G}(E) : \delta(gx) = g\delta(x) \ \forall x \in \mathbf{V} \}$$

and

$$\mathbf{G}^0 := \{ g \in \mathbf{G}(E) : \phi(gx, gy) = \phi(x, y) \ \forall x, y \in \mathbf{V} \}.$$

Types B, C, D. Next we describe pairs $(\mathbf{K}, \mathbf{G}^0)$ associated to the other classical ind-groups $\mathrm{SO}(\infty)$ and $\mathrm{Sp}(\infty)$. Let $\mathbf{G} = \mathbf{G}(E, \omega)$ where ω is a (symmetric or symplectic) bilinear form given by a matrix Ω as in (2). In view of (2), for every $\ell \in \mathbb{N}^*$ there is a unique $\ell^* \in \mathbb{N}^*$ such that

$$\omega(e_{\ell}, e_{\ell^*}) \neq 0.$$

Moreover $\ell^* \in \{\ell - 1, \ell, \ell + 1\}$. The map $\ell \mapsto \ell^*$ is an involution of \mathbb{N}^* .

2.1.3. Types BD1 and C2. Assume that ω is symmetric in type BD1 and symplectic in type C2. Fix a (proper) decomposition $\mathbb{N}^* = N_+ \sqcup N_-$ such that

$$\forall \ell \in \mathbb{N}^*, \ \ell \in N_+ \Leftrightarrow \ell^* \in N_+$$

and the restriction of ω on each of the subspaces $\mathbf{V}_+ := \langle e_\ell : \ell \in N_+ \rangle_{\mathbb{C}}$ and $\mathbf{V}_- := \langle e_\ell : \ell \in N_- \rangle_{\mathbb{C}}$ is nondegenerate. Let Φ, ϕ, δ be as in Section 2.1.2. Then we set

(4)
$$\mathbf{K} := \{ g \in \mathbf{G}(E, \omega) : \delta(gx) = g\delta(x) \; \forall x \in \mathbf{V} \}$$

and

(5)
$$\mathbf{G}^0 := \{ g \in \mathbf{G}(E, \omega) : \phi(gx, gy) = \phi(x, y) \; \forall x, y \in \mathbf{V} \}.$$

2.1.4. Types C1 and D3. Assume that ω is symmetric in type D3 and symplectic in type C1. Fix a decomposition $\mathbb{N}^* = N_+ \sqcup N_-$ satisfying

$$\forall \ell \in \mathbb{N}^*, \ \ell \in N_+ \Leftrightarrow \ell^* \in N_-.$$

Note that this forces every block J_k in (2) to be of size 2. In this situation $\mathbf{V}_+ := \langle e_\ell : \ell \in N_+ \rangle_{\mathbb{C}}$ and $\mathbf{V}_- := \langle e_\ell : \ell \in N_- \rangle_{\mathbb{C}}$ are maximal isotropic subspaces for the form ω . Let Φ, ϕ, δ be as in Section 2.1.2. Finally, we define the ind-subgroups $\mathbf{K}, \mathbf{G}^0 \subset \mathbf{G}$ as in (4), (5).

Finite-dimensional case. The following table summarizes the form of the intersections $G = \mathbf{G} \cap \operatorname{GL}(V_n)$, $K = \mathbf{K} \cap \operatorname{GL}(V_n)$, $G^0 = \mathbf{G}^0 \cap \operatorname{GL}(V_n)$, where n = 2m is even whenever we are in types A2, C1, C2, and D3. In types A3, BD1, and C2, we set $(p,q) = (|N_+ \cap \{1,\ldots,n\}|, |N_- \cap \{1,\ldots,n\}|)$. By \mathbb{H} we denote the skew field of quaternions. In this way we retrieve the classical finite-dimensional symmetric pairs and real forms (see, e.g., [2, 15, 16]).

type	$G := \mathbf{G} \cap \mathrm{GL}\left(V_n\right)$	$K := \mathbf{K} \cap \mathrm{GL}\left(V_n\right)$	$G^{0} := \mathbf{G}^{0} \cap \mathrm{GL}\left(V_{n}\right)$
A1		$\mathrm{O}_n(\mathbb{C})$	$\operatorname{GL}_n(\mathbb{R})$
A2	$\operatorname{GL}_n(\mathbb{C})$	$\mathrm{Sp}_n(\mathbb{C})$	$\operatorname{GL}_m(\mathbb{H})$
A3		$\operatorname{GL}_p(\mathbb{C}) \times \operatorname{GL}_q(\mathbb{C})$	$\mathrm{U}_{p,q}(\mathbb{C})$
BD1	$\mathrm{O}_n(\mathbb{C})$	$\mathcal{O}_p(\mathbb{C}) \times \mathcal{O}_q(\mathbb{C})$	$\mathcal{O}_{p,q}(\mathbb{C})$
C1	$\operatorname{Sp}(\mathbb{C})$	$\operatorname{GL}_m(\mathbb{C})$	$\mathrm{Sp}_n(\mathbb{R})$
C2	$\operatorname{Sp}_n(\mathbb{C})$	$\mathrm{Sp}_p(\mathbb{C})\times \mathrm{Sp}_q(\mathbb{C})$	$\mathrm{Sp}_{p,q}(\mathbb{C})$
D3	$\mathcal{O}_n(\mathbb{C}) = \mathcal{O}_{2m}(\mathbb{C})$	$\operatorname{GL}_m(\mathbb{C})$	$\mathrm{O}_n^*(\mathbb{C})$

In each case G^0 is a real form obtained from K so that $K \cap G^0$ is a maximal compact subgroup of G^0 . Conversely K is obtained from G^0 as the complexification of a maximal compact subgroup.

2.2. Finite-dimensional flag varieties. Recall that $V = V_n$. The flag variety $X := \operatorname{GL}(V)/B = \{gB : g \in \operatorname{GL}(V)\}$ (for a Borel subgroup $B \subset \operatorname{GL}(V)$) can as well be viewed as the set of Borel subgroups $\{gBg^{-1} : g \in \operatorname{GL}(V)\}$ or as the set of complete flags

(6)
$$\{\mathcal{F} = (F_0 \subset F_1 \subset \ldots \subset F_n = V) : \dim F_k = k \text{ for all } k\}.$$

For every complete flag \mathcal{F} let $B_{\mathcal{F}} := \{g \in \operatorname{GL}(V) : g\mathcal{F} = \mathcal{F}\}$ denote the corresponding Borel subgroup. When (v_1, \ldots, v_n) is a basis of V we write

$$\mathcal{F}(v_1,\ldots,v_n):=\left(0\subset\langle v_1\rangle_{\mathbb{C}}\subset\langle v_1,v_2\rangle_{\mathbb{C}}\subset\ldots\subset\langle v_1,\ldots,v_n\rangle_{\mathbb{C}}\right)\in X.$$

Bruhat decomposition. The double flag variety $X \times X$ has a finite number of $\operatorname{GL}(V)$ -orbits parametrized by permutations $w \in \mathfrak{S}_n$. Specifically, given two flags $\mathcal{F} = (F_k)_{k=0}^n$ and $\mathcal{F}' = (F'_\ell)_{\ell=0}^n$ there is a unique permutation $w =: w(\mathcal{F}, \mathcal{F}')$ such that

dim
$$F_k \cap F'_{\ell} = |\{j \in \{1, \dots, \ell\} : w_j \in \{1, \dots, k\}\}|.$$

The permutation $w(\mathcal{F}, \mathcal{F}')$ is called the *relative position* of the pair $(\mathcal{F}, \mathcal{F}') \in X \times X$. Then

$$X\times X = \bigsqcup_{w\in\mathfrak{S}_n} \mathbb{O}_w \quad \text{where } \mathbb{O}_w := \left\{ (\mathcal{F},\mathcal{F}') \in X\times X : w(\mathcal{F},\mathcal{F}') = w \right\}$$

is the decomposition of $X \times X$ into $\operatorname{GL}(V)$ -orbits. The unique closed orbit is $\mathbb{O}_{\operatorname{id}}$ and the unique open orbit is \mathbb{O}_{w_0} where w_0 is the involution given by $w_0(k) = n - k + 1$ for all k. The map $\mathbb{O}_w \mapsto \mathbb{O}_{w_0 w}$ is an involution on the set of orbits and reverses inclusions between orbit closures. Representatives of \mathbb{O}_w can be obtained as follows: for every basis (v_1, \ldots, v_n) of V we have

$$(\mathcal{F}(v_1,\ldots,v_n),\mathcal{F}(v_{w_1},\ldots,v_{w_n})) \in \mathbb{O}_w.$$

Variety of isotropic flags. Let V be endowed with a nondegenerate symmetric or symplectic bilinear form ω . For a subspace $F \subset V$, set $F^{\perp} = \{x \in V : \omega(x, y) = 0 \forall y \in F\}$. The variety of isotropic flags is the subvariety X_{ω} of X, where

(7)
$$X_{\omega} = \{ \mathcal{F} = (F_k)_{k=0}^n \in X : F_k^{\perp} = F_{n-k} \; \forall k = 0, \dots, n \}$$

It is endowed with a transitive action of the subgroup $G(V, \omega) \subset \operatorname{GL}(V)$ of automorphisms preserving ω .

Lemma 1. (a) For every endomorphism $f \in \text{End}(V)$, let $f^* \in \text{End}(V)$ denote the endomorphism adjoint to f with respect to ω . Let $H \subset \text{GL}(V)$ be a subgroup satisfying the condition

(8)
$$\mathbb{C}[g^*g] \cap \operatorname{GL}(V) \subset H \text{ for all } g \in H.$$

Assume that $\mathcal{F} \in X_{\omega}$ and $\mathcal{F}' \in X_{\omega}$ belong to the same *H*-orbit of *X*. Then they belong to the same $H \cap G(V, \omega)$ -orbit of X_{ω} .

(b) Let $H = \{g \in GL(V) : g(V_+) = V_+, g(V_-) = V_-\}$ where $V = V_+ \oplus V_-$ is a decomposition such that $(V_+^{\perp}, V_-^{\perp}) = (V_+, V_-)$ or (V_-, V_+) . Then (8) is fulfilled.

Proof. (a) Note that $G(V, \omega) = \{g \in \operatorname{GL}(V) : g^* = g^{-1}\}$. Consider $g \in H$ such that $\mathcal{F}' = g\mathcal{F}$. The equality $(gF)^{\perp} = (g^*)^{-1}F^{\perp}$ holds for all subspaces $F \subset V$. Since $\mathcal{F}, \mathcal{F}'$ belong to X_{ω} we have $\mathcal{F}' = (g^*)^{-1}\mathcal{F}$, hence $g^*g\mathcal{F} = \mathcal{F}$. Let $g_1 = g^*g$. By [10, Lemma 1.5] there is a polynomial $P(t) \in \mathbb{C}[t]$ such that $P(g_1)^2 = g_1$. Set $h = P(g_1)$. Then $h \in \operatorname{GL}(V)$ (since $h^2 = g_1 \in \operatorname{GL}(V)$), and (8) shows that actually $h \in H$. Moreover $h^* = h$ (since $h \in \mathbb{C}[g_1]$ and $g_1^* = g_1$) and $h\mathcal{F} = \mathcal{F}$ (as each subspace in \mathcal{F} is g_1 -stable hence also h-stable). Set $h_1 := gh^{-1} \in H$. Then, on the one hand,

$$h_1^* = (h^*)^{-1}g^* = h^{-1}g_1g^{-1} = h^{-1}h^2g^{-1} = hg^{-1} = h_1^{-1},$$

and therefore $h_1 \in H \cap G(V, \omega)$. On the other hand, we have $h_1 \mathcal{F} = gh^{-1}\mathcal{F} = g\mathcal{F} = \mathcal{F}'$, and part (a) is proved.

(b) The equality $g^*(gF)^{\perp} = F^{\perp}$ (already mentioned) applied to $F = V_{\pm}$ yields $g^* \in H$, and thus $g^*g \in H$, whenever $g \in H$. This implies (8).

Remark 1. The proof of Lemma 1 (a) is inspired by $[10, \S 1.4]$. We also refer to [14, 17] for similar results and generalizations.

2.3. Ind-varieties of generalized flags. Recall that V denotes a complex vector space of countable dimension, with an ordered basis $E = (e_{\ell})_{\ell \in \mathbb{N}^*}$.

Definition 1 ([4]). Let \mathcal{F} be a chain of subspaces in \mathbf{V} , i.e., a set of subspaces of \mathbf{V} which is totally ordered by inclusion. Let \mathcal{F}' (resp., \mathcal{F}'') be the subchain consisting of all $F \in \mathcal{F}$ with an immediate successor (resp., an immediate predecessor). By $s(F) \in \mathcal{F}''$ we denote the immediate successor of $F \in \mathcal{F}'$.

A generalized flag in \mathbf{V} is a chain of subspaces \mathcal{F} such that:

(i) each $F \in \mathcal{F}$ has an immediate successor or predecessor, i.e., $\mathcal{F} = \mathcal{F}' \cup \mathcal{F}''$;

(ii) for every $v \in \mathbf{V} \setminus \{0\}$ there is a unique $F_v \in \mathcal{F}'$ such that $v \in s(F_v) \setminus F_v$, i.e., $\mathbf{V} \setminus \{0\} = \bigcup_{F \in \mathcal{F}'} (s(F) \setminus F)$.

A generalized flag is *maximal* if it is not properly contained in another generalized flag. Specifically, \mathcal{F} is maximal if and only if dim s(F)/F = 1 for all $F \in \mathcal{F}'$.

Notation 1. Let $\sigma : \mathbb{N}^* \to (A, \prec)$ be a surjective map onto a totally ordered set. Let $\underline{v} = (v_1, v_2, \ldots)$ be a basis of **V**. For every $a \in A$, let

 $F'_a := \langle v_\ell : \sigma(\ell) \prec a \rangle_{\mathbb{C}}, \quad F''_a := \langle v_\ell : \sigma(\ell) \preceq a \rangle_{\mathbb{C}}.$

Then $\mathcal{F} = \mathcal{F}_{\sigma}(\underline{v}) := \{F'_a, F''_a : a \in A\}$ is a generalized flag such that $\mathcal{F}' = \{F'_a : a \in A\}$, $\mathcal{F}'' = \{F''_a : a \in A\}$, and $s(F'_a) = F''_a$ for all a. We call such a generalized flag compatible with the basis \underline{v} .

Moreover, $\mathcal{F}_{\sigma}(\underline{v})$ is maximal if and only if the map σ is bijective.

We use the abbreviation $\mathcal{F}_{\sigma} := \mathcal{F}_{\sigma}(E)$.

Note that every generalized flag admits a compatible basis [4, Proposition 4.1]. A generalized flag is *weakly compatible with* E if it is compatible with some basis \underline{v} such that $E \setminus (E \cap \underline{v})$ is finite (equivalently, dim $\mathbf{V}/\langle E \cap \underline{v} \rangle_{\mathbb{C}} < \infty$).

The group $\mathbf{G}(E)$ (as well as $\operatorname{Aut}(\mathbf{V})$) acts on generalized flags in a natural way. Let $\mathbf{P}_{\mathcal{F}} \subset \mathbf{G}(E)$ denote the ind-subgroup of elements preserving \mathcal{F} . It is a closed ind-subgroup of $\mathbf{G}(E)$. If \mathcal{F} is compatible with E, then $\mathbf{P}_{\mathcal{F}}$ is a splitting parabolic ind-subgroup of $\mathbf{G}(E)$ in the sense that it is locally parabolic (i.e., there exists an exhaustion of $\mathbf{G}(E)$ by finite-dimensional reductive algebraic subgroups G_n such that the intersections $\mathbf{P}_{\mathcal{F}} \cap G_n$ are parabolic subgroups of G_n) and contains the Cartan ind-subgroup $\mathbf{H}(E) \subset \mathbf{G}(E)$ of elements diagonal with respect to E. Moreover if \mathcal{F} is maximal, then $\mathbf{B}_{\mathcal{F}} := \mathbf{P}_{\mathcal{F}}$ is a splitting Borel ind-subgroup (i.e., all intersections $\mathbf{B}_{\mathcal{F}} \cap G_n$ as above are Borel subgroups of G_n).

Definition 2 ([4]). Two generalized flags \mathcal{F}, \mathcal{G} are called *E*-commensurable if \mathcal{F}, \mathcal{G} are weakly compatible with *E*, and there is an isomorphism $\phi : \mathcal{F} \to \mathcal{G}$ of ordered sets and a finite dimensional subspace $U \subset \mathbf{V}$ such that

- (i) $\phi(F) + U = F + U$ for all $F \in \mathcal{F}$;
- (ii) $\dim \phi(F) \cap U = \dim F \cap U$ for all $F \in \mathcal{F}$.

E-commensurability is an equivalence relation on the set of generalized flags weakly compatible with *E*. In fact, according to the following proposition, each equivalence class consists of a single $\mathbf{G}(E)$ -orbit. If \mathcal{F} is a generalized flag weakly compatible with *E* we denote by $\mathbf{X}(\mathcal{F}, E)$ the set of generalized flags which are *E*-commensurable with \mathcal{F} .

Proposition 1 ([4]). The set $\mathbf{X} = \mathbf{X}(\mathcal{F}, E)$ is endowed with a natural structure of ind-variety. Moreover \mathbf{X} is $\mathbf{G}(E)$ -homogeneous and the map $g \mapsto g\mathcal{F}$ induces an isomorphism of ind-varieties $\mathbf{G}(E)/\mathbf{P}_{\mathcal{F}} \xrightarrow{\sim} \mathbf{X}$.

Proposition 2 ([5]). Let $\sigma : \mathbb{N}^* \to (A, \prec)$ and $\tau : \mathbb{N}^* \to (B, \prec)$ be maps onto two totally ordered sets.

