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Abstract

Let F be a generalized flag as defined in [2]. We wish to study the automor-
phism group AutFℓ(F,E) of the ind-variety of generalized flags Fℓ(F,E)
of which F is a point. In this thesis we describe this automorphism group
in the cases when F consists only of subspaces of finite dimension or finite
codimension.



Contents

1 Introduction 2

2 Preliminaries 2

3 Two special cases 4

4 Finite Version 6

5 Infinite Version 10

6 Conclusion and further questions 16

1



1 Introduction

The study of flag varieties is a classical topic in complex geometry. In this
thesis we recall the automorphism groups of classical complex flag varieties
and then we study the automorphism groups of certain flag ind-varieties.

The simplest type of a flag variety, the Grassmannian, has been previously
studied by Chow in [1].

The automorphism group of a finite-dimensional flag variety has been
determined in [6]. This automorphism group is PGL(V ) (where V is the
complex vector space spanned by the flags in the flag variety) in the general
case, and is a group containing PGL(V ) as a normal subgroup of index 2
when the flag is ’symmetric’. We shall reprove this result in section 4.

In section 5 we generalize these results by replacing the assumption of
the finite dimension of V by countable dimension. In that case we define the
notion of a generalized flag and consider the respective ind-varieties following
[2]. We then determine a flag ind-variety’s automorphism group when all of
the flag’s components are either finite dimensional or cofinite dimensional.

In section 3 we briefly consider two specific ind-flag varieties whose auto-
morphism groups have been determined in [4], and prove that they are not
isomorphic as groups.

2 Preliminaries

In this section we introduce the necessary definitions and constructions fol-
lowing [3]. We assume that some general facts of algebraic geometry are
known.

The base field we will be working over is the field C of complex numbers.
Unless otherwise stated, V is a countable-dimensional complex vector space,
E := {e1, e2, . . . , en, . . . } is a fixed basis of V , Vn := Span{e1, e2, . . . , en},
E∗ := {e∗1, e∗2, . . . , e∗n, . . . } where e∗i (ej) := δi,j (δi,j is Kronecker’s delta), and
V∗ := Span{e∗1, e∗2, . . . , e∗n, . . . } ⊂ V ∗ . Furthermore, in what follows we will
use the identification V∗∗ = V given by (e∗i )

∗ = ei.

Definition 2.1. Let X1 ↪→ X2 ↪→ · · · ↪→ Xn ↪→ · · · be a chain of closed
embeddings of algebraic varieties. We call the direct limit X = lim−→Xn an
ind-variety. A morphism of ind-varieties ϕ : X → Y is a set of morphisms
ϕn : Xn → YM(n) (for some M(n)) that commute with the embeddings. An
isomorphism of ind-varieties is a morphism that admits an inverse. We say
that U ⊂ X is open if U ∩Xn is open in Xn for each n ≥ 1. Furthermore, we
define the structure sheaf to be OX = lim←−OXn where · · · → OXn → · · · →
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OX2 → OX1 is the projective system induced by the chain of embeddings
X1 ↪→ X2 ↪→ · · · ↪→ Xn ↪→ . . . .

Example 2.2. Consider the chain

GL(V1) ⊂ GL(V2) ⊂ · · · ⊂ GL(Vn) ⊂

where the inclusion ιn : GL(Vn) ⊂ GL(Vn+1) is given by ιn(g)(v) = g(v) for
v ∈ Vn and ιn(g)(en+1) = en+1. Then the ind-variety GL(E, V ) = lim−→GL(Vn)
is well-defined. Note that the elements of GL(E, V ) are invertible linear
operators on V that act as identity on almost all elements of E.

Next we define a generalized flag and its corresponding ind-variety.
Let F = {Cα}α∈I be a chain of pairwise distinct subspaces of V ordered

by inclusion. Denote by F ′ (respectively F ′′) the set of elements of F that
have an immediate successor (respectively predecessor). Also denote by F †

the set of pairs (C ′, C ′′) such that C ′′ is the immediate successor of C ′ in F .

Definition 2.3. A generalized flag is a chain of subspaces F such that F =
F ′ ∪ F ′′ and

V \ {0} =
⋃

(C′,C′′)∈F †

C ′′ \ C ′.

Note that if we let V be finite dimensional then the notion of generalized
flag coincides with that of usual flag.

Definition 2.4. Let F be a generalized flag as above. We say that F is
E-compatible if for every i ∈ I we have Ci = SpanEi for some Ei ⊂ E.

A basic result in [3] proves that any generalized flag F admits a basis E
such that F is E-compatible.