- (a) Each E-compatible generalized flag in $\mathbf{X}(\mathcal{F}_{\sigma}, E)$ is of the form $\mathcal{F}_{\sigma w}$ for $w \in \mathfrak{S}_{\infty}$. Moreover $\mathcal{F}_{\sigma w} = \mathcal{F}_{\sigma w'} \Leftrightarrow w'w^{-1} \in \operatorname{Stab}_{\sigma} := \{v \in \mathfrak{S}_{\infty} : \sigma v = \sigma\}.$
- (b) Assume that \mathcal{F}_{τ} is maximal (i.e., τ is bijective) so that $\mathbf{B}_{\mathcal{F}_{\tau}}$ is a splitting Borel ind-subgroup. Then each $\mathbf{B}_{\mathcal{F}_{\tau}}$ -orbit of $\mathbf{X}(\mathcal{F}_{\sigma}, E)$ contains a unique element of the form $\mathcal{F}_{\sigma w}$ for $w \in \mathfrak{S}_{\infty}/\mathrm{Stab}_{\sigma}$.

(c) In particular, if $\mathcal{F}_{\sigma}, \mathcal{F}_{\tau}$ are both maximal (i.e., σ, τ are both bijective), then

$$\mathbf{X}(\mathcal{F}_{\tau}, E) \times \mathbf{X}(\mathcal{F}_{\sigma}, E) = \bigsqcup_{w \in \mathfrak{S}_{\infty}} (\mathbf{O}_{\tau, \sigma})_w$$

where

$$(\mathbf{O}_{\tau,\sigma})_w := \{ (g\mathcal{F}_{\tau}, g\mathcal{F}_{\sigma w}) : g \in \mathbf{G}(E) \}$$

is a decomposition of $\mathbf{X}(\mathcal{F}_{\tau}, E) \times \mathbf{X}(\mathcal{F}_{\sigma}, E)$ into $\mathbf{G}(E)$ -orbits.

Remark 2. The orbit $(\mathbf{O}_{\tau,\sigma})_w$ of Proposition 2 (c) actually consists of all couples of generalized flags $(\mathcal{F}_{\tau}(\underline{v}), \mathcal{F}_{\sigma w}(\underline{v}))$ weakly compatible with the basis $\underline{v} = (v_1, v_2, \ldots)$.

Assume V is endowed with a nondegenerate symmetric or symplectic form ω whose values on the basis E are given by the matrix Ω in (2).

Definition 3. A generalized flag \mathcal{F} is called ω -isotropic if the map $F \mapsto F^{\perp} := \{x \in \mathbf{V} : \omega(x, y) = 0 \ \forall y \in F\}$ is a well-defined involution of \mathcal{F} .

Proposition 3 ([4]). Let \mathcal{F} be an ω -isotropic generalized flag weakly compatible with E. The set $\mathbf{X}_{\omega}(\mathcal{F}, E)$ of all ω -isotropic generalized flags which are E-commensurable with \mathcal{F} is a $\mathbf{G}(E, \omega)$ -homogeneous, closed ind-subvariety of $\mathbf{X}(\mathcal{F}, E)$.

Finally, we emphasize that one of the main features of classical ind-groups is that their Borel ind-subgroups are not $\operatorname{Aut}(\mathbf{G})$ -conjugate. Here are three examples of maximal generalized flags in \mathbf{V} , compatible with the basis E and such that their stablizers in $\mathbf{G}(E)$ are pairwise not $\operatorname{Aut}(\mathbf{G})$ -conjugate. A more detailed discussion of these examples see in [4].

Example 1. (a) Let $\sigma_1 : \mathbb{N}^* \to (\mathbb{N}^*, <), \ \ell \mapsto \ell$. The generalized flag \mathcal{F}_{σ_1} is an ascending chain of subspaces $\mathcal{F}_{\sigma_1} = \{0 = F_0 \subset F_1 \subset F_2 \subset \ldots\}$ isomorphic to $(\mathbb{N}, <)$ as an ordered set.

(b) Let $\sigma_2 : \mathbb{N}^* \to \left(\{\frac{1}{n} : n \in \mathbb{Z}^*\}, <\right), \ \ell \mapsto \frac{(-1)^\ell}{\ell}$. The generalized flag \mathcal{F}_{σ_2} is a chain of the form $\mathcal{F}_{\sigma_2} = \{0 = F_0 \subset F_1 \subset \ldots \subset F_{-2} \subset F_{-1} = \mathbf{V}\}$ and is not isomorphic as ordered set to a subset of $(\mathbb{Z}, <)$.

(c) Let $\sigma_3 : \mathbb{N}^* \to (\mathbb{Q}, <)$ be a bijection. In this case no subspace $F \in \mathcal{F}_{\sigma_3}$ has both immediate successor or immediate predecessor.

3. PARAMETRIZATION OF ORBITS IN THE FINITE-DIMENSIONAL CASE

In Sections 3.1-3.3, we state explicit parametrizations of the K- and G^0 -orbits in the finite-dimensional case. All proofs are given in Section 3.5.

3.1. **Types A1 and A2.** Let the notation be as in Subsection 2.1.1. The space $V = V_n := \langle e_1, \ldots, e_n \rangle_{\mathbb{C}}$ is endowed with the symmetric or symplectic form $\omega(x, y) = {}^t x \cdot \Omega \cdot y$ and the conjugation $\gamma(x) = \Omega \overline{x}$ which actually stand for the restrictions to V of the maps ω, γ introduced in Section 2.1. This allows us to define two involutions of the flag variety X:

$$\mathcal{F} = (F_0, \dots, F_n) \mapsto \mathcal{F}^{\perp} := (F_n^{\perp}, \dots, F_0^{\perp}) \text{ and } \mathcal{F} \mapsto \gamma(\mathcal{F}) := (\gamma(F_0), \dots, \gamma(F_n))$$

where $F^{\perp} \subset V$ stands for the subspace orthogonal to F with respect to ω .

Let $K = \{g \in \operatorname{GL}(V) : g \text{ preserves } \omega\}$ and $G^0 = \{g \in \operatorname{GL}(V) : \gamma g = g\gamma\}.$

By $\mathfrak{I}_n \subset \mathfrak{S}_n$ we denote the subset of involutions. If n = 2m is even, we let $\mathfrak{I}'_n \subset \mathfrak{I}_n$ be the subset of involutions without fixed points.

Definition 4. Let $w \in \mathfrak{I}_n$. Set $\epsilon := 1$ in type A1 and $\epsilon := -1$ in type A2. A basis (v_1, \ldots, v_n) of V such that

$$\omega(v_k, v_\ell) = \begin{cases} 1 & \text{if } w_k = \ell \ge k \\ \epsilon & \text{if } w_k = \ell < k \\ 0 & \text{if } w_k \neq \ell \end{cases} \text{ for all } k, \ell \in \{1, \dots, n\}$$

is said to be *w*-dual. A basis (v_1, \ldots, v_n) of V such that

$$\gamma(v_k) = \begin{cases} \epsilon v_{w_k} & \text{if } w_k \ge k \\ v_{w_k} & \text{if } w_k < k \end{cases} \quad \text{for all } k \in \{1, \dots, n\}$$

is said to be w-conjugate. Set

$$\mathcal{O}_w := \{ \mathcal{F}(v_1, \dots, v_n) : (v_1, \dots, v_n) \text{ is a } w \text{-dual basis} \},$$
$$\mathcal{O}_w := \{ \mathcal{F}(v_1, \dots, v_n) : (v_1, \dots, v_n) \text{ is a } w \text{-conjugate basis} \}$$

Proposition 4. Let $\mathfrak{I}_n^{\epsilon} = \mathfrak{I}_n$ in type A1 and $\mathfrak{I}_n^{\epsilon} = \mathfrak{I}_n'$ in type A2. Recall the notation \mathbb{O}_w and w_0 introduced in Section 2.2.

- (a) For every $w \in \mathfrak{I}_n^{\epsilon}$ we have $\mathcal{O}_w \neq \emptyset$, $\mathfrak{O}_w \neq \emptyset$ and
- $\mathcal{O}_w \cap \mathfrak{O}_w = \{\mathcal{F}(v_1, \ldots, v_n) : (v_1, \ldots, v_n) \text{ is both } w\text{-dual and } w\text{-conjugate}\} \neq \emptyset.$
 - (b) For every $w \in \mathfrak{I}_n^{\epsilon}$,
- $\mathcal{O}_w = \{ \mathcal{F} \in X : (\mathcal{F}^{\perp}, \mathcal{F}) \in \mathbb{O}_{w_0 w} \} \quad and \quad \mathfrak{O}_w = \{ \mathcal{F} \in X : (\gamma(\mathcal{F}), \mathcal{F}) \in \mathbb{O}_w \}.$
- (c) The subsets \mathcal{O}_w ($w \in \mathfrak{I}_n^{\epsilon}$) are exactly the K-orbits of X. The subsets \mathfrak{O}_w ($w \in \mathfrak{I}_n^{\epsilon}$) are exactly the G^0 -orbits of X.
- (d) The map $\mathcal{O}_w \mapsto \mathfrak{O}_w$ is Matsuki duality.

3.2. **Type A3.** Let the notation be as in Subsection 2.1.2: the space $V = V_n = \langle e_1, \ldots, e_n \rangle_{\mathbb{C}}$ is endowed with the hermitian form $\phi(x, y) = {}^t \overline{x} \Phi y$ and a conjugation $\delta(x) = \Phi x$ where Φ is a diagonal matrix with entries $\epsilon_1, \ldots, \epsilon_n \in \{+1, -1\}$ (the left upper $n \times n$ -corner of the matrix Φ of Section 2.1).

Set $V_+ = \langle e_k : \epsilon_k = 1 \rangle_{\mathbb{C}}$ and $V_- = \langle e_k : \epsilon_k = -1 \rangle_{\mathbb{C}}$. Then $V = V_+ \oplus V_-$. Let $K = \{g \in \operatorname{GL}(V) : \delta g = g\delta\} = \operatorname{GL}(V_+) \times \operatorname{GL}(V_-)$ and $G^0 = \{g \in \operatorname{GL}(V) : g \text{ preserves } \phi\}$.

As in Section 3.1 we get two involutions of the flag variety X:

$$\mathcal{F} = (F_0, \dots, F_n) \mapsto \delta(\mathcal{F}) := (\delta(F_0), \dots, \delta(F_n)) \text{ and } \mathcal{F} \mapsto \mathcal{F}^{\dagger} := (F_n^{\dagger}, \dots, F_0^{\dagger})$$

where $F^{\dagger} \subset V$ stands for the orthogonal of $F \subset V$ with respect to ϕ . The hermitian form on the quotient $F/(F \cap F^{\dagger})$ induced by ϕ is nondegenerate; we denote its signature by $\varsigma(\phi:F)$. Given $\mathcal{F} = (F_0, \ldots, F_n) \in X$, let

$$\varsigma(\phi:\mathcal{F}) := \left(\varsigma(\phi:F_{\ell})\right)_{\ell=1}^{n} \in (\{0,\ldots,n\}^2)^n.$$

Then

$$\varsigma(\delta:\mathcal{F}) := \left((\dim F_{\ell} \cap V_{+}, \dim F_{\ell} \cap V_{-}) \right)_{\ell=1}^{n} \in (\{0, \dots, n\}^{2})^{n}$$

records the relative position of \mathcal{F} with respect to the subspaces V_+ and V_- .

Combinatorial notation. We call a signed involution a pair (w, ε) consisting of an involution $w \in \mathfrak{I}_n$ and signs $\varepsilon_k \in \{+1, -1\}$ attached to its fixed points $k \in \{\ell : w_\ell = \ell\}$. (Equivalently, ε is a map $\{\ell : w_\ell = \ell\} \rightarrow \{+1, -1\}$.)

It is convenient to represent w by a graph l(w) (called *link pattern*) with n vertices $1, 2, \ldots, n$ and an arc (k, w_k) connecting k and w_k whenever $k < w_k$. The signed link pattern $l(w, \varepsilon)$ is obtained from the graph l(w) by marking each vertex $k \in \{\ell : w_\ell = \ell\}$ with the label + or – depending on whether $\varepsilon_k = +1$ or $\varepsilon_k = -1$.

For instance, the signed link pattern (where the numbering of vertices is implicit)

represents (w, ε) with $w = (1; 4)(2; 7)(8; 9) \in \mathfrak{I}_9$ and $(\varepsilon_3, \varepsilon_5, \varepsilon_6) = (+1, -1, +1)$. We define $\varsigma(w, \varepsilon) := \{(p_\ell, q_\ell)\}_{\ell=1}^n$ as the sequence given by

 p_{ℓ} (resp., q_{ℓ}) = (number of + signs (resp., - signs) and arcs among the first ℓ vertices of $l(w, \varepsilon)$).

Assuming n = p + q, let $\mathfrak{I}_n(p,q)$ be the set of signed involutions of signature (p,q), i.e., such that $(p_n, q_n) = (p,q)$. Note that the elements of $\mathfrak{I}_n(p,q)$ coincide with the clans of signature (p,q) in the sense of [13, 21].

For instance, for the above pair (w, ε) we have $(w, \varepsilon) \in \Im_9(5, 4)$ and

$$\varsigma(w,\varepsilon) = ((0,0), (0,0), (1,0), (2,1), (2,2), (3,2), (4,3), (4,3), (5,4)).$$

Definition 5. Given a signed involution (w, ε) , we say that a basis (v_1, \ldots, v_n) of V is (w, ϵ) -conjugate if

$$\delta(v_k) = \begin{cases} \varepsilon_k v_{w_k} & \text{if } w_k = k \\ v_{w_k} & \text{if } w_k \neq k \end{cases} \text{ for all } k \in \{1, \dots, n\}.$$

A basis (v_1, \ldots, v_n) such that

$$\phi(v_k, v_\ell) = \begin{cases} \varepsilon_k & \text{if } w_k = \ell = k\\ 1 & \text{if } w_k = \ell \neq k\\ 0 & \text{if } w_k \neq \ell \end{cases} \text{ for all } k, \ell \in \{1, \dots, n\}$$

is said to be (w, ε) -dual. We set

 $\mathcal{O}_{(w,\varepsilon)} := \{ \mathcal{F}(v_1, \dots, v_n) : (v_1, \dots, v_n) \text{ is a } (w, \varepsilon) \text{-conjugate basis} \},\$

 $\mathfrak{O}_{(w,\varepsilon)} := \{ \mathcal{F}(v_1, \ldots, v_n) : (v_1, \ldots, v_n) \text{ is a } (w, \varepsilon) \text{-dual basis} \}.$

Proposition 5. In addition to the above notation, let $(p,q) = (\dim V_+, \dim V_-)$. Then:

(a) For every $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$ the subsets $\mathcal{O}_{(w,\varepsilon)}$ and $\mathfrak{O}_{(w,\varepsilon)}$ are nonempty, and $\mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)} = \{\mathcal{F}(\underline{v}) : \underline{v} = (v_k)_{k=1}^n$ is (w,ε) -dual and (w,ε) -conjugate $\} \neq \emptyset$.

(b) For every $(w, \varepsilon) \in \mathfrak{I}_n(p, q)$,

$$\mathcal{O}_{(w,\varepsilon)} = \big\{ \mathcal{F} \in X : (\delta(\mathcal{F}), \mathcal{F}) \in \mathbb{O}_w \text{ and } \varsigma(\delta : \mathcal{F}) = \varsigma(w,\varepsilon) \big\}, \\ \mathcal{O}_{(w,\varepsilon)} = \big\{ \mathcal{F} \in X : (\mathcal{F}^{\dagger}, \mathcal{F}) \in \mathbb{O}_{w_0 w} \text{ and } \varsigma(\phi : \mathcal{F}) = \varsigma(w,\varepsilon) \big\}.$$

- (c) The subsets $\mathcal{O}_{(w,\varepsilon)}$ $((w,\varepsilon) \in \mathfrak{I}_n(p,q))$ are exactly the K-orbits of X. The subsets $\mathfrak{O}_{(w,\varepsilon)}$ $((w,\varepsilon) \in \mathfrak{I}_n(p,q))$ are exactly the G^0 -orbits of X.
- (d) The map $\mathcal{O}_{(w,\varepsilon)} \mapsto \mathfrak{O}_{(w,\varepsilon)}$ is Matsuki duality.

3.3. **Types B, C, D.** In this section we assume that the space $V = V_n = \langle e_1, \ldots, e_n \rangle_{\mathbb{C}}$ is endowed with a symmetric or symplectic form ω whose action on the basis (e_1, \ldots, e_n) is described by the matrix Ω in (2). We consider the group $G = G(V, \omega) = \{g \in \operatorname{GL}(V) : g \text{ preserves } \omega\}$ and the variety of isotropic flags $X_{\omega} = \{\mathcal{F} \in X : \mathcal{F}^{\perp} = \mathcal{F}\}$ (see Section 2.2).

In addition we assume that V is endowed with a hermitian form ϕ , a conjugation δ , and a decomposition $V = V_+ \oplus V_-$ (as in Section 3.2) such that

- in types BD1 and C2, the restriction of ω to V_+ and V_- is nondegenerate, i.e., $V_+^{\perp} = V_-$,
- in types C1 and D3, V_+ and V_- are Lagrangian with respect to ω , i.e., $V_+^{\perp} = V_+$ and $V_-^{\perp} = V_-$.

Set $K := \{g \in G : g\delta = \delta g\}$ and $G^0 := \{g \in G : g \text{ preserves } \phi\}.$

Combinatorial notation. Recall that $w_0(k) = n - k + 1$. Let $(\eta, \epsilon) \in \{1, -1\}^2$. A signed involution (w, ε) is called (η, ϵ) -symmetric if the following conditions hold

- (i) $ww_0 = w_0 w$ (so that the set $\{\ell : w_\ell = \ell\}$ is w_0 -stable);
- (ii) $\varepsilon_{w_0(k)} = \eta \varepsilon_k$ for all $k \in \{\ell : w_\ell = \ell\};$
- and in the case where $\eta \neq \epsilon$:

(iii) $w_k \neq w_0(k)$ for all k.

Assuming n = p + q, let $\mathfrak{I}_n^{\eta,\epsilon}(p,q) \subset \mathfrak{I}_n(p,q)$ denote the subset of signed involutions of signature (p,q) which are (η,ϵ) -symmetric.

Specifically, (w, ε) is (1, 1)-symmetric when the signed link pattern $l(w, \varepsilon)$ is symmetric with respect to reversing the enumeration of vertices; (w, ε) is (1, -1)symmetric when $l(w, \varepsilon)$ is symmetric and does not have symmetric arcs (i.e., joining k and n - k + 1); (w, ε) is (-1, -1)-symmetric when $l(w, \varepsilon)$ is antisymmetric in the sense that the mirror image of $l(w, \varepsilon)$ is a signed link pattern with the same arcs but opposite signs; (w, ε) is (-1, 1)-symmetric when $l(w, \varepsilon)$ is antisymmetric and does not have symmetric arcs. For instance:

Proposition 6. Let $(p,q) = (\dim V_+, \dim V_-)$ (so that $p = q = \frac{n}{2}$ in types C1 and D3). Set $(\eta, \epsilon) = (1, 1)$ in type BD1, $(\eta, \epsilon) = (1, -1)$ in type C2, $(\eta, \epsilon) = (-1, -1)$ in types C1, and $(\eta, \epsilon) = (-1, 1)$ in type D3.

(a) For every $(w, \varepsilon) \in \mathfrak{I}_n^{\eta, \epsilon}(p, q)$, considering bases $\underline{v} = (v_1, \dots, v_n)$ of V such that

(9)
$$\omega(v_k, v_\ell) = \begin{cases} 0 & \text{if } \ell \neq n - k + 1 \\ 1 & \text{if } \ell = n - k + 1 \text{ and } w_k, w_\ell \in [k, \ell] \ (k \le \ell) \\ \epsilon & \text{if } \ell = n - k + 1 \text{ and } w_k, w_\ell \in [\ell, k] \ (\ell \le k) \\ \eta & \text{if } \ell = n - k + 1 \text{ and } k, \ell \in]w_k, w_\ell[\\ \eta \epsilon & \text{if } \ell = n - k + 1 \text{ and } k, \ell \in]w_\ell, w_k[, \end{cases}$$

we have

 $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} := \mathcal{O}_{(w,\varepsilon)} \cap X_{\omega} = \{\mathcal{F}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-conjugate and satisfies } (9)\} \neq \emptyset,$ $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} := \mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega} = \{\mathcal{F}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-dual and satisfies } (9)\} \neq \emptyset,$ $\mathcal{O}^{\eta,\epsilon}_{(w,\varepsilon)}\cap\mathfrak{O}^{\eta,\epsilon}_{(w,\varepsilon)}$

 $= \{\mathcal{F}(\underline{v}) : \underline{v} \text{ is } (w, \varepsilon) \text{-conjugate and } (w, \varepsilon) \text{-dual and satisfies } (9)\} \neq \emptyset.$

- (b) The subsets $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ $((w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q))$ are exactly the K-orbits of X_{ω} . The subsets $\mathfrak{D}_{(w,\varepsilon)}^{\eta,\epsilon}$ $((w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q))$ are exactly the G^0 -orbits of X_{ω} . (c) The map $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \mapsto \mathfrak{D}_{(w,\varepsilon)}^{\eta,\epsilon}$ is Matsuki duality.

3.4. **Remarks.** Set $X_0 := X$ in type A and $X_0 := X_{\omega}$ in types B, C, D.

Remark 3. The characterization of the *K*-orbits in Propositions 4–6 can be stated in the following unified way. For $\mathcal{F} \in X$ we write $\sigma(\mathcal{F}) = \mathcal{F}^{\perp}$ in types A1–A2 and $\sigma(\mathcal{F}) = \delta(\mathcal{F})$ in types A3, BD1, C1–C2, D3. Let $P \subset G$ be a parabolic subgroup containing K and which is minimal for this property. Two flags $\mathcal{F}_1, \mathcal{F}_2 \in X_0$ belong to the same K-orbit if and only if $(\sigma(\mathcal{F}_1), \mathcal{F}_1)$ and $(\sigma(\mathcal{F}_2), \mathcal{F}_2)$ belong to the same orbit of P for the diagonal action of P on $X_0 \times X_0$.

Remark 4 (Open K-orbits). With the notation of Remark 3 the map $\sigma_0: X_0 \to \infty$ $X \times X, \mathcal{F} \mapsto (\sigma(\mathcal{F}), \mathcal{F})$ is a closed embedding.

In types A and C the flag variety X_0 is irreducible. In particular there is a unique G-orbit $\mathbb{O}_w \subset X \times X$ such that $\mathbb{O}_w \cap \sigma_0(X_0)$ is open in $\sigma_0(X_0)$; it corresponds to an element $w \in \mathfrak{S}_n$ maximal for the Bruhat order such that \mathbb{O}_w intersects $\sigma_0(X_0)$. In each case one finds a unique K-orbit $\mathcal{O} \subset X_0$ such that $\sigma_0(\mathcal{O}) \subset \mathbb{O}_w$, it is therefore the (unique) open K-orbit of X_0 . This yields the following list of open K-orbits in types A1–A3, C1–C2:

A1: \mathcal{O}_{id} ; A2: \mathcal{O}_{v_0} where $v_0 = (1; 2)(3; 4) \cdots (n - 1; n);$ A3: $\mathcal{O}_{(w_0^{(t)},\varepsilon)}$ where $t = \min\{p,q\}, \ \varepsilon \equiv \operatorname{sign}(p-q), \ \operatorname{and} \ w_0^{(t)} = \prod_{k=1}^t (k; n-k+1);$ C1: $\mathcal{O}_{(w_0,\emptyset)}^{-1,-1}$; C2: $\mathcal{O}_{(\hat{w}_0^{(t)},\varepsilon)}^{1,-1}$ where $t = \min\{p,q\}, \varepsilon \equiv \operatorname{sign}(p-q)$, and $\hat{w}_0^{(t)} = v_0^{(t)} w_0^{(t)} v_0^{(t)}$, where

If $n = \dim V$ is even and the form ω is orthogonal, then the variety X_{ω} has two connected components. In fact, for every isotropic flag $\mathcal{F} = (F_k)_{k=0}^n \in X_\omega$ there is a unique $\tilde{\mathcal{F}} = (\tilde{F}_k)_{k=0}^n \in X_\omega$ such that $F_k = \tilde{F}_k$ for all $k \neq m := \frac{n}{2}, \tilde{F}_m \neq F_m$. Then the map $\tilde{I}: \mathcal{F} \mapsto \tilde{\mathcal{F}}$ is an automorphism of X_{ω} which maps one component of X_{ω} onto the other. If $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n)$ for a basis $\underline{v} = (v_1, \ldots, v_n)$ such that

$$\omega(v_k, v_\ell) \neq 0 \Leftrightarrow \ell = n - k + 1$$

then $\tilde{I}(\mathcal{F}(\underline{v})) = \mathcal{F}(\underline{\tilde{v}})$ where $\underline{\tilde{v}}$ is the basis obtained from \underline{v} by switching the two middle vectors v_m, v_{m+1} . If \underline{v} is (w, ε) -conjugate then $\underline{\tilde{v}}$ is $\tilde{i}(w, \varepsilon)$ -conjugate where $\tilde{i}(w,\varepsilon) := ((m;m+1)w(m;m+1), \varepsilon \circ (m;m+1)).$ Hence \tilde{I} maps the K-orbit $\mathcal{O}^{\eta,\epsilon}_{(w,\varepsilon)}$ onto $\mathcal{O}^{\eta,\epsilon}_{\tilde{i}(w,\varepsilon)}$

In type D3, X_{ω} has exactly two open K-orbits. More precisely, $w = \hat{w}_0 := w_0 v_0$ is maximal for the Bruhat order such that $\mathbb{O}_w \cap \sigma_0(X_0)$ is nonempty, hence $\sigma_0^{-1}(\mathbb{O}_{\hat{w}_0})$

12

is open. The permutation \hat{w}_0 has no fixed point if $m := \frac{n}{2}$ is even; if $m := \frac{n}{2}$ is odd, \hat{w}_0 fixes m and m + 1. In the former case $\sigma_0^{-1}(\mathbb{O}_{\hat{w}_0}) = \mathcal{O}_{(\hat{w}_0,\emptyset)}^{-1,1}$ is a single K-orbit, and $\tilde{I}(\mathcal{O}_{(\hat{w}_0,\emptyset)}^{-1,1}) = \mathcal{O}_{\tilde{i}(\hat{w}_0,\emptyset)}^{-1,1}$ is a second open K-orbit. In the latter case $\sigma_0^{-1}(\mathbb{O}_{\hat{w}_0}^{(m-1)}) = \mathcal{O}_{(\hat{w}_0,\varepsilon)}^{-1,1} \cup \mathcal{O}_{(\hat{w}_0,\varepsilon)}^{-1,1}$, where $(\varepsilon_m, \varepsilon_{m+1}) = (\tilde{\varepsilon}_{m+1}, \tilde{\varepsilon}_m) = (+1, -1)$, is the union of two distinct open K-orbits which are image of each other by \tilde{I} .

In type BD1 the variety X_{ω} may be reducible but $w = w_0^{(t)}$, for $t := \min\{p, q\}$, is the unique maximal element of \mathfrak{S}_n such that $\mathbb{O}_w \cap \sigma_0(X_0)$ is nonempty. Then $\sigma_0^{-1}(\mathbb{O}_w)$ consists of a single \tilde{I} -stable open K-orbit, namely $\mathcal{O}_{(w_0^{(t)},\varepsilon)}^{1,1}$ for $\varepsilon \equiv \operatorname{sign}(p-q)$. The flag variety X_{ω} has therefore a unique open K-orbit (which is not connected whenever n is even).

Remark 5 (Closed K-orbits). We use the notation of Remarks 3–4. As seen from Propositions 4–6, in each case one finds a unique $w_{\min} \in \mathfrak{S}_n$ such that $\mathbb{O}_{w_{\min}} \cap \sigma_0(X_0)$ is closed; actually $w_{\min} = \text{id}$ except in type BD1 for p, q odd: in that case $w_{\min} = (\frac{n}{2}; \frac{n}{2} + 1)$. For every K-orbit $\mathcal{O} \subset X_0$ the following equivalence holds:

 \mathcal{O} is closed $\Leftrightarrow \sigma_0(\mathcal{O}) \subset \mathbb{O}_{w_{\min}}$

(see [3, 18]). In view of this equivalence, we deduce the following complete list of closed K-orbits of X_0 for the different types. In types A1 and A2, \mathcal{O}_{w_0} is the unique closed K-orbit. In type A3 the closed K-orbits are exactly the orbits $\mathcal{O}_{(\mathrm{id},\varepsilon)}$ for all pairs of the form $(\mathrm{id},\varepsilon) \in \mathfrak{I}_n(p,q)$; there are $\binom{n}{p}$ such orbits. In types B, C, D, the closed K-orbits are the orbits $\mathcal{O}_{(\mathrm{id},\varepsilon)}^{\eta,\epsilon}$ for all pairs of the form $(\mathrm{id},\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q)$, except in type BD1 in the case where n =: 2m is even and p, q are odd; in that case the closed K-orbits are the orbits $\mathcal{O}_{((m;m+1),\varepsilon)}^{1,1}$ for all pairs of the form $((m;m+1),\varepsilon) \in \mathfrak{I}_n^{1,1}(p,q)$. There are $\binom{\lfloor \frac{p}{2} \rfloor + \lfloor \frac{q}{2} \rfloor}{\lfloor \frac{p}{2} \rfloor}$ closed orbits in types BD1 and C2, and there are $2^{\frac{n}{2}}$ closed orbits in types C1 and D3.

Remark 6. Propositions 4–6 show in particular that the special elements of X_0 , in the sense of Matsuki [11, 12], are precisely the flags $\mathcal{F} \in X_0$ of the form $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n)$ where (v_1, \ldots, v_n) is a basis of V which is both dual and conjugate, with respect to some involution $w \in \mathfrak{I}_n^{\epsilon}$ in types A1 and A2, and to some signed involution $(w, \varepsilon) \in \mathfrak{I}_n(p, q)$ in types A3, B–D. Indeed, in view of [11, 12] the set $\mathcal{S} \subset X_0$ of special elements equals

$$\bigcup_{\mathcal{O}\in X_0/K}\mathcal{O}\cap\Xi(\mathcal{O})$$

where the map $X_0/K \to X_0/G^0$, $\mathcal{O} \mapsto \Xi(\mathcal{O})$ stands for Matsuki duality.

3.5. **Proofs.**

Proof of Proposition 4 (a). We write $w = (a_1; b_1) \cdots (a_m; b_m)$ with $a_1 < \ldots < a_m$ and $a_k < b_k$ for all k; let $c_1 < \ldots < c_{n-2m}$ be the elements of the set $\{k : w_k = k\}$. In type A2 we have n = 2m, and (e_1, \ldots, e_n) is both a $(1; 2)(3; 4) \cdots (n-1; n)$ -dual basis and a $(1; 2)(3; 4) \cdots (n-1; n)$ -conjugate basis; then the basis $\{e'_1, \ldots, e'_n\}$ given by

 $e'_{a_{\ell}} = e_{2\ell-1}$ and $e'_{b_{\ell}} = e_{2\ell}$ for all $\ell \in \{1, \dots, m\}$

is simultaneously w-dual and w-conjugate. In type A1, up to replacing e_{ℓ} and e_{ℓ^*} by $\frac{e_{\ell}+e_{\ell^*}}{\sqrt{2}}$ and $\frac{e_{\ell}-e_{\ell^*}}{i\sqrt{2}}$ whenever $\ell < \ell^*$, we may assume that the basis (e_1, \ldots, e_n) is

both id-dual and id-conjugate. For every $\ell \in \{1, ..., m\}$ and $k \in \{1, ..., n-2m\}$, we set

$$e'_{a_{\ell}} = \frac{e_{2\ell-1} + ie_{2\ell}}{\sqrt{2}}, \quad e'_{b_{\ell}} = \frac{e_{2\ell-1} - ie_{2\ell}}{\sqrt{2}}, \quad \text{and} \quad e'_{c_k} = e_{2m+k}$$

Then (e'_1, \ldots, e'_n) is simultaneously a *w*-dual and a *w*-conjugate basis. In both cases we conclude that

(10) $\emptyset \neq \{\mathcal{F}(v_1,\ldots,v_n) : (v_1,\ldots,v_n) \text{ is } w \text{-dual and } w \text{-conjugate}\} \subset \mathcal{O}_w \cap \mathfrak{O}_w.$

Let us show the inverse inclusion. Assume $\mathcal{F} = (F_0, \dots, F_n) \in \mathcal{O}_w \cap \mathfrak{O}_w$. Let (v_1, \dots, v_n) be a *w*-dual basis such that $\mathcal{F} = \mathcal{F}(v_1, \dots, v_n)$. Since $\mathcal{F} \in \mathfrak{O}_w$ we have

(11)
$$w_k = \min\{\ell = 1, \dots, n : \gamma(F_k) \cap F_\ell \neq \gamma(F_{k-1}) \cap F_\ell\}.$$

For all $\ell \in \{0, ..., n\}$ we will now construct a *w*-dual basis $(v_1^{(\ell)}, ..., v_n^{(\ell)})$ of *V* such that

(12)
$$F_k = \langle v_1^{(\ell)}, \dots, v_k^{(\ell)} \rangle_{\mathbb{C}} \text{ for all } k \in \{1, \dots, n\}$$

and

(13)
$$\gamma(v_k^{(\ell)}) = \begin{cases} \epsilon v_{w_k}^{(\ell)} & \text{if } w_k \ge k, \\ v_{w_k}^{(\ell)} & \text{if } w_k < k \end{cases} \text{ for all } k \in \{1, \dots, \ell\}.$$

This will then imply $\mathcal{F} = \mathcal{F}(v_1^{(n)}, \ldots, v_n^{(n)})$ for a basis $(v_1^{(n)}, \ldots, v_n^{(n)})$ both w-dual and w-conjugate, i.e., will complete the proof of (a).

Our construction is done by induction starting with $(v_1^{(0)}, \ldots, v_n^{(0)}) = (v_1, \ldots, v_n)$. Let $\ell \in \{1, \ldots, n\}$, and assume that $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is constructed. We distinguish three cases.

Case 1: $w_{\ell} < \ell$.

The inequality $w_{\ell} < \ell = w(w_{\ell})$ implies $\gamma(v_{w_{\ell}}^{(\ell-1)}) = \epsilon v_{\ell}^{(\ell-1)}$, whence $\gamma(v_{\ell}^{(\ell-1)}) = v_{w_{\ell}}^{(\ell-1)}$ as $\gamma^2 = \epsilon$ id. Therefore the basis $(v_1^{(\ell)}, \ldots, v_n^{(\ell)}) := (v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ fulfills conditions (12) and (13).

Case 2: $w_{\ell} = \ell$.