In the classical setting where dimV <∞, we can define a flag variety as
Fℓ(F, V ) = {(U1, U2, . . . , U|I|) ∈

∏
i∈I Gr(dimCi, V ) | Ui ⊂ Ui+1}. The auto-

morphism groups of such classical flag varieties will be discussed in section 4.
Now we describe the analogous construction of an ind-variety correspond-

ing to a generalized flag.
Let F be a generalized flag compatible with the basis E and let Fn =

{Cα ∩ Vn | Cα ∈ F}.
Consider the closed embeddings ιn : Fℓ(Fn, Vn) ↪→ Fℓ(Fn+1, Vn+1) given

by

{Uα} 7→ {U ′
α} where U ′

α =

{
Uα ⊕ Cen+1 if en+1 ∈ Cα
Uα otherwise

.
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By definition, the ind-variety Fℓ(F,E) is then the inductive limit lim−→Fℓ(Fn, Vn).
Note that as a set Fℓ(F,E) coincides with the orbit of F under the natu-
ral action of PGL(E, V ) on the generalized flags on V . We shall use this
identification throughout the thesis.

Example 2.5. Consider the generalized flag F = {0 ⊂ U ⊂ V } for a fixed
subspace U spanned by some elements of E. We call the generalized flag
ind-variety Fℓ(F,E) an ind-grassmannian and denote it by Gr(U,E).

Although ind-grassmannians are defined by a single subspace U , it can be
shown that they are classified up to isomorphism according to min(dimU, codimU):

� if dimU <∞ then the orbit of U under the action of GL(E, V ) is the
set of all subspaces U ′ with dimU ′ = dimU , thus Gr(U,E) depends
only on dimU and is denoted by Gr(dimU).

� if codimU <∞ then we have the isomorphisms Gr(U,E) ∼= Gr(U⊥, E∗) ∼=
Gr(codimU, V∗) given by W 7→ W⊥ = {g ∈ V∗ | g(W ) = 0} and thus
Gr(U,E) ∼= Gr(codimU).

� if min(dimU, codimU) =∞ then it is proved in Lemma 4.3 of [5] that
Gr(U,E) does not depend up to isomorphism on the choice of U . We
will thus denote it by Gr(∞).

3 Two special cases

The main goal of this thesis is to describe the groups of automorphisms
AutFℓ(F,E) in the special case when the generalized flag F consists only
of finite-dimensional and finite-codimensional subspaces. Such groups have
previously been described for ind-grassmannians of the form Gr(dimU) and
Gr(codimU) for dimU < ∞ or codimU < ∞, and when F is a maximal
increasing generalized flag with dimFα < ∞ for all α. In [4] it was proven
that

� for F = {0 ⊂ U ⊂ V } with min(dimU, codimU) < ∞ we have
AutFℓ(F,E) ∼= PGL(V );

� for F = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . . } with dimVi = i we
have AutFℓ(F,E) ∼= P (GL(E, V ) · BE), where BE ⊂ GL(E, V ) is
the stabilizer of F under the action of GL(E, V ).

Using the following lemmas, we shall give a brief proof of why these
automorphism groups are not isomorphic as abstract groups.
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Lemma 3.1. Every nonabelian simple subgroup of P(GL(E, V ) ·BE) gener-
ates the same normal subgroup.

Proof. Set G := P (GL(E, V ) · BE) and let H be the normal subgroup of
G generated by the simple subgroup PGL(E, V ). Note that H corresponds
to linear maps that act as scalar multiplication on the respective cofinite
subspaces, furthermore H =

⋃
g∈G(g

−1 PGL(E, V )g). Also H ̸= G, the
linear operator f with by f(en) =

∑n
i ei does not fix any cofinite subspace,

and hence the image of f in G does not belong to H. Consider the subgroup
Gn := ⟨f ∈ BE | (e∗j · f)(ei) = 0 for any 1 ≤ i − j ≤ n and (e∗i f)(ei) = 1⟩
and its image G̃n in G⧸H. Then G̃n ◁ G⧸H and we obtain a filtration

G⧸H ▷ G̃0 ▷ G̃1 ▷ · · · ▷ G̃n ▷ · · · (⋆)

Furthermore, a straightforward computation shows that the quotients of this
descending normal series are abelian. Consider now a simple subgroup N of
G that is not contained in H. Due to the simplicity of N we obtain that

N∩H = ⟨e⟩ and that the image of N in G⧸H is isomorphic to N⧸N ∩H ∼= N .
Intersecting the filtration (⋆) with the image of N gives

N ▷ (N ∩ G̃0) ▷ (N ∩ G̃1) ▷ · · · ▷ (N ∩ G̃n) ▷ · · ·

Since each (N ∩ G̃n) is normal in N , it must be either trivial or equal to N .

If N ∩ G̃n = N for all n then N ⊂
⋂
n G̃n = ⟨e⟩ thus N is trivial. Otherwise

there exists a minimal n such that N ∩ G̃n = ⟨e⟩. Considering the abelian
quotient at that term, we obtain that it is isomorphic to N , which implies
that N is trivial.