This case occurs only in type A1. On the one hand, (11) yields

$$\gamma(v_{\ell}^{(\ell-1)}) \in \langle v_1^{(\ell-1)}, \dots, v_{\ell}^{(\ell-1)}, v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}$$

On the other hand, since the basis $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is w-dual, we have

$$v_{\ell}^{(\ell-1)} \in \langle v_1^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\perp}$$

Hence, as γ preserves orthogonality with respect to ω ,

$$\begin{aligned} \gamma(v_{\ell}^{(\ell-1)}) &\in & \langle \gamma(v_{1}^{(\ell-1)}), \dots, \gamma(v_{\ell-1}^{(\ell-1)}), \gamma(v_{w_{1}}^{(\ell-1)}), \dots, \gamma(v_{w_{\ell-1}}^{(\ell-1)}) \rangle_{\mathbb{C}}^{\perp} \\ &= \langle v_{1}^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_{1}}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\perp}. \end{aligned}$$

Altogether this yields a nonzero complex number λ such that $\gamma(v_{\ell}^{(\ell-1)}) = \lambda v_{\ell}^{(\ell-1)}$. Since γ is an involution, we have $\lambda \in \{+1, -1\}$. In addition we know that

$$\lambda = \omega(\gamma(v_{\ell}^{(\ell-1)}), v_{\ell}^{(\ell-1)}) = {}^{t} \overline{v_{\ell}^{(\ell-1)}} v_{\ell}^{(\ell-1)} \in \mathbb{R}^{+}.$$

Whence $\gamma(v_{\ell}^{(\ell-1)}) = v_{\ell}^{(\ell-1)}$, and we can put $(v_{1}^{(\ell)}, \dots, v_{n}^{(\ell)}) := (v_{1}^{(\ell-1)}, \dots, v_{n}^{(\ell-1)})$
Case 3: $w_{\ell} > \ell.$

By (11) we have

$$\gamma(v_{\ell}^{(\ell-1)}) \in \langle v_k^{(\ell-1)} : 1 \le k \le w_{\ell} \rangle_{\mathbb{C}} + \langle v_{w_k}^{(\ell-1)} : 1 \le k \le \ell - 1 \rangle_{\mathbb{C}}.$$

On the other hand, arguing as in Case 2 we see that

$$\gamma(v_{\ell}^{(\ell-1)}) \in \langle v_1^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\perp}.$$

Hence we can write

(14)
$$\gamma(v_{\ell}^{(\ell-1)}) = \sum_{k \in I} \lambda_k v_k^{(\ell-1)} \quad \text{for some } \lambda_k \in \mathbb{C},$$

where $I := \{k : \ell \leq k \leq w_{\ell} \text{ and } \ell \leq w_k\} \subset \hat{I} := \{k : \ell \leq k \text{ and } \ell \leq w_k\}$. Using (14), the fact that the basis $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is w-dual, and the definition of ω and γ , we see that

(15)
$$\lambda_{w_{\ell}} = \omega(v_{\ell}^{(\ell-1)}, \gamma(v_{\ell}^{(\ell-1)})) = \epsilon^{t} v_{\ell}^{(\ell-1)} \overline{v_{\ell}^{(\ell-1)}} = \epsilon \alpha$$

with $\alpha \in \mathbb{R}, \alpha > 0$. Set

$$\begin{aligned} v_{\ell}^{(\ell)} &:= \frac{1}{\sqrt{\alpha}} v_{\ell}^{(\ell-1)}, \quad v_{w_{\ell}}^{(\ell)} &:= \frac{\epsilon}{\sqrt{\alpha}} \gamma(v_{\ell}^{(\ell-1)}), \\ v_{k}^{(\ell)} &:= v_{k}^{(\ell-1)} - \frac{\omega(v_{k}^{(\ell-1)}, \gamma(v_{\ell}^{(\ell-1)}))}{\lambda_{w_{\ell}}} v_{\ell}^{(\ell-1)} \quad \text{for all } k \in \hat{I} \setminus \{\ell, w_{\ell}\} \\ v_{k}^{(\ell)} &:= v_{k}^{(\ell-1)} \quad \text{for all } k \in \{1, \dots, n\} \setminus \hat{I}. \end{aligned}$$

Using (14) and (15) it is easy to check that $(v_1^{(\ell)}, \ldots, v_n^{(\ell)})$ is a *w*-dual basis which satisfies (12) and (13). This completes Case 3.

Proof of Proposition 4 (b)–(d). Let $\mathcal{F} \in \mathcal{O}_w$, so $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n)$ for some w-dual basis (v_1, \ldots, v_n) of V. From the definition of w-dual basis we see that

$$\begin{aligned} \langle v_1, \dots, v_{n-k} \rangle_{\mathbb{C}}^{\perp} &= \langle v_j : w_j \notin \{1, \dots, n-k\} \rangle_{\mathbb{C}} \\ &= \langle v_j : w_j \in \{n-k+1, \dots, n\} \rangle_{\mathbb{C}} \\ &= \langle v_j : (w_0 w)_j \in \{1, \dots, k\} \rangle_{\mathbb{C}}. \end{aligned}$$

Therefore

$$\dim \langle v_1, \dots, v_{n-k} \rangle_{\mathbb{C}}^{\perp} \cap \langle v_1, \dots, v_\ell \rangle_{\mathbb{C}} = \left| \left\{ j \in \{1, \dots, \ell\} : (w_0 w)_j \in \{1, \dots, k\} \right\} \right|$$

for all $k, \ell \in \{1, \ldots, n\}$, which yields the equality $w(\mathcal{F}^{\perp}, \mathcal{F}) = w_0 w$ and hence the inclusion

(16)
$$\mathcal{O}_w \subset \{\mathcal{F} \in X : (\mathcal{F}^\perp, \mathcal{F}) \in \mathbb{O}_{w_0 w}\}.$$

Let $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n) \in \mathfrak{O}_w$ for a *w*-conjugate basis (v_1, \ldots, v_n) of *V*. From the definition of *w*-conjugate basis we get

$$\gamma(\langle v_1,\ldots,v_k\rangle_{\mathbb{C}})=\langle v_{w_j}:j\in\{1,\ldots,k\}\rangle_{\mathbb{C}}.$$

Therefore

$$\dim \gamma(\langle v_1, \dots, v_k \rangle_{\mathbb{C}}) \cap \langle v_1, \dots, v_\ell \rangle_{\mathbb{C}} = \left| \left\{ j \in \{1, \dots, \ell\} : w_j^{-1} \in \{1, \dots, k\} \right\} \right|$$

for all $k, \ell \in \{1, ..., n\}$, whence $w(\gamma(\mathcal{F}), \mathcal{F}) = w^{-1} = w$ (since w is an involution). This implies the inclusion

(17) $\mathfrak{O}_w \subset \{\mathcal{F} \in X : (\gamma(\mathcal{F}), \mathcal{F}) \in \mathbb{O}_w\}.$

It is clear that the group K acts transitively on the set of w-dual bases, hence \mathcal{O}_w is a K-orbit. Moreover (16) implies that the orbits \mathcal{O}_w (for $w \in \mathfrak{I}_w^{\epsilon}$) are pairwise distinct. Similarly the subsets \mathfrak{O}_w (for $w \in \mathfrak{I}_w^{\epsilon}$) are pairwise distinct G^0 -orbits.

We denote by L_k the $k \times k$ -matrix with 1 on the antidiagonal and 0 elsewhere. Let $\underline{v} = (v_1, \ldots, v_n)$ be a w_0 -dual basis, in other words,

$$\begin{cases} \omega(v_k, v_{n+1-k}) = \begin{cases} 1 & \text{if } k \leq \frac{n+1}{2} \\ \epsilon & \text{if } k > \frac{n+1}{2} \\ \omega(v_k, v_\ell) = 0 & \text{if } \ell \neq n+1-k; \end{cases}$$

hence $L := (\omega(v_k, v_\ell))_{1 \le k, \ell \le n}$ is the following matrix

$$L = L_n$$
 (type A1) or $L = \begin{pmatrix} 0 & L_m \\ -L_m & 0 \end{pmatrix}$ (type A2, $n = 2m$).

The flag $\mathcal{F}_0 := \mathcal{F}(v_1, \ldots, v_n)$ satisfies the condition $\mathcal{F}_0^{\perp} = \mathcal{F}_0$. By Richardson– Springer [18] every K-orbit $\mathcal{O} \subset X$ contains an element of the form $g\mathcal{F}_0$ with $g \in G$ such that $h := L^t[g]_{\underline{v}}L^{-1}[g]_{\underline{v}} \in N$ where $[g]_{\underline{v}}$ denotes the matrix of g in the basis \underline{v} and N stands for the group of invertible $n \times n$ -matrices with exactly one nonzero coefficient in each row and each column. Note that $Lh = {}^t[g]_{\underline{v}}L[g]_{\underline{v}}$ also belongs to N (as L does) and is symmetric in type A1 and antisymmetric in type A2. Consequently, there are $w \in \mathcal{I}_n$ and constants $t_1, \ldots, t_n \in \mathbb{C}^*$ such that the matrix $Lh =: (a_{k,\ell})_{1 < k, \ell < n}$ has the following entries:

$$a_{k,\ell} = 0 \text{ if } \ell \neq w_k, \qquad a_{k,w_k} = \begin{cases} t_k & \text{if } w_k \ge k \\ \epsilon t_k & \text{if } w_k \le k. \end{cases}$$

Since $\epsilon = -1$ in type A2, we must have $w_k \neq k$ for all k, hence $w \in \mathfrak{I}'_n$. Therefore in both cases $w \in \mathfrak{I}^{\epsilon}_n$. For each $k \in \{1, \ldots, n\}$, we choose $s_k = s_{w_k} \in \mathbb{C}^*$ such that $s_k^{-2} = t_k$ (note that $t_{w_k} = t_k$). Thus

$$g\mathcal{F}_0=\mathcal{F}(s_1gv_1,\ldots,s_ngv_n)\,,$$

and for all $k, \ell \in \{1, \ldots, n\}$ we have

$$\omega(s_k g v_k, s_\ell g v_\ell) = s_k s_\ell \omega(g v_k, g v_\ell) = s_k s_\ell a_{k,\ell} = \begin{cases} 1 & \text{if } \ell = w_k \ge k \\ \epsilon & \text{if } \ell = w_k < k \\ 0 & \text{if } \ell \ne w_k. \end{cases}$$

Whence $g\mathcal{F}_0 \in \mathcal{O}_w$. This yields $\mathcal{O} = \mathcal{O}_w$.

We have shown that the subsets \mathcal{O}_w (for $w \in \mathfrak{I}_w^{\epsilon}$) are precisely the K-orbits of X. In particular, $X = \bigcup_{w \in \mathfrak{I}_w^{\epsilon}} \mathcal{O}_w$ so that the inclusion (16) is actually an equality. By Matsuki duality the number of G^0 -orbits of X is the same as the number of K-orbits, hence the subsets \mathfrak{O}_w (for $w \in \mathfrak{I}_w^{\epsilon}$) are exactly the G^0 -orbits of X. Thereby equality holds in (17). Finally we have shown parts (b) and (c) of the statement.

Part (a) implies that, for every $w \in \mathfrak{I}_n^{\epsilon}$, the intersection $\mathcal{O}_w \cap \mathfrak{O}_w$ is nonempty and consists of a single $K \cap G^0$ -orbit. This shows that the orbit \mathfrak{O}_w is the Matsuki dual of \mathcal{O}_w (see [12]), and part (d) of the statement is also proved. \Box

Proof of Proposition 5(a). We write w as a product of pairwise disjoint transpositions $w = (a_1; b_1) \cdots (a_m; b_m)$, and let $c_{m+1} < \ldots < c_p$ be the elements of $\{k : w_k = k, \varepsilon_k = +1\}$ and $d_{m+1} < \ldots < d_q$ be the elements of $\{k : w_k = k, \varepsilon_k = -1\}$. Let $\{e_1, ..., e_n\} = \{e_1^+, ..., e_p^+\} \cup \{e_1^-, ..., e_q^-\}$ so that $V_+ = \langle e_\ell^+ : \ell = 1, ..., p \rangle_{\mathbb{C}}$ and $V_- = \langle e_\ell^- : \ell = 1, ..., q \rangle_{\mathbb{C}}$. Setting

$$v_{a_k} := \frac{e_k^+ + e_k^-}{\sqrt{2}}, \ v_{b_k} := \frac{e_k^+ - e_k^-}{\sqrt{2}} \text{ for all } k \in \{1, \dots, m\},$$

 $v_{c_k} := e_k^+$ for all $k \in \{m+1, \ldots, p\}$, and $v_{d_k} := e_k^-$ for all $k \in \{m+1, \ldots, q\}$, it is easy to see that (v_1, \ldots, v_n) is a basis of V which is (w, ε) -dual and (w, ε) conjugate. Therefore

(18)
$$\emptyset \neq \{\mathcal{F}(\underline{v}) : \underline{v} \text{ is } (w, \varepsilon) \text{-dual and } (w, \varepsilon) \text{-conjugate}\} \subset \mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)}.$$

For showing the inverse inclusion, consider $\mathcal{F} = (F_0, \ldots, F_n) \in \mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)}$. On the one hand, since $\mathcal{F} \in \mathfrak{O}_{(w,\varepsilon)}$ there is a (w, ε) -dual basis (v_1, \ldots, v_n) such that $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n)$. On the other hand, the fact that $\mathcal{F} \in \mathcal{O}_{(w,\varepsilon)}$ yields

(19)
$$w_k = \min\{\ell = 1, \dots, n : \delta(F_k) \cap F_\ell \neq \delta(F_{k-1}) \cap F_\ell\}$$
 for all $k \in \{1, \dots, n\}$.

For all $\ell \in \{0, ..., n\}$ we will now construct a (w, ε) -dual basis $(v_1^{(\ell)}, ..., v_n^{(\ell)})$ such that

(20)
$$F_k = \langle v_1^{(\ell)}, \dots, v_k^{(\ell)} \rangle_{\mathbb{C}} \text{ for all } k \in \{1, \dots, n\}$$

(21) and
$$\delta(v_k^{(\ell)}) = \begin{cases} v_{w_k}^{(\ell)} & \text{if } w_k \neq k, \\ \varepsilon_k v_k^{(\ell)} & \text{if } w_k = k \end{cases} \text{ for all } k \in \{1, \dots, \ell\}.$$

This will then provide a basis $(v_1^{(n)}, \ldots, v_n^{(n)})$ which is both (w, ε) -dual and (w, ε) conjugate and such that $\mathcal{F} = \mathcal{F}(v_1^{(n)}, \ldots, v_n^{(n)})$, i.e., will complete the proof of part
(a).

The construction is carried out by induction on $\ell \in \{0, \ldots, n\}$, and is initialized by setting $(v_1^{(0)}, \ldots, v_n^{(0)}) := (v_1, \ldots, v_n)$. Let $\ell \in \{1, \ldots, n\}$ be such that the basis $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is already constructed. We distinguish three cases.

Case 1: $w_{\ell} < \ell$.

Since in this case since $w_{\ell} \leq \ell - 1$ and $w(w_{\ell}) = \ell$, we get $\delta(v_{w_{\ell}}^{(\ell-1)}) = v_{\ell}^{(\ell-1)}$ and hence $\delta(v_{\ell}^{(\ell-1)}) = v_{w_{\ell}}^{(\ell-1)}$ (as δ is an involution). Therefore the basis $(v_1^{(\ell)}, \ldots, v_n^{(\ell)}) := (v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ satisfies conditions (20) and (21).

Case 2: $w_{\ell} = \ell$.

Using (19) we have

$$\delta(v_{\ell}^{(\ell-1)}) \in \langle v_1^{(\ell-1)}, v_2^{(\ell-1)}, \dots, v_{\ell}^{(\ell-1)} \rangle_{\mathbb{C}} + \langle v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}$$

On the other hand, the fact that the basis $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is (w, ε) -conjugate implies

(22)
$$v_{\ell}^{(\ell-1)} \in \langle v_1^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\dagger}$$

Since δ preserves orthogonality with respect to the form ϕ and since $\delta(v_k^{(\ell-1)}) = v_{w_k}^{(\ell-1)}$ for all $k \in \{1, \dots, \ell-1\}$ (by the induction hypothesis), (22) yields

$$\delta(v_{\ell}^{(\ell-1)}) \in \langle v_1^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_1}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\dagger}.$$

Altogether we deduce that

$$\delta(v_{\ell}^{(\ell-1)}) = \lambda v_{\ell}^{(\ell-1)} \quad \text{for some } \lambda \in \mathbb{C}^*.$$

As δ is an involution, we conclude that $\lambda \in \{+1, -1\}$. Moreover, knowing that $\phi(v_{\ell}^{(\ell-1)}, v_{\ell}^{(\ell-1)}) = \varepsilon_{\ell}$ we see that

$$\lambda \varepsilon_{\ell} = \phi(v_{\ell}^{(\ell-1)}, \delta(v_{\ell}^{(\ell-1)})) = {}^t \overline{v_{\ell}^{(\ell-1)}} \varPhi \Phi v_{\ell}^{(\ell-1)} = {}^t \overline{v_{\ell}^{(\ell-1)}} v_{\ell}^{(\ell-1)} \ge 0.$$

Finally we conclude that $\lambda = \varepsilon_{\ell}$. It follows that the basis $(v_1^{(\ell)}, \ldots, v_n^{(\ell)}) := (v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ satisfies (20) and (21).

Case 3: $w_{\ell} > \ell$.

Invoking (19), the fact that $(v_1^{(\ell-1)}, \ldots, v_n^{(\ell-1)})$ is (w, ε) -dual, the induction hypothesis, and the fact that δ preserves orthogonality with respect to ϕ , we see as in Case 2 that

$$\begin{split} \delta(v_{\ell}^{(\ell-1)}) &\in \left(\langle v_{k}^{(\ell-1)} : 1 \le k \le w_{\ell} \rangle_{\mathbb{C}} + \langle v_{w_{k}}^{(\ell-1)} : 1 \le k \le \ell - 1 \rangle_{\mathbb{C}} \right) \\ &\cap \langle v_{1}^{(\ell-1)}, \dots, v_{\ell-1}^{(\ell-1)}, v_{w_{1}}^{(\ell-1)}, \dots, v_{w_{\ell-1}}^{(\ell-1)} \rangle_{\mathbb{C}}^{\dagger}. \end{split}$$

Therefore

(23)
$$\delta(v_{\ell}^{(\ell-1)}) = \sum_{k \in I} \lambda_k v_k^{(\ell-1)} \quad \text{with } \lambda_k \in \mathbb{C},$$

where $I := \{k : \ell \leq k \leq w_\ell, \ \ell \leq w_k\} \subset \hat{I} := \{k : \ell \leq k, \ \ell \leq w_k\}$. This implies

$$\lambda_{w_{\ell}} = \phi(v_{\ell}^{(\ell-1)}, \delta(v_{\ell}^{(\ell-1)})) = {}^{t}\overline{v_{\ell}^{(\ell-1)}} \Phi \Phi v_{\ell}^{(\ell-1)} = {}^{t}\overline{v_{\ell}^{(\ell-1)}} v_{\ell}^{(\ell-1)} \in \mathbb{R}_{+}^{*}$$

It is straightforward to check that the basis $(v_1^{(\ell)}, \ldots, v_n^{(\ell)})$ defined by

$$\begin{aligned} v_{\ell}^{(\ell)} &:= \frac{1}{\sqrt{\lambda_{w_{\ell}}}} v_{\ell}^{(\ell-1)}, \quad v_{w_{\ell}}^{(\ell)} &:= \frac{1}{\sqrt{\lambda_{w_{\ell}}}} \delta(v_{\ell}^{(\ell-1)}), \\ v_{k}^{(\ell)} &:= v_{k}^{(\ell-1)} - \frac{\phi(v_{k}^{(\ell-1)}, \delta(v_{\ell}^{(\ell-1)}))}{\lambda_{w_{\ell}}} v_{\ell}^{(\ell-1)} \quad \text{for all } k \in \hat{I} \setminus \{\ell, w_{\ell}\}, \\ v_{k}^{(\ell)} &:= v_{k}^{(\ell-1)} \quad \text{for all } k \in \{1, \dots, n\} \setminus \hat{I} \end{aligned}$$

is (w, ε) -dual and satisfies conditions (20) and (21).

Proof of Proposition 5 (b)–(d). Let $\mathcal{F} = \mathcal{F}(v_1, \ldots, v_n)$ where (v_1, \ldots, v_n) is a (w, ε) conjugate basis. Then by definition we have

$$\delta(\langle v_1,\ldots,v_k\rangle_{\mathbb{C}})=\langle v_{w_j}:j\in\{1,\ldots,k\}\rangle_{\mathbb{C}}$$

hence

$$\dim \delta(\langle v_1, \dots, v_k \rangle_{\mathbb{C}}) \cap \langle v_1, \dots, v_\ell \rangle_{\mathbb{C}} = |\{j \in \{1, \dots, \ell\} : w_j^{-1} \in \{1, \dots, k\}\}|$$
$$= |\{j \in \{1, \dots, \ell\} : w_j \in \{1, \dots, k\}\}|$$

for all $k, \ell \in \{1, \ldots, n\}$. Moreover, for $\varepsilon \in \{+1, -1\}$ we have

$$\langle v_1, \dots, v_\ell \rangle_{\mathbb{C}} \cap \ker(\delta - \varepsilon \mathrm{id}) = \langle v_j : 1 \le w_j = j \le \ell \text{ and } \varepsilon_j = \varepsilon \rangle_{\mathbb{C}} + \langle v_j + \varepsilon v_{w_j} : 1 \le w_j < j \le \ell \rangle_{\mathbb{C}} .$$

Therefore

$$\left(\dim\langle v_1,\ldots,v_\ell\rangle_{\mathbb{C}}\cap V_+,\dim\langle v_1,\ldots,v_\ell\rangle_{\mathbb{C}}\cap V_-\right)_{\ell=1}^n=\varsigma(w,\varepsilon)$$

Altogether this yields the inclusion

(24)
$$\mathcal{O}_{(w,\varepsilon)} \subset \left\{ \mathcal{F} \in X : (\delta(\mathcal{F}), \mathcal{F}) \in \mathbb{O}_w \text{ and } \varsigma(\delta : \mathcal{F}) = \varsigma(w,\varepsilon) \right\}$$

Now let (v_1, \ldots, v_n) be a (w, ε) -dual basis. Then

$$\langle v_1, \dots, v_{n-k} \rangle_{\mathbb{C}}^{\mathsf{T}} \cap \langle v_1, \dots, v_\ell \rangle_{\mathbb{C}} = \langle v_j : j \in \{1, \dots, \ell\} \text{ and } w_j > n-k \rangle_{\mathbb{C}}$$
$$= \langle v_j : j \in \{1, \dots, \ell\} \text{ and } (w_0 w)_j \le k \rangle_{\mathbb{C}},$$

whence

$$\dim \langle v_1, \dots, v_{n-k} \rangle_{\mathbb{C}}^{\dagger} \cap \langle v_1, \dots, v_{\ell} \rangle_{\mathbb{C}} = |\{j \in \{1, \dots, \ell\} : (w_0 w)_j \in \{1, \dots, k\}|$$

for all $k, \ell \in \{1, \ldots, n\}$. In particular we see that

$$\langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} = \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} \cap \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}}^{\dagger} \oplus \langle v_j : j \in \{1, \ldots, \ell\} \text{ and } w_j \leq \ell \rangle_{\mathbb{C}}.$$

It follows that the vectors v_j (for $1 \le w_j = j \le \ell$) and $\frac{1}{\sqrt{2}}(v_j \pm v_{w_j})$ (for $1 \le w_j < j \le \ell$) form a basis of the quotient space $\langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} / \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} \cap \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}}^{\dagger}$. This basis is ϕ -orthogonal and, since (v_1, \ldots, v_n) is (w, ε) -dual, we have

$$\phi(v_j, v_j) = \varepsilon_j \text{ if } w_j = j; \quad \begin{cases} \phi(\frac{v_j + v_{w_j}}{\sqrt{2}}, \frac{v_j + v_{w_j}}{\sqrt{2}}) = 1, \\ \phi(\frac{v_j - v_{w_j}}{\sqrt{2}}, \frac{v_j - v_{w_j}}{\sqrt{2}}) = -1 \end{cases} \quad \text{if } w_j < j.$$

Therefore the signature of ϕ on $\langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} / \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}} \cap \langle v_1, \ldots, v_\ell \rangle_{\mathbb{C}}^{\dagger}$ is the pair

$$(|\{j: w_j = j \le \ell, \ \varepsilon_j = +1\}| + |\{j: w_j < j \le \ell\}|, |\{j: w_j = j \le \ell, \ \varepsilon_j = -1\}| + |\{j: w_j < j \le \ell\}|)$$

which coincides with the ℓ -th term of the sequence $\varsigma(w, \varepsilon)$. Finally, we obtain the inclusion

(25)
$$\mathfrak{O}_{(w,\varepsilon)} \subset \{ \mathcal{F} \in X : (\mathcal{F}^{\dagger}, \mathcal{F}) \in \mathbb{O}_{w_0 w} \text{ and } \varsigma(\phi : \mathcal{F}) = \varsigma(w, \varepsilon) \}.$$

It is clear that K (resp., G^0) acts transitively on the set of (w, ε) -conjugate bases (resp., (w, ε) -dual bases). Hence the subsets $\mathcal{O}_{(w,\varepsilon)}$ (resp. $\mathfrak{O}_{(w,\varepsilon)}$) are K-orbits (resp., G^0 -orbits). Moreover, in view of (24) and (25) these orbits are pairwise distinct.

Let \mathcal{O} be a K-orbit of X. Note that the basis (e_1, \ldots, e_n) of V satisfies $\delta(e_j) = \pm e_j$ for all j, hence the flag $\mathcal{F}_0 := \mathcal{F}(e_1, \ldots, e_n)$ satisfies $\delta(\mathcal{F}_0) = \mathcal{F}_0$. By [18] the K-orbit \mathcal{O} contains an element of the form $g\mathcal{F}_0$ for some $g \in G$ such that $h := \Phi g^{-1} \Phi g \in N$ where, as in the proof of Proposition 4, $N \subset G$ stands for the subgroup of matrices with exactly one nonzero entry in each row and each column. Since $\Phi \in N$ we also have $\Phi h \in N$. Hence there is a permutation $w \in \mathfrak{S}_n$ and constants $t_1, \ldots, t_n \in \mathbb{C}^*$ such that the matrix $\Phi h =: (a_{k,\ell})_{1 \leq k,\ell \leq n}$ has entries

$$a_{k,\ell} = 0$$
 if $\ell \neq w_k$, $a_{k,w_k} = t_k$ for all $k, \ell \in \{1, \dots, n\}$

The relation $\Phi h = g^{-1} \Phi g$ shows that $(\Phi h)^2 = 1_n$. This yields $w^2 = \text{id}$ and $t_k t_{w_k} = 1$ for all k; hence

 $t_{w_k} = t_k^{-1}$ whenever $w_k \neq k$ and $\varepsilon_k := t_k \in \{+1, -1\}$ whenever $w_k = k$.

In addition, since Φh is conjugate to Φ , its eigenvalues +1 and -1 have respective multiplicities p and q, which forces

$$(w,\varepsilon) \in \mathfrak{I}_n(p,q).$$

For each $k \in \{1, \ldots, n\}$ with $w_k < k$, we take $s_k \in \mathbb{C}^*$ such that $t_k = s_k^2$ and set $s_{w_k} = s_k^{-1}$ (so that $s_{w_k}^2 = t_k^{-1} = t_{w_k}$). Moreove, r for each $k \in \{1, \ldots, n\}$ with $w_k = k$ we set $s_k = 1$. The equality $\Phi g = g \Phi h$ yields

 $\delta(g(s_k e_k)) = s_k \Phi g e_k = s_k g(\Phi h) e_k = s_k g(t_{w_k} e_{w_k}) = s_{w_k}^{-1} g(s_{w_k}^2 e_{w_k}) = g(s_{w_k} e_{w_k})$ for all $k \in \{1, \dots, n\}$ such that $w_k \neq k$, and

$$\delta(g(s_k e_k)) = \delta(g(e_k)) = \Phi g e_k = g(\Phi h) e_k = g(\varepsilon_k e_k) = \varepsilon_k g(e_k) = \varepsilon_k g(s_k e_k)$$

for all $k \in \{1, \ldots, n\}$ such that $w_k = k$. Hence the family $(g(s_1e_1), \ldots, g(s_ne_n))$ is a (w, ε) -conjugate basis of V. Thus

$$g\mathcal{F}_0 = g\mathcal{F}(e_1, \dots, e_n) = g\mathcal{F}(s_1e_1, \dots, s_ne_n) = \mathcal{F}(g(s_1e_1), \dots, g(s_ne_n)) \in \mathcal{O}_{(w,\varepsilon)}.$$

Therefore $\mathcal{O} = \mathcal{O}_{(w,\varepsilon)}.$

We conclude that the subsets $\mathcal{O}_{(w,\varepsilon)}$ (for $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$) are exactly the *K*orbits of *X*. Matsuki duality then guarantees that the subsets $\mathfrak{O}_{(w,\varepsilon)}$ (for $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$) are exactly the G^0 -orbits of *X*. This fact implies in particular that equality holds in (24) and (25). Altogether we have shown parts (b) and (c) of the statement.

Finally, part (a) shows that for every $(w, \varepsilon) \in \mathfrak{I}_n(p, q)$ the intersection $\mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)}$ consists of a single $K \cap G^0$ -orbit, which guarantees that the orbits $\mathcal{O}_{(w,\varepsilon)}$ and $\mathfrak{O}_{(w,\varepsilon)}$ are Matsuki dual (see [11, 12]). This proves part (d) of the statement. The proof of Proposition 5 is complete.

Proof of Proposition 6. The proof relies on the following two technical claims.

Claim 1: For every signed involution $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$ we have $\mathcal{O}_{(w,\varepsilon)} \cap X_\omega = \emptyset$ unless $(w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q)$.

Claim 2: For every $(w, \varepsilon) \in \mathfrak{I}_n^{\eta, \epsilon}(p, q)$ there is a basis $\underline{v} = (v_1, \ldots, v_n)$ which is simultaneously (w, ε) -dual and (w, ε) -conjugate and satisfies (9).

Assuming Claims 1 and 2, the proof of the proposition proceeds as follows. For every $(w, \varepsilon) \in \mathfrak{I}_n(p, q)$ the inclusions

(26) $\{\mathcal{F}(\underline{v}):\underline{v} \text{ is } (w,\varepsilon)\text{-conjugate and satisfies } (9)\} \subset \mathcal{O}_{(w,\varepsilon)} \cap X_{\omega},$

(27) $\{\mathcal{F}(\underline{v}): \underline{v} \text{ is } (w, \varepsilon) \text{-dual and satisfies } (9)\} \subset \mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega},$

(28) $\{\mathcal{F}(\underline{v}): \underline{v} \text{ is } (w, \varepsilon) \text{-dual and } (w, \varepsilon) \text{-conjugate and satisfies (9)} \}$

$$\subset \mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)} \cap X$$

clearly hold. Hence Claim 2 shows that $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$, $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon}$, and $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \cap \mathfrak{D}_{(w,\varepsilon)}^{\eta,\epsilon}$ are all nonempty whenever $(w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q)$. By Claim 1, Lemma 1, and Proposition 5 (c), the K-orbits of X_{ω} are exactly the subsets $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$. On the other hand the subsets $\mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega}$ (for $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$) are G^0 -stable and pairwise disjoint. By Matsuki duality there is a bijection between K-orbits and G^0 -orbits. This forces $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} = \mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega}$ to be a single G^0 -orbit whenever $(w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q)$ and $\mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega}$ to be empty if $(w,\varepsilon) \notin \mathfrak{I}_n^{\eta,\epsilon}(p,q)$. This proves Proposition 6 (b).

Since the orbits $\mathcal{O}_{(w,\varepsilon)}, \mathfrak{O}_{(w,\varepsilon)} \subset X$ are Matsuki dual (see Proposition 5 (d)), their intersection $\mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)}$ is compact, hence such is the intersection $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \cap \mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ for all $(w,\varepsilon) \in \mathfrak{I}_n^{\eta,\epsilon}(p,q)$. This implies that $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ and $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ are Matsuki dual (see [6]), and therefore part (c) of the statement.

Let $(w, \varepsilon) \in \mathfrak{I}_n^{\eta, \epsilon}(p, q)$. Since $\mathcal{O}_{(w, \varepsilon)}^{\eta, \epsilon}$ and $\mathfrak{O}_{(w, \varepsilon)}^{\eta, \epsilon}$ are Matsuki dual, their intersection is a single $K \cap G^0$ -orbit. The set on the left-hand side in (28) is nonempty (by

20

Claim 2) and $K \cap G^0$ -stable, hence equality holds in (28). Similarly, the sets on the left-hand sides in (26) and (27) are nonempty (by Claim 2) and respectively K- and G^0 -stable. Since $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} = \mathcal{O}_{(w,\varepsilon)} \cap X_{\omega}$ and $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} = \mathfrak{O}_{(w,\varepsilon)} \cap X_{\omega}$ are respectively a K-orbit and a G^0 -orbit, equality holds in (26) and (27). This shows part (a) of the statement.

Thus the proof of Proposition 6 will be complete once we establish Claims 1 and 2.

Proof of Claim 1. Note that for two subspaces $A, B \subset V$ we have $A^{\perp} + B^{\perp} = (A \cap B)^{\perp}$, hence

(29)
$$\dim A^{\perp} \cap B^{\perp} + \dim A + \dim B = \dim A \cap B + \dim V.$$

Note also that the map δ is selfadjoint (in types BD1 and C2) or antiadjoint (in types C1 and D3) with respect to ω , hence the equality $\delta(A)^{\perp} = \delta(A^{\perp})$ holds for any subspace $A \subset V$ in all types.

Let $(w,\varepsilon) \in \mathfrak{I}_n(p,q)$ such that $\mathcal{O}_{(w,\varepsilon)} \cap X_\omega \neq \emptyset$. Let $\mathcal{F} = (F_0,\ldots,F_n) \in \mathcal{O}_{(w,\varepsilon)} \cap X_\omega$.

By applying (29) to $A = \delta(F_k)$ and $B = F_\ell$ for $1 \le k, \ell \le n$ we obtain

(30)
$$\dim \delta(F_{n-k}) \cap F_{n-\ell} + k + \ell = \dim \delta(F_k) \cap F_{\ell} + n.$$

On the other hand, since $\mathcal{F} \in \mathcal{O}_{(w,\varepsilon)}$ Proposition 5 (b) gives

(31)
$$\dim \delta(F_{n-k}) \cap F_{n-\ell} = |\{j = 1, \dots, n-\ell : 1 \le w_j \le n-k\}|$$

and

(32) dim
$$\delta(F_k) \cap F_\ell$$
 = $|\{j = 1, \dots, \ell : 1 \le w_j \le k\}|$
= $\ell - |\{j = 1, \dots, \ell : w_j \ge k+1\}|$
= $\ell - (n - k - |\{j \ge \ell + 1 : w_j \ge k+1\}|)$
= $\ell + k - n + |\{j = 1, \dots, n - \ell : w_0 w w_0(j) \le n - k\}|$

for all $k, \ell \in \{1, \ldots, n\}$. Comparing (30)–(32) we conclude that $w = w_0 w w_0$.

Let $k \in \{1, \ldots, n\}$ such that $w_k = k$. Since $ww_0 = w_0 w$, we have $w_{n-k+1} = n-k+1$. Applying (29) with $A = F_k$ (resp., $A = F_{k-1}$) and $B = V_+$, we get

 $1 + \dim F_{k-1} \cap V_{+} - \dim F_{k} \cap V_{+} = \dim F_{n-k+1} \cap V_{-} - \dim F_{n-k} \cap V_{-}$

in types BD1 and C2 (where $V_{+}^{\perp} = V_{-}$), whence

$$\begin{split} \varepsilon_k &= 1 & \Leftrightarrow & \dim F_k \cap V_+ = \dim F_{k-1} \cap V_+ + 1 \\ & \Leftrightarrow & \dim F_{n-k+1} \cap V_- = \dim F_{n-k} \cap V_- \Leftrightarrow \varepsilon_{n-k+1} = 1 \end{split}$$

in that case. In types C1 and D3 (where $V_{+}^{\perp} = V_{+}$), we get

 $1+\dim F_{k-1}\cap V_+-\dim F_k\cap V_+=\dim F_{n-k+1}\cap V_+-\dim F_{n-k}\cap V_+\,,$ whence also

$$\varepsilon_k = 1 \Leftrightarrow \varepsilon_{n-k+1} = -1.$$

At this point we obtain that the signed involution (w, ε) satisfies conditions (i)– (ii) in Section 3.3. To conclude that $(w, \varepsilon) \in \mathfrak{I}_n^{\eta, \epsilon}(p, q)$, it remains to check that in types C2 and D3 we have $w_k \neq n - k + 1$ for all $k \leq \frac{n}{2}$. Arguing by contradiction, assume that $w_k = n - k + 1$. Since $\mathcal{F} \in \mathcal{O}_{(w,\varepsilon)}$ there is a (w, ε) -conjugate basis $\underline{v} = (v_1, \ldots, v_n)$ such that $\mathcal{F} = \mathcal{F}(\underline{v})$. Thus $\delta(v_k) = v_{n-k+1}$ so that we can write $v_k=v_k^++v_k^-$ and $v_{n-k+1}=v_k^+-v_k^-.$ In type C2 we have $V_+^\perp=V_-$ and ω is antisymmetric, hence

$$(v_k^+ + v_k^-, v_k^+ - v_k^-) = \omega(v_k^+, v_k^+) - \omega(v_k^-, v_k^-) = 0 - 0 = 0$$

In type D3 we have $V_{+}^{\perp} = V_{+}, V_{-}^{\perp} = V_{-}$, and ω is symmetric hence

$$\omega(v_k^+ + v_k^-, v_k^+ - v_k^-) = -\omega(v_k^+, v_k^-) + \omega(v_k^-, v_k^+) = 0.$$

In both cases we deduce

$$F_{n-k+1} = F_{n-k} + \langle v_{n-k+1} \rangle_{\mathbb{C}} \subset F_k^{\perp} + F_{k-1}^{\perp} \cap \langle v_k \rangle_{\mathbb{C}}^{\perp} = F_k^{\perp} = F_{n-k},$$

a contradiction. This completes the proof of Claim 1.

Proof of Claim 2. For $k \in \{1, ..., n\}$ set $k^* = n - k + 1$. We can write

$$w = (c_1; c'_1) \cdots (c_s; c'_s)(c'^*_1; c^*_1) \cdots (c'^*_s; c^*_s)(d_1; d^*_1) \cdots (d_t; d^*_t)$$

where $c_1 < \ldots < c_s < c_s^* < \ldots < c_1^*$, $c_j < c_j' \neq c_j^*$ for all $j, d_1 < \ldots < d_t < d_t^* < \ldots < d_1^*$. Note that t = 0 in types C2 and D3. Moreover, we denote

$$\{a_1 < \ldots < a_{p-t-2s}\} := \{k : w_k = k, \ \varepsilon_k = 1\}, \\ \{b_1 < \ldots < b_{q-t-2s}\} := \{k : w_k = k, \ \varepsilon_k = -1\}$$

We can construct a ϕ -orthonormal basis

$$x_1^+, \dots, x_t^+, y_1^+, \dots, y_s^+, y_s^{+*}, \dots, y_1^{+*}, z_1^+, \dots, z_{p-t-2s}^+$$

of V_+ , and a $(-\phi)$ -orthonormal basis

$$x_1^-, \dots, x_t^-, y_1^-, \dots, y_s^-, y_s^{-*}, \dots, y_1^{-*}, z_1^-, \dots, z_{q-t-2s}^-$$

of $V_-,$ such that in types BD1 and C2 (where the restriction of ω on V_+ and V_- is nondegenerate) we have

$$\begin{split} \omega(x_j^+, x_j^+) &= \omega(x_j^-, x_j^-) = 1, \\ \omega(y_j^+, y_j^{+*}) &= \omega(y_j^-, y_j^{-*}) = 1, \quad \omega(y_j^{+*}, y_j^+) = \omega(y_j^{-*}, y_j^-) = \epsilon, \\ \omega(z_j^+, z_\ell^+) &= \begin{cases} 1 & \text{if } j \leq \ell = p - t - 2s + 1 - j \\ \epsilon & \text{if } j > \ell = p - t - 2s + 1 - j, \end{cases} \\ \omega(z_j^-, z_\ell^-) &= \begin{cases} 1 & \text{if } j \leq \ell = q - t - 2s + 1 - j \\ \epsilon & \text{if } j > \ell = q - t - 2s + 1 - j, \end{cases} \end{split}$$

and the other values of ω on the basis to equal 0. In types C1 and D3 (where $V_{+}^{\perp} = V_{+}, V_{-}^{\perp} = V_{-}$, and in particular $p = q = \frac{n}{2}$ in this case) we require that

$$\begin{split} \omega(x_j^+, x_j^-) &= i, \quad \omega(x_j^-, x_j^+) = \epsilon i, \\ \omega(y_j^+, y_j^{-*}) &= \omega(y_j^-, y_j^{+*}) = 1, \quad \omega(y_j^{+*}, y_j^-) = \omega(y_j^{-*}, y_j^+) = \epsilon, \\ \omega(z_j^+, z_\ell^-) &= \epsilon \omega(z_\ell^-, z_j^+) = \begin{cases} 1 & \text{if } \ell = \tilde{j} := \frac{n}{2} - t - 2s + 1 - j \text{ and } a_j < b_{\tilde{j}}; \\ \epsilon & \text{if } \ell = \tilde{j} := \frac{n}{2} - t - 2s + 1 - j \text{ and } a_j > b_{\tilde{j}}; \end{cases}$$

while the other values of ω on the basis are 0. In contrast to the value of $\omega(z_j^{\pm}, z_{\ell}^{\pm})$ in types BD1,C2, the value of $\omega(z_j^{+}, z_{\ell}^{-})$ in types C1,D3 is not subject to a constraint but is chosen so that the basis (v_1, \ldots, v_n) below satisfies (9).

In all cases we construct a basis (v_1, \ldots, v_n) by setting

$$v_{d_j} = \frac{x_j^+ + ix_j^-}{\sqrt{2}}, \quad v_{d_j^*} = \frac{x_j^+ - ix_j^-}{\sqrt{2}}$$

$$v_{c_j} = \frac{y_j^+ + y_j^-}{\sqrt{2}}, \quad v_{c'_j} = \frac{y_j^+ - y_j^-}{\sqrt{2}}, \quad v_{c_j^*} = \frac{y_j^{+*} + y_j^{-*}}{\sqrt{2}}, \quad v_{c'_j^*} = \frac{y_j^{+*} - y_j^{-*}}{\sqrt{2}}, \\ v_{a_j} = z_j^+, \quad \text{and} \quad v_{b_j} = z_j^-.$$

It is straightforward to check that the basis (v_1, \ldots, v_n) is both (w, ε) -dual and (w, ε) -conjugate and satisfies (9). This completes the proof of Claim 2.

4. Orbit duality in ind-varieties of generalized flags

Following the pattern of Section 3, we now present our results on orbit duality in the infinite-dimensional case. All proofs are given in Section 4.5.

4.1. Types A1 and A2. The notation is as Section 2.1.1. For every $\ell \in \mathbb{N}^*$ there is a unique $\ell^* \in \mathbb{N}^*$ such that $\omega(e_\ell, e_{\ell^*}) \neq 0$, and this yields a bijection $\iota : \mathbb{N}^* \to \mathbb{N}^*$, $\ell \mapsto \ell^*$.

Let $\mathfrak{I}_{\infty}(\iota)$ be the set of involutions $w : \mathbb{N}^* \to \mathbb{N}^*$ such that $w(\ell) = \ell^*$ for all but finitely many $\ell \in \mathbb{N}^*$. In particular we have $w\iota \in \mathfrak{S}_{\infty}$ for all $w \in \mathfrak{I}_{\infty}(\iota)$. Let $\mathfrak{I}'_{\infty}(\iota) \subset \mathfrak{I}_{\infty}(\iota)$ be the subset of involutions without fixed points (i.e., such that $w(\ell) \neq \ell$ for all $\ell \in \mathbb{N}^*$).

Let $\sigma : \mathbb{N}^* \to (A, \prec)$ be a bijection onto a totally ordered set, and let us consider the ind-variety of generalized flags $\mathbf{X}(\mathcal{F}_{\sigma}, E)$. In Proposition 7 below we show that the **K**-orbits and the \mathbf{G}^0 -orbits of $\mathbf{X}(\mathcal{F}_{\sigma}, E)$ are parametrized by the elements of $\mathfrak{I}_{\infty}(\iota)$ in type A1, and by elements of $\mathfrak{I}'_{\infty}(\iota)$ in type A2.

Definition 6. Let $w \in \mathfrak{I}_{\infty}(\iota)$. Let $\underline{v} = (v_1, v_2, \ldots)$ be a basis of **V** such that

(33)
$$v_{\ell} = e_{\ell}$$
 for all but finitely many $\ell \in \mathbb{N}^*$.

We call \underline{v} w-dual if in addition to (33) \underline{v} satisfies

$$\omega(v_{\ell}, v_k) = \begin{cases} 0 & \text{if } \ell \neq w_k, \\ \pm 1 & \text{if } \ell = w_k \end{cases} \text{ for all } k, \ell \in \mathbb{N}^*,$$

and we call \underline{v} w-conjugate if in addition to (33)

$$\gamma(v_k) = \pm v_{w_k}$$
 for all $k \in \mathbb{N}^*$.

Set $\mathcal{O}_w := \{\mathcal{F}_\sigma(\underline{v}) : \underline{v} \text{ is } w\text{-dual}\}$ and $\mathfrak{O}_w := \{\mathcal{F}_\sigma(\underline{v}) : \underline{v} \text{ is } w\text{-conjugate}\}$, so that \mathcal{O}_w and \mathfrak{O}_w are subsets of the ind-variety $\mathbf{X}(\mathcal{F}_\sigma, E)$.

Notation. (a) We use the abbreviation $\mathbf{X} := \mathbf{X}(\mathcal{F}_{\sigma}, E)$. (b) If \mathcal{F} is a generalized flag weakly compatible with E, then $\mathcal{F}^{\perp} := \{F^{\perp} : F \in \mathcal{F}\}$ is also a generalized flag weakly compatible with E.

Let (A^*, \prec^*) be the totally ordered set given by $A^* = A$ as a set and $a \prec^* a'$ whenever $a \succ a'$. Let $\sigma^{\perp} : \mathbb{N}^* \to (A^*, \prec^*)$ be defined by $\sigma^{\perp}(\ell) = \sigma(\ell^*)$. Then we have $\mathcal{F}_{\sigma}^{\perp} = \mathcal{F}_{\sigma^{\perp}}$. Note that \mathcal{F}^{\perp} is *E*-commensurable with $\mathcal{F}_{\sigma^{\perp}}$ whenever \mathcal{F} is *E*-commensurable with \mathcal{F}_{σ} . Hence the map

$$\mathbf{X} \to \mathbf{X}^{\perp} := \mathbf{X}(\mathcal{F}_{\sigma^{\perp}}, E), \ \mathcal{F} \mapsto \mathcal{F}^{\perp}$$

is well defined. We use the abbreviation $\mathbf{O}_w^{\perp} := (\mathbf{O}_{\sigma^{\perp},\sigma})_w$ for all $w \in \mathfrak{S}_{\infty}$. (c) We further note that $\gamma(\mathcal{F}_{\sigma}) = \mathcal{F}_{\sigma^{\circ\iota}}$ and that $\gamma(\mathcal{F}) \in \mathbf{X}^{\gamma} := \mathbf{X}(\mathcal{F}_{\sigma^{\circ\iota}}, E)$ whenever $\mathcal{F} \in \mathbf{X}$. We abbreviate $\mathbf{O}_w^{\gamma} := (\mathbf{O}_{\sigma^{\circ\iota},\sigma})_w$ for all $w \in \mathfrak{S}_{\infty}$.

Thus
$$\mathbf{X}^{\perp} \times \mathbf{X} = \bigsqcup_{w \in \mathfrak{S}_{\infty}} \mathbf{O}_{w}^{\perp}$$
 and $\mathbf{X}^{\gamma} \times \mathbf{X} = \bigsqcup_{w \in \mathfrak{S}_{\infty}} \mathbf{O}_{w}^{\gamma}$ (see Proposition 2).

Proposition 7. Let $\mathfrak{I}^{\epsilon}_{\infty}(\iota) = \mathfrak{I}_{\infty}(\iota)$ in type A1 and $\mathfrak{I}^{\epsilon}_{\infty}(\iota) = \mathfrak{I}'_{\infty}(\iota)$ in type A2.

23

LUCAS FRESSE AND IVAN PENKOV

(a) For every $w \in \mathfrak{I}_{\infty}^{\epsilon}(\iota)$,

 $\mathcal{O}_w \cap \mathfrak{O}_w = \{\mathcal{F}_\sigma(\underline{v}) : \underline{v} \text{ is } w\text{-dual and } w\text{-conjugate}\} \neq \emptyset.$

- (b) For every $w \in \mathfrak{I}^{\epsilon}_{\infty}(\iota)$,
- $\mathcal{O}_w = \{ \mathcal{F} \in \mathbf{X} : (\mathcal{F}^{\perp}, \mathcal{F}) \in \mathbf{O}_{w\iota}^{\perp} \} \quad and \quad \mathfrak{O}_w = \{ \mathcal{F} \in \mathbf{X} : (\gamma(\mathcal{F}), \mathcal{F}) \in \mathbf{O}_{w\iota}^{\gamma} \}.$
- (c) The subsets \mathcal{O}_w (for $w \in \mathfrak{I}^{\epsilon}_{\infty}(\iota)$) are exactly the **K**-orbits of **X**. The subsets \mathfrak{O}_w (for $w \in \mathfrak{I}^{\epsilon}_{\infty}(\iota)$) are exactly the \mathbf{G}^0 -orbits of **X**. Moreover $\mathcal{O}_w \cap \mathfrak{O}_w$ is a single $\mathbf{K} \cap \mathbf{G}^0$ -orbit.

4.2. **Type A3.** The notation is as in Section 2.1.2. In particular, we fix a partition $\mathbb{N}^* = N_+ \sqcup N_-$ yielding Φ as in (3) and we consider the corresponding hermitian form ϕ and involution δ on **V**.

Let $\mathfrak{I}_{\infty}(N_+, N_-)$ be the set of pairs (w, ε) consisting of an involution $w : \mathbb{N}^* \to \mathbb{N}^*$ and a map $\varepsilon : \{\ell : w_\ell = \ell\} \to \{1, -1\}$ such that the subsets

$$N'_{\pm} = N'_{\pm}(w,\varepsilon) := \{\ell \in N_{\pm} : (w_{\ell},\varepsilon_{\ell}) = (\ell,\pm 1)\}$$

satisfy

$$|N_{\pm} \setminus N'_{\pm}| = |\{\ell \in N_{\mp} : (w_{\ell}, \varepsilon_{\ell}) = (\ell, \pm 1)\}| + \frac{1}{2}|\{\ell \in \mathbb{N}^* : w_{\ell} \neq \ell\}| < \infty.$$

In particular, $w \in \mathfrak{S}_{\infty}$.

Fix $\sigma : \mathbb{N}^* \to (A, \prec)$ a bijection onto a totally ordered set. We show in Proposition 8 that the **K**-orbits and the **G**⁰-orbits of the ind-variety $\mathbf{X} := \mathbf{X}(\mathcal{F}_{\sigma}, E)$ are parametrized by the elements of $\mathfrak{I}_{\infty}(N_+, N_-)$.

Definition 7. Let $(w, \varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-)$. A basis $\underline{v} = (v_1, v_2, \ldots)$ of **V** such that $v_{\ell} = e_{\ell}$ for all but finitely many $\ell \in \mathbb{N}^*$ is (w, ε) -conjugate if

$$\delta(v_k) = \begin{cases} v_{w_k} & \text{if } w_k \neq k, \\ \varepsilon_k v_k & \text{if } w_k = k \end{cases} \quad \text{for all } k \in \mathbb{N}^*,$$

and is (w, ε) -dual if

$$\phi(v_k, v_\ell) = \begin{cases} 0 & \text{if } \ell \neq w_k, \\ 1 & \text{if } \ell = w_k \neq k, \\ \varepsilon_k & \text{if } \ell = w_k = k \end{cases} \text{ for all } k, \ell \in \mathbb{N}^*.$$

Set $\mathcal{O}_{(w,\varepsilon)} := \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-conjugate}\}, \ \mathfrak{O}_{(w,\varepsilon)} := \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-dual}\}.$

Notation. (a) Note that every subspace in the generalized flag \mathcal{F}_{σ} is δ -stable, i.e., $\delta(\mathcal{F}_{\sigma}) = \mathcal{F}_{\sigma}$. The map $\mathbf{X} \to \mathbf{X}, \mathcal{F} \mapsto \delta(\mathcal{F})$ is well defined.

(b) Write $F^{\dagger} = \{x \in \mathbf{V} : \phi(x, y) = 0 \ \forall y \in F\}$ and $\mathcal{F}^{\dagger} := \{F^{\dagger} : F \in \mathcal{F}\}$, which is a generalized flag weakly compatible with E whenever \mathcal{F} is so.

As in Section 4.1 we write (A^*, \prec^*) for the totally ordered set such that $A^* = A$ and $a \prec^* a'$ whenever $a \succ a'$. It is readily seen that $\mathcal{F}_{\sigma}^{\dagger} = \mathcal{F}_{\sigma^{\dagger}}$ where $\sigma^{\dagger} : \mathbb{N}^* \to (A^*, \prec^*)$ is such that $\sigma^{\dagger}(\ell) = \sigma(\ell)$ for all $\ell \in \mathbb{N}^*$, and we get a well-defined map

$$\mathbf{X} \to \mathbf{X}^{\dagger} := \mathbf{X}(\mathcal{F}_{\sigma^{\dagger}}, E), \ \mathcal{F} \mapsto \mathcal{F}^{\dagger}.$$

(c) We write $\mathbf{O}_w := (\mathbf{O}_{\sigma,\sigma})_w$ and $\mathbf{O}_w^{\dagger} := (\mathbf{O}_{\sigma^{\dagger},\sigma})_w$ so that

$$\mathbf{X} imes \mathbf{X} = \bigsqcup_{w \in \mathfrak{S}_{\infty}} \mathbf{O}_w \quad ext{and} \quad \mathbf{X}^{\dagger} imes \mathbf{X} = \bigsqcup_{w \in \mathfrak{S}_{\infty}} \mathbf{O}_w^{\dagger}$$

(see Proposition 2).

24

Proposition 8. (a) For every $(w, \varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-)$ we have

 $\mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)} = \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-conjugate and } (w,\varepsilon) \text{-dual}\} \neq \emptyset.$

(b) Let $(w, \varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-)$ and $\mathcal{F} = \{F'_a, F''_a : a \in A\} \in \mathbf{X}$. Then $\mathcal{F} \in \mathcal{O}_{(w,\varepsilon)}$ (resp., $\mathcal{F} \in \mathfrak{O}_{(w,\varepsilon)}$) if and only if

$$(\delta(\mathcal{F}), \mathcal{F}) \in \mathbf{O}_w \quad (resp., \ (\mathcal{F}^{\dagger}, \mathcal{F}) \in \mathbf{O}_w^{\dagger})$$

and for all $\ell \in \mathbb{N}^*$ the following condition holds:

$$\dim F_{\sigma(\ell)}'' \cap \mathbf{V}_{\pm} / F_{\sigma(\ell)}' \cap \mathbf{V}_{\pm} = \begin{cases} 1 & \text{if } \sigma(w_{\ell}) \prec \sigma(\ell) \text{ or } (w_{\ell}, \varepsilon_{\ell}) = (\ell, \pm 1), \\ 0 & \text{otherwise} \end{cases}$$

where $\mathbf{V}_{\pm} = \langle e_{\ell} : \ell \in N_{\pm} \rangle_{\mathbb{C}}$ (resp., for $n \in \mathbb{N}^*$ large enough

$$\varsigma(\phi: F_{\sigma(\ell)}'' \cap V_n) = \varsigma(\phi: F_{\sigma(\ell)}' \cap V_n) + \begin{cases} (1,1) & \text{if } \sigma(w_\ell) \prec \sigma(\ell), \\ (1,0) & \text{if } (w_\ell, \varepsilon_\ell) = (\ell, 1), \\ (0,1) & \text{if } (w_\ell, \varepsilon_\ell) = (\ell, -1), \\ (0,0) & \text{if } \sigma(w_\ell) \succ \sigma(\ell), \end{cases}$$

where $V_n = \langle e_k : k \leq n \rangle_{\mathbb{C}}$ and $\varsigma(\phi : F)$ stands for the signature of ϕ on $F/F \cap F^{\dagger}$).

(c) The subsets $\mathcal{O}_{(w,\varepsilon)}$ $((w,\varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-))$ are exactly the **K**-orbits of **X**. The subsets $\mathfrak{O}_{(w,\varepsilon)}$ $((w,\varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-))$ are exactly the \mathbf{G}^0 -orbits of **X**. Moreover $\mathcal{O}_{(w,\varepsilon)} \cap \mathfrak{O}_{(w,\varepsilon)}$ is a single $\mathbf{K} \cap \mathbf{G}^0$ -orbit.

4.3. **Types B, C, D.** Assume that **V** is endowed with a nondegenerate symmetric or symplectic form ω , determined by a matrix Ω as in (2). Let $\iota : \mathbb{N}^* \to \mathbb{N}^*, \ell \mapsto \ell^*$ satisfy $\omega(e_{\ell}, e_{\ell^*}) \neq 0$ for all ℓ .

Let $\mathbb{N}^* = N_+ \sqcup N_-$ be a partition such that N_+, N_- are either both ι -stable or such that $\iota(N_+) = N_-$. As before, let ϕ and δ be the hermitian form and the involution of **V** corresponding to this partition. The following table summarizes the different cases.

	$\begin{array}{l} \omega \text{ symmetric} \\ \epsilon = 1 \end{array}$	$\begin{array}{l} \omega \text{ symplectic} \\ \epsilon = -1 \end{array}$
$\iota(N_{\pm}) \subset N_{\pm}$ $\eta = 1$	type BD1	type C2
$\iota(N_{\pm}) = N_{\mp}$ $\eta = -1$	type D3	type C1

Let $\mathfrak{I}^{\eta,\epsilon}_{\infty}(N_+,N_-) \subset \mathfrak{I}_{\infty}(N_+,N_-)$ be the subset of pairs (w,ε) such that

(i) $\iota w = w\iota$ (hence the set $\{\ell : w_\ell = \ell\}$ is ι -stable);

(ii)
$$\varepsilon_{\iota(k)} = \eta \varepsilon_k$$
 for all $k \in \{\ell : w_\ell = \ell\};$

and if $\eta \epsilon = -1$:

(iii) $w_k \neq \iota(k)$ for all $k \in \mathbb{N}^*$.

Let \mathcal{F}_{σ} be an ω -isotropic maximal generalized flag compatible with E. Thus $\sigma : \mathbb{N}^* \to (A, \prec)$ is a bijection onto a totally ordered set (A, \prec) endowed with an (involutive) antiautomorphism of ordered sets $\iota_A : (A, \prec) \to (A, \prec)$ such that $\sigma \iota = \iota_A \sigma$. The following statement shows that the **K**-orbits and the \mathbf{G}^0 -orbits of the ind-variety $\mathbf{X}_{\omega} := \mathbf{X}_{\omega}(\mathcal{F}_{\sigma}, E)$ are parametrized by the elements of the set $\mathfrak{I}_{\eta,\epsilon}^{\eta,\epsilon}(N_+, N_-)$.

Proposition 9. We consider bases $\underline{v} = (v_1, v_2, ...)$ of **V** such that (34) $\omega(v_k, v_\ell) \neq 0$ if and only if $\ell = \iota(k)$.

(a) For every $(w, \varepsilon) \in \mathfrak{I}_{\infty}^{\eta, \epsilon}(N_+, N_-)$ we have

$$\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} := \mathcal{O}_{(w,\varepsilon)} \cap \mathbf{X}_{\omega} = \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-conjugate and satisfies } (34)\} \neq \emptyset, \\ \mathcal{D}_{(w,\varepsilon)}^{\eta,\epsilon} := \mathcal{D}_{(w,\varepsilon)} \cap \mathbf{X}_{\omega} = \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-dual and satisfies } (34)\} \neq \emptyset,$$

$$\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \cap \mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} = \{\mathcal{F}_{\sigma}(\underline{v}) : \underline{v} \text{ is } (w,\varepsilon) \text{-conjugate, } (w,\varepsilon) \text{-dual and satisfies } (34)\} \neq \emptyset.$$

(b) The subsets $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ $((w,\varepsilon) \in \mathfrak{I}_{\infty}^{\eta,\epsilon}(N_+,N_-))$ are exactly the **K**-orbits of \mathbf{X}_{ω} . The subsets $\mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ $((w,\varepsilon) \in \mathfrak{I}_{\infty}^{\eta,\epsilon}(N_+,N_-))$ are exactly the \mathbf{G}^0 -orbits of \mathbf{X}_{ω} . Moreover $\mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \cap \mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon}$ is a single $\mathbf{K} \cap \mathbf{G}^0$ -orbit.

4.4. Ind-variety structure. In this section we recall from [4] the ind-variety structure on X and X_{ω} .

Recall that $E = (e_1, e_2, ...)$ is a countable ordered basis of **V**. Fix an *E*-compatible maximal generalized flag \mathcal{F}_{σ} corresponding to a bijection $\sigma : \mathbb{N}^* \to (A, \prec)$ onto a totally ordered set, and let $\mathbf{X} = \mathbf{X}(\mathcal{F}_{\sigma}, E)$.

Let $V_n := \langle e_1, \ldots, e_n \rangle_{\mathbb{C}}$ and let X_n denote the variety of complete flags of V_n defined as in (6). There are natural inclusions $V_n \subset V_{n+1}$, and

(35)
$$\operatorname{GL}(V_n) \cong \{g \in \operatorname{GL}(V_{n+1}) : g(V_n) = V_n, g(e_{n+1}) = e_{n+1}\} \subset \operatorname{GL}(V_{n+1}).$$

We define a $GL(V_n)$ -equivariant embedding

$$\iota_n = \iota_n(\sigma) : X_n \to X_{n+1}, \ (F_k)_{k=0}^n \mapsto (F'_k)_{k=0}^{n+1}$$

by letting

$$F'_k := \begin{cases} F_k & \text{if } a_k \prec \sigma(n+1) \\ F_{k-1} \oplus \langle e_{n+1} \rangle_{\mathbb{C}} & \text{if } a_k \succeq \sigma(n+1) \end{cases}$$

where $a_1 \prec a_2 \prec \ldots \prec a_{n+1}$ are the elements of the set $\{\sigma(\ell) : 1 \leq \ell \leq n+1\}$ written in increasing order. Therefore, we get a chain of embeddings (which are morphisms of algebraic varieties)

$$\cdots \hookrightarrow X_{n-1} \stackrel{\iota_{n-1}}{\hookrightarrow} X_n \stackrel{\iota_n}{\hookrightarrow} X_{n+1} \stackrel{\iota_{n+1}}{\hookrightarrow} \cdots,$$

and \mathbf{X} is obtained as the direct limit

$$\mathbf{X} = \mathbf{X}(\mathcal{F}_{\sigma}, E) = \lim_{\to} X_n.$$

In particular, for each n we get an embedding $\hat{\iota}_n : X_n \hookrightarrow \mathbf{X}$ and up to identifying X_n with its image by this embedding we can view \mathbf{X} as the union $\mathbf{X} = \bigcup_{n \ge 1} X_n$. Every generalized flag $\mathcal{F} \in \mathbf{X}$ belongs to all X_n after some rank $n_{\mathcal{F}}$. For instance $\mathcal{F}_{\sigma} \in X_n$ for all $n \ge 1$.

A basis $\underline{v} = (v_1, \ldots, v_n)$ of V_n can be completed into the basis of **V** denoted by $\underline{\hat{v}} := (v_1, \ldots, v_n, e_{n+1}, e_{n+2}, \ldots)$, and we have

(36)
$$\hat{\iota}_n(\mathcal{F}(v_{\tau_1},\ldots,v_{\tau_n})) = \mathcal{F}_{\sigma}(\underline{\hat{v}})$$

(using the notation of Sections 2.2–2.3) where $\tau = \tau^{(n)} \in \mathfrak{S}_n$ is the permutation such that $\sigma(\tau_1^{(n)}) \prec \ldots \prec \sigma(\tau_n^{(n)})$.

Recall that the ind-topology on \mathbf{X} is defined by declaring a subset $\mathbf{Z} \subset \mathbf{X}$ open (resp., closed) if every intersection $\mathbf{Z} \cap X_n$ is open (resp., closed).

Clearly the ind-variety structure on **X** is not modified if the sequence $(X_n, \iota_n)_{n\geq 1}$ is replaced by a subsequence $(X_{n_k}, \iota'_k)_{k\geq 1}$ where $\iota'_k := \iota_{n_{k+1}-1} \circ \cdots \circ \iota_{n_k}$. In type A3 (using the notation of Section 2.1) the subspace $V_n \subset \mathbf{V}$ is endowed with the restrictions of ϕ and δ , hence we can define $K_n, G_n^0 \subset \operatorname{GL}(V_n)$ as in Section 3.2, with the condition that the inclusion of (35) restricts to natural inclusions $K_n \subset K_{n+1}$ and $G_n^0 \subset G_{n+1}^0$.

Next assume that the space \mathbf{V} is endowed with a nondegenerate symmetric or symplectic form ω determined by the matrix Ω of (2). The blocks J_1, J_2, \ldots in the matrix Ω are of size 1 or 2. We set $n_k := |J_1| + \ldots + |J_k|$ so that the restriction of ω to each subspace V_{n_k} is nondegenerate. Hence in types A1, A2, BD1, C1, C2, and D3 we can define the subgroups $K_{n_k}, G_{n_k}^0 \subset \operatorname{GL}(V_{n_k})$ as in Section 3, and so that (35) yields natural inclusions

$$K_{n_k} \subset K_{n_{k+1}}$$
 and $G_{n_k}^0 \subset G_{n_{k+1}}^0$.

Moreover, the subvariety $(X_{n_k})_{\omega} \subset X_{n_k}$ of isotropic flags (with respect to ω) can be defined as in (7). Assuming that the generalized flag \mathcal{F}_{σ} is ω -isotropic, the embedding $\iota'_k : X_{n_k} \hookrightarrow X_{n_{k+1}}$ maps $(X_{n_k})_{\omega}$ into $(X_{n_{k+1}})_{\omega}$ and we have

$$\mathbf{X}_{\omega} = \mathbf{X}_{\omega}(\mathcal{F}_{\sigma}, E) = \bigcup_{k \ge 1} (X_{n_k})_{\omega} \quad \text{and} \quad (X_{n_k})_{\omega} = \mathbf{X}_{\omega} \cap X_{n_k} \text{ for all } k \ge 1.$$

In particular, \mathbf{X}_{ω} is a closed ind-subvariety of \mathbf{X} (as stated in Proposition 3).

4.5. **Proofs.**

Proof of Proposition 7. Let $\mathcal{F} = \{F'_a, F''_a : a \in A\} = \mathcal{F}_{\sigma}(\underline{v})$ for a basis $\underline{v} = (v_1, v_2, \ldots)$ of **V**. Let $w \in \mathfrak{I}^{\epsilon}_{\infty}(\iota)$. If the basis \underline{v} is w-dual, then

$$(F'_a)^{\perp} = \langle v_\ell : \sigma(w_\ell) \succeq a \rangle_{\mathbb{C}} \text{ and } (F''_a)^{\perp} = \langle v_\ell : \sigma(w_\ell) \succ a \rangle_{\mathbb{C}},$$

hence $\mathcal{F}^{\perp} = \mathcal{F}_{\sigma^{\perp}\iota w}(\underline{v})$; this yields $(\mathcal{F}^{\perp}, \mathcal{F}) \in \mathbf{O}_{w\iota}^{\perp}$. If \underline{v} is w-conjugate, then

$$\gamma(F'_a) = \langle v_\ell : \sigma(w_\ell) \prec a \rangle_{\mathbb{C}} \text{ and } \gamma(F''_a) = \langle v_\ell : \sigma(w_\ell) \preceq a \rangle_{\mathbb{C}},$$

whence $\gamma(\mathcal{F}) = \mathcal{F}_{\sigma w}(\underline{v})$ and $(\gamma(\mathcal{F}), \mathcal{F}) \in \mathbf{O}_{wv}^{\gamma}$. This proves the inclusions \subset in Proposition 7 (b). Note that these inclusions imply in particular that the subsets \mathcal{O}_w , as well as \mathfrak{O}_w , are pairwise disjoint.

For $w \in \mathfrak{I}_{n_k}^{\epsilon}$ we define $\hat{w} : \mathbb{N}^* \to \mathbb{N}^*$ by letting

$$\hat{w}(\ell) = \begin{cases} \tau w \tau^{-1}(\ell) & \text{if } \ell \le n_k, \\ \iota(\ell) & \text{if } \ell \ge n_k + 1 \end{cases}$$

where $\tau = \tau^{(n_k)} : \{1, \ldots, n_k\} \to \{1, \ldots, n_k\}$ is the permutation such that $\sigma(\tau_1) \prec \ldots \prec \sigma(\tau_{n_k})$. It is easy to see that we obtain a well-defined (injective) map $j_k : \mathfrak{I}_{n_k}^{\epsilon} \to \mathfrak{I}_{\infty}^{\epsilon}(\iota), j_k(w) := \hat{w}$, and

(37)
$$\mathfrak{I}^{\epsilon}_{\infty}(\iota) = \bigcup_{k \ge 1} j_k(\mathfrak{I}^{\epsilon}_{n_k}).$$

Moreover, given a basis $\underline{v} = (v_1, \ldots, v_{n_k})$ of V_{n_k} and the basis $\underline{\hat{v}}$ of **V** obtained by adding the vectors e_{ℓ} for $\ell \ge n_k + 1$, the implication

(38)
$$(v_{\tau_1}, \dots, v_{\tau_{n_k}})$$
 is *w*-dual (resp., *w*-conjugate)
 $\Rightarrow \underline{\hat{v}}$ is \hat{w} -dual (resp., \hat{w} -conjugate)

clearly follows from our constructions. Note that

(39)
$$\mathcal{O}_{\hat{w}} \cap X_{n_k} = \mathcal{O}_w \text{ and } \mathfrak{O}_{\hat{w}} \cap X_{n_k} = \mathfrak{O}_w$$

where $\mathcal{O}_w, \mathfrak{O}_w \subset X_{n_k}$ are the orbits from Definition 4; indeed, the inclusions \supset in (39) are implied by (36) and (38), whereas the inclusions \subset follow from Proposition 4 (c) and the fact that the subsets $\mathcal{O}_{\hat{w}}$, as well as $\mathfrak{O}_{\hat{w}}$, are pairwise disjoint. Parts (a) and (c) of Proposition 7 now follow from (37)–(39) and Proposition 4 (a), (c). By Proposition 7 (a) we deduce that equalities hold in Proposition 7 (b), and the proof is complete.

Proof of Proposition 8. For every $n \ge 1$ we set $p_n = |N_+ \cap \{1, \ldots, n\}|$ and $q_n = |N_- \cap \{1, \ldots, n\}|$.

Let $\mathcal{F} = \{F'_a, F''_a : a \in A\} = \mathcal{F}_{\sigma}(\underline{v})$ for some basis $\underline{v} = (v_1, v_2, \ldots)$ of **V**. Let $(w, \varepsilon) \in \mathfrak{I}_{\infty}(N_+, N_-)$. If \underline{v} is (w, ε) -conjugate, then

$$\delta(F'_a) = \langle v_\ell : \sigma(w_\ell) \prec a \rangle_{\mathbb{C}} \quad \text{and} \quad \delta(F''_a) = \langle v_\ell : \sigma(w_\ell) \preceq a \rangle_{\mathbb{C}}$$

so that $(\delta(\mathcal{F}), \mathcal{F}) = (\mathcal{F}_{\sigma w}(\underline{v}), \mathcal{F}_{\sigma}(\underline{v})) \in \mathbf{O}_w$. In addition,

$$\begin{cases} F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{+} / F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{+} = \langle v_{\ell} \rangle_{\mathbb{C}}, F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{-} = F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{-} & \text{if } (w_{\ell}, \varepsilon_{\ell}) = (\ell, +1), \\ F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{-} / F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{-} = \langle v_{\ell} \rangle_{\mathbb{C}}, F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{+} = F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{+} & \text{if } (w_{\ell}, \varepsilon_{\ell}) = (\ell, -1), \\ F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{+} / F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{+} = \langle v_{\ell} + v_{w_{\ell}} \rangle_{\mathbb{C}}, \\ F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{-} / F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{-} = \langle v_{\ell} - v_{w_{\ell}} \rangle_{\mathbb{C}} & \text{if } \sigma(w_{\ell}) \prec \sigma(\ell), \\ F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{+} = F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{+}, F_{\sigma(\ell)}^{\prime\prime} \cap \mathbf{V}_{+} = F_{\sigma(\ell)}^{\prime} \cap \mathbf{V}_{+} & \text{if } \sigma(w_{\ell}) \succ \sigma(\ell), \end{cases}$$

which proves the formula for dim $F''_{\sigma(\ell)} \cap \mathbf{V}_{\pm}/F'_{\sigma(\ell)} \cap \mathbf{V}_{\pm}$ stated in Proposition 8 (b). If \underline{v} is (w, ε) -dual, then we get similarly

$$(F'_a)^{\dagger} = \langle v_{\ell} : \sigma(w_{\ell}) \succeq a \rangle_{\mathbb{C}} \text{ and } (F''_a)^{\dagger} = \langle v_{\ell} : \sigma(w_{\ell}) \succ a \rangle_{\mathbb{C}}.$$

Hence $(\mathcal{F}^{\dagger}, \mathcal{F}) = (\mathcal{F}_{\sigma^{\dagger}w}(\underline{v}), \mathcal{F}_{\sigma}(\underline{v})) \in \mathbf{O}_{w}^{\dagger}$. For $n \geq 1$ large enough we have $(w_{\ell}, \varepsilon_{\ell}) = (\ell, \pm 1)$ for all $\ell \in N_{\pm} \cap \{n+1, n+2, \ldots\}$ and $v_{\ell} = e_{\ell}$ for all $\ell \geq n+1$. Thus the pair $(\check{w}, \check{\varepsilon}) := (w|_{\{1,\ldots,n\}}, \varepsilon|_{\{1,\ldots,n\}})$ belongs to $\mathfrak{I}_{n}(p_{n}, q_{n})$ whereas by (36) we have

$$\mathcal{F}=\mathcal{F}(v_{\tau_1},\ldots,v_{\tau_n}).$$

The basis $(v_{\tau_1}, \ldots, v_{\tau_n})$ of V_n is $(\tau^{-1}\check{w}\tau, \check{\varepsilon}\tau)$ -dual if \underline{v} is (w, ε) -dual; the last formula in Proposition 8 (b) now follows from Proposition 5 (b) and this observation. Altogether this shows the "only if" part in Proposition 8 (b), which guarantees in particular that the subsets $\mathcal{O}_{(w,\varepsilon)}$, as well as the subsets $\mathfrak{O}_{(w,\varepsilon)}$, are pairwise disjoint. The "if" part of Proposition 8 (b) follows once we show Proposition 8 (a).

For $(w, \varepsilon) \in \mathfrak{I}_n(p_n, q_n)$ we set

(40)
$$\hat{w}(\ell) = \begin{cases} \tau w \tau^{-1}(\ell) & \text{if } \ell \le n, \\ \ell & \text{if } \ell \ge n+1 \end{cases} \text{ for all } \ell \in \mathbb{N}^*,$$

where $\tau = \tau^{(n)} \in \mathfrak{S}_n$ is as in (36), and

(41)
$$\hat{\varepsilon}(\ell) = \begin{cases} \varepsilon \tau^{-1}(\ell) & \text{if } \ell \le n, \\ 1 & \text{if } \ell \ge n+1, \, n \in N_+, \\ -1 & \text{if } \ell \ge n+1, \, n \in N_- \end{cases}$$

for all $\ell \in \mathbb{N}^*$ such that $\hat{w}_{\ell} = \ell$. It is easy to check that $(\hat{w}, \hat{\varepsilon}) \in \mathfrak{I}_{\infty}(N_+, N_-)$, and that the so obtained map $j_n : \mathfrak{I}_n(p_n, q_n) \to \mathfrak{I}_{\infty}(N_+, N_-)$ is injective and

$$\mathfrak{I}_{\infty}(N_+, N_-) = \bigcup_{n \ge 1} j_n(\mathfrak{I}_n(p_n, q_n)).$$

Moreover, it follows from our constructions that, given a basis $\underline{v} = (v_1, \ldots, v_n)$ of V_n and the basis $\underline{\hat{v}}$ of **V** obtained by adding the vectors e_ℓ for $\ell \ge n+1$, we have:

$$(v_{\tau_1}, \dots, v_{\tau_n})$$
 is (w, ε) -conjugate (resp., dual)
 $\Rightarrow \underline{\hat{v}}$ is $(\hat{w}, \hat{\varepsilon})$ -conjugate (resp., dual).

As in the proof of Proposition 7 we derive the equalities

(42)
$$\mathcal{O}_{(\hat{w},\hat{\varepsilon})} \cap X_n = \mathcal{O}_{(w,\varepsilon)} \text{ and } \mathfrak{O}_{(\hat{w},\hat{\varepsilon})} \cap X_n = \mathfrak{O}_{(w,\varepsilon)}$$

where $\mathcal{O}_{(w,\varepsilon)}, \mathfrak{O}_{(w,\varepsilon)} \subset X_n$ are as in Definition 5. Parts (a) and (c) of Proposition 8 then follow from Proposition 5 (a) and (c).

Proof of Proposition 9. Let $n \in \{n_1, n_2, \ldots\}$ (where $n_k = |J_1| + \ldots + |J_k|$ as before) and $(p_n, q_n) = (|N_+ \cap \{1, \ldots, n\}|, |N_- \cap \{1, \ldots, n\}|)$ and let $\tau = \tau^{(n)} : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ be the permutation such that $\sigma(\tau_1) \prec \ldots \prec \sigma(\tau_n)$. Since the generalized flag \mathcal{F}_{σ} is ω -isotropic, we must have

$$\iota(\tau_{\ell}) = \tau_{n-\ell+1} \quad \text{for all } \ell \in \{1, \dots, n\}$$

This observation easily implies that the map j_n defined in the proof of Proposition 8 restricts to a well-defined injective map

$$j_n: \mathfrak{I}_n^{\eta,\epsilon}(p_n, q_n) \to \mathfrak{I}_\infty^{\eta,\epsilon}(N_+, N_-)$$

such that

$$\mathfrak{I}^{\eta,\epsilon}_{\infty}(N_+,N_-) = \bigcup_{k \ge 1} j_{n_k}(\mathfrak{I}^{\eta,\epsilon}_{n_k}(p_{n_k},q_{n_k})).$$

By (42) for $(\hat{w}, \hat{\varepsilon}) = j_n(w, \varepsilon)$ we get

(43)
$$\mathcal{O}_{(\hat{w},\hat{\varepsilon})}^{\eta,\epsilon} \cap (X_n)_{\omega} = \mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon} \text{ and } \mathcal{D}_{(\hat{w},\hat{\varepsilon})}^{\eta,\epsilon} \cap (X_n)_{\omega} = \mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}$$

Proposition 9 easily follows from this fact and Proposition 6.

5. Corollaries

Corollary 1. The duality map Ξ from Theorem 1(b) depends only on the choice of **G**, **B**, **K** and **G**⁰, but not on the particular choice of ordered basis E used to construct **G**, **B**, **K**, and **G**⁰ as above. In particular, Ξ does not depend on the exhaustion $\mathbf{X} = \bigcup_{n>1} X_n$ determined by E and referred to in Theorem 1(b).

Proof. The statement follows immediately from the commutativity of diagram (1) and from the observation that for any two exhaustions $\mathbf{X} = \bigcup_{n \ge 1} X_n$ and $\mathbf{X} = \bigcup_{n \ge 1} X'_n$, and any n_0 and n'_0 , there are n_1 and n'_1 such that $X_{n_0} \cup X'_{n'_0} \subset X_{n_1}$ and $X_{n_0} \cup X'_{n'_0} \subset X'_{n'_1}$.

Our second corollary states that the parametrization of \mathbf{K} - and \mathbf{G}^{0} -orbits on \mathbf{G}/\mathbf{B} depends in fact only on the triple $(\mathbf{G}, \mathbf{K}, \mathbf{G}^{0})$ and not on the choice of the ind-variety \mathbf{G}/\mathbf{B} .

Corollary 2. Let $E, \mathbf{G}, \mathbf{K}, \mathbf{G}^0$ be as in Section 2.1. Let \mathcal{F}_{σ_j} (j = 1, 2) be two *E*-compatible maximal generalized flags, which are ω -isotropic in types *B*,*C*,*D*, and let $\mathbf{X}_j = \mathbf{G}/\mathbf{B}_{\mathcal{F}_{\sigma_j}}$. Then there are natural bijections

$$\mathbf{X}_1/\mathbf{K}\cong \mathbf{X}_2/\mathbf{K}$$
 and $\mathbf{X}_1/\mathbf{G}^0\cong \mathbf{X}_2/\mathbf{G}^0$

which commute with the duality of Theorem 1.

Next, a straightforward counting of the parameters yields:

Corollary 3. In Corollary 2 the orbit sets \mathbf{X}_j/\mathbf{K} and $\mathbf{X}_j/\mathbf{G}^0$ are always infinite.

It is important to note that, despite Corollary 2, the topological properties of the orbits on \mathbf{G}/\mathbf{B} are not the same for different choices of Borel ind-subgroups $\mathbf{B} \subset \mathbf{G}$. The following corollary establishes criteria for the existence of open and closed orbits on $\mathbf{G}/\mathbf{B} = \mathbf{X} (\mathcal{F}_{\sigma}, E)$.

Corollary 4. Let $E, \mathbf{G}, \mathbf{K}, \mathbf{G}^0$ be as in Section 2.1, and let \mathcal{F}_{σ} be an E-compatible maximal generalized flag, ω -isotropic in types B, C, D, where $\sigma : \mathbb{N}^* \to (A, \prec)$ is a bijection onto a totally ordered set. Let $\mathbf{X} = \mathbf{G}/\mathbf{B}_{\mathcal{F}_{\sigma}}$; i.e., $\mathbf{X} = \mathbf{X}(\mathcal{F}_{\sigma}, E)$ in type A and $\mathbf{X} = \mathbf{X}_{\omega}(\mathcal{F}_{\sigma}, E)$ in types B, C, D.

- (a₁) In type A1, **X** has an open **K**-orbit (equivalently, a closed \mathbf{G}^{0} -orbit) if and only if $\iota(\ell) = \ell$ for all $\ell \gg 1$ (i.e., if the matrix Ω of (2) contains finitely many diagonal blocks of size 2).
- (a₂) In type A2, **X** has an open **K**-orbit (equivalently, a closed **G**⁰-orbit) if and only if for all $\ell \gg 1$ the elements $\sigma(2\ell - 1), \sigma(2\ell)$ are consecutive in A and the number $|\{k < 2\ell - 1 : \sigma(k) \prec \sigma(2\ell - 1)\}|$ is even.
- (a'_{12}) In types A1 and A2, **X** has at most one closed **K**-orbit (equivalently, at most one open \mathbf{G}^0 -orbit). **X** has a closed **K**-orbit (equivalently, an open \mathbf{G}^0 -orbit) if and only if **X** contains ω -isotropic generalized flags. This latter condition is equivalent to the existence of an involutive antiautomorphism of ordered sets $\iota_A : (A, \prec) \to (A, \prec)$ such that $\iota_A \sigma(\ell) = \sigma\iota(\ell)$ for all $\ell \gg 1$.
- (a₃) In type A3, **X** has always infinitely many closed **K**-orbits (equivalently, infinitely many open \mathbf{G}^0 -orbits). **X** has an open **K**-orbit (equivalently, a closed \mathbf{G}^0 -orbit) if and only if $d := \min\{|N_+|, |N_-|\} < \infty$ and \mathcal{F}_{σ} contains a d-dimensional and a d-codimensional subspace.
- (bcd) In types B,C,D, X has always infinitely many closed K-orbits (equivalently, infinitely many open G⁰-orbits). In types C1 and D3, X has never an open K-orbit (equivalently, no closed G⁰-orbit). In types BD1 and C2, X has an open K-orbit (equivalently, a closed G⁰-orbit) if and only if d := min{|N₊|, |N₋|} < ∞ and F_σ contains a d-dimensional subspace (or equivalently it has a d-codimensional subspace).

Proof. This follows from Remarks 4 and 5, Propositions 7, 8, 9, and relations (39), (42), (43). \Box

Corollary 5. The only situation where **X** has simultaneously open and closed **K**-orbits (equivalently, open and closed \mathbf{G}^0 -orbits) is in types A3, BD1, C2, in the case where $d := \min\{|N_+|, |N_-|\} < \infty$ and \mathcal{F}_{σ} contains a d-dimensional and a d-codimensional subspace.

INDEX OF NOTATION

§1: \mathbb{N}^* , |A|, \mathfrak{S}_n , \mathfrak{S}_∞ , $(k; \ell)$ §2.1: $\mathbf{G}(E)$, $\mathbf{G}(E, \omega)$, Ω , ω , γ , Φ , ϕ , δ §2.2: $\mathcal{F}(v_1, \ldots, v_n)$, \mathbb{O}_w §2.3: $\mathcal{F}_{\sigma}(\underline{v})$, \mathcal{F}_{σ} , $\mathbf{P}_{\mathcal{F}}$, $\mathbf{B}_{\mathcal{F}}$, $\mathbf{X}(\mathcal{F}, E)$, $(\mathbf{O}_{\tau,\sigma})_w$, $\mathbf{X}_{\omega}(\mathcal{F}, E)$ §3.1: \mathcal{F}^{\perp} , $\gamma(\mathcal{F})$, \mathfrak{I}_n , \mathfrak{I}'_n , \mathcal{O}_w , \mathfrak{O}_w

$$\begin{split} & \{3.2: \ \delta(\mathcal{F}), \ \mathcal{F}^{\dagger}, \ \varsigma(\phi : \mathcal{F}), \ \varsigma(\delta : \mathcal{F}), \ \varsigma(w, \varepsilon), \ \mathfrak{I}_{n}(p, q), \ \mathcal{O}_{(w,\varepsilon)}, \ \mathfrak{O}_{(w,\varepsilon)} \\ & \{3.3: \ \mathfrak{I}_{n}^{\eta,\epsilon}(p, q), \ \mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}, \ \mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} \\ & \{4.1: \ \iota, \ \mathfrak{I}_{\infty}(\iota), \ \mathfrak{I}_{\infty}'(\iota), \ \mathcal{O}_{w}, \ \mathfrak{O}_{w}, \ \mathfrak{O}_{w}, \ (A^{*}, \prec^{*}), \ \sigma^{\perp}, \ \mathbf{X}^{\perp}, \ \mathbf{X}^{\gamma}, \ \mathbf{O}_{w}^{\perp}, \ \mathbf{O}_{w}^{\gamma} \\ & \{4.2: \ \mathfrak{I}_{\infty}(N_{+}, N_{-}), \ \mathcal{O}_{(w,\varepsilon)}, \ \mathfrak{O}_{(w,\varepsilon)}, \ \sigma^{\dagger}, \ \mathbf{X}^{\dagger}, \ \mathbf{O}_{w}, \ \mathbf{O}_{w}^{\dagger} \\ & \{4.3: \ \mathfrak{I}_{\infty}^{\eta,\epsilon}(N_{+}, N_{-}), \ \mathcal{O}_{(w,\varepsilon)}^{\eta,\epsilon}, \ \mathfrak{O}_{(w,\varepsilon)}^{\eta,\epsilon} \end{split}$$

References

- [1] A. A. Baranov: Finitary simple Lie algebras. J. Algebra 219 (1999), 299–329.
- [2] M. Berger: Les espaces symétriques non compacts. Ann. Sci. École Norm. Sup. 74 (1957) 85–177.
- M. Brion and G. Helminck: On orbit closures of symmetric subgroups in flag varities. Canad. J. Math. 52 (2000), 265–292.
- [4] I. Dimitrov and I. Penkov: Ind-varieties of generalized flags as homogeneous spaces for classical ind-groups. Int. Math. Res. Not. 2004 (2004), 2935–2953.
- [5] L. Fresse and I. Penkov: Schubert decompositions for ind-varieties of generalized flags. Asian J. Math., to appear.
- [6] S. Gindikin and T. Matsuki: Stein extensions of Riemannian symmetric spaces and dualities of orbits on flag manifolds. Transform. Groups 8 (2003), 333–376.
- [7] G. Fels, A. Huckleberry, and J. A. Wolf: Cycle spaces of flag domains. A complex geometric viewpoint. Progr. Math., vol. 245, Birkhäuser, Boston, MA, 2006.
- [8] M. V. Ignatyev and I. Penkov: Ind-varieties of generalized flags: a survey of results. Preprint (2016).
- M. V. Ignatyev, I. Penkov, and J. A. Wolf: Real group orbits on flag ind-varieties of SL(∞, C). In: Lie Theory and Its Applications in Physics, pp. 111–135. Springer Proc. Math. Stat., vol. 191, Springer, Singapore, 2016.
- [10] J. C. Jantzen: Nilpotent orbits in representation theory. Lie theory, 1–211, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004.
- [11] T. Matsuki: The orbits of affine symetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan. 31 (1979) 331–357.
- [12] T. Matsuki: Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits. Hiroshima Math. J. 18 (1988) 59–67.
- [13] T. Matsuki and T. Oshima: Embeddings of discrete series into principal series. In: The orbit method in representation theory (Copenhagen, 1988), pp. 147–175. Progr. Math., vol. 82, Birkhäuser, Boston, MA, 1990.
- [14] K. Nishiyama: Enhanced orbit embedding. Comment. Math. Univ. St. Pauli 63 (2014), 223– 232.
- [15] A. L. Onishchik and È. B. Vinberg: Lie groups and algebraic groups. Translated from the Russian and with a preface by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.
- [16] T. Ohta: The closures of nilpotent orbits in the classical symmetric pairs and their singularities. Tohoku Math. J. 43 (1991), 161–211.
- [17] T. Ohta: An inclusion between sets of orbits and surjectivity of the restriction map of rings of invariants. Hokkaido Math. J. 37 (2008), 437–454.
- [18] R. W. Richardson and T. A. Springer: The Bruhat order on symmetric varieties. Geom. Dedicata 35 (1990), 389–436.
- [19] J. A. Wolf: The action of a real semisimple Lie group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Amer. Math. Soc. 75 (1969), 1121–1237.
- [20] J. A. Wolf: Cycle spaces of infinite dimensional flag domains. Annals of Global Analysis and Geometry 50 (2016), 315–346.
- [21] A. Yamamoto: Orbits in the flag variety and images of the moment map for classical groups I. Represent. Theory 1 (1997), 329–404.

UNIVERSITÉ DE LORRAINE, CNRS, INSTITUT ÉLIE CARTAN DE LORRAINE, UMR 7502, VAN-DOEUVRE-LÈS-NANCY, F-54506 FRANCE *E-mail address:* lucas.fresse@univ-lorraine.fr

JACOBS UNIVERSITY BREMEN, CAMPUS RING 1, 28759 BREMEN, GERMANY *E-mail address*: i.penkov@jacobs-university.de

32