Thus any simple subgroup N of G is necessarily contained in H. Denote
byN ′ the normal subgroup ofG generated byN . SinceH =

⋃
g∈G(g

−1 PGL(E, V )g),

N ′ must intersect non-trivially some g−1 PGL(E, V )g for some g. Fix such a
g. Then using the fact that g−1 PGL(E, V )g is simple, we must necessarily
have g−1 PGL(E, V )g ⊂ N ′. Therefore

h−1 PGL(E, V )h = (g−1h)−1g−1 PGL(E, V )g(g−1h) ⊂ (g−1h)−1N ′(g−1h) = N ′,

and by varying h over G we obtain H = N ′.

Lemma 3.2. There exist two nonabelian simple subgroups of PGL(V ) that
generate distinct normal subgroups.

Proof. Consider the normal subgroupH in PGL(V ) generated by PGL(E, V ).
It consists of the images of linear maps that act as the identity on some cofi-
nite subspace of V .
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Now consider the embedding SL(2,C) ∼= SL(V2) ↪→ GL(V ) which maps a
linear map M : V2 → V2 to the linear map M ′ : V → V satisfying

M ′(ae2n+1 + be2n) = e∗1(M(ae1 + be2))e2n+1 + e∗2(M(ae1 + be2))e2n

for any n ≥ 1. Denote the image of the embedding in GL(V ) by G. The
nontrivial elements of G do not fix any cofinite subspace of V , and thus the
image in PGL(V ) of G intersects H trivially. Therefore this image generates
a normal subgroup of PGL(V ) not equal to H.

Corollary 3.3.
P (GL(E, V ) ·BE) ≇ PGL(V ).

4 Finite Version

We first consider the classical version when V is finite dimensional.
Consider the embedding Fℓ(F, V ) ⊂

∏
Gr(di, V ) where di := dimCi. It

induces the projection morphisms pi : Fℓ(F, V ) → Gr(di, V ). A classical
result states that PicGr(di, V ) ∼= Z and PicFℓ(F, V ) =

⊕
i Z[Li] where

Li := p∗i (OGr(di,V )(1)). We call the set {Li} the preferred set of generators
of PicFℓ(F, V ).

We assume the following theorem proved by Chow in [1]

Theorem 4.1 (Chow ’49). Let 0 ⊊ C ⊊ V be a subspace, then the following
holds

� If 2 dimC = dimV then AutGr(dimU, V ) is the semidirect product of
PGL(V ) and the ’flip’ morphism

fl : C 7→ C⊥ = {v ∈ V∗ | v(C) = 0} ⊂ V∗ ∼= V.

� If 2 dimC ̸= dimV , then AutGr(dimU, V ) ∼= PGL(V ).

We will make use of the following lemma.

Lemma 4.2. Let 0 ⊊ U ⊂ U ′ ⊊ V be a flag in V and f, f ′ : V → V
be invertible linear maps, such that for any flag 0 ⊊ W ⊂ W ′ ⊊ V with
dimW = dimU and dimW ′ = dimU ′ we have f(W ) ⊂ f ′(W ′). Then
f = cf ′ for some c ∈ C \ {0}.
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Proof. Assume otherwise. Let v ∈ V be such that Z := Span{f(v), f ′(v)}
has dimension 2. Extend v to a basis E = {v = v0, v1, . . . , vn} of V . Then
Z ⊂ f ′(SpanX) for any v ∈ X ⊂ E with |X| = dimU ′. In particular,

Z ⊂
⋂

v∈X⊂E,|X|=dimU ′

f ′(SpanX) =

f ′(
⋂

v∈X⊂E,|X|=dimU ′

SpanX) =

f ′(Span
⋂

v∈X⊂E,|X|=dimU ′

X) =

Span f ′(
⋂

v∈X⊂E,|X|=dimU ′

X) = Cf ′(v).

This contradicts the assumption that dimZ > 1.

We can now state our main theorem in the finite case.

Theorem 4.3. Let V be a finite-dimensional vector space and

F = (C1 ⊂ C2 ⊂ · · · ⊂ Cm)

be a flag. Then the following holds:

� If dimCi = codimCm+1−i for every i, the group AutFℓ(F, V ) is the
semi-direct product of PGL(V ) and the ’flip’ morphism

fl : Ui 7→ U⊥
i = {v ∈ V ∗ | v(Ui) = 0} ⊂ V ∗ ∼= V.

� If dimCi ̸= codimCm+1−i for some i, then AutFℓ(F, V ) ∼= PGL(V ).

In the proof of the main theorem we shall use the following immediate
corollary of [Prop. 2.3 from [7]]:

Corollary 4.4. Let E = (V1 ⊂ · · · ⊂ Vk) and E ′ = (W1 ⊂ · · · ⊂ Wl)
be flags on finite-dimensional vector spaces V,W , and let ϕ : Fℓ(E, V ) ↪→
Fℓ(E ′,W ) be a closed embedding. If 1 ≤ r ≤ k and 1 ≤ s ≤ l are such
that ϕ∗(L2

s)
∼= L1

r where L1
s ∈ PicFℓ(E, V ) and L2

r ∈ PicFℓ(E ′,W ) are
preferred generators, then there exists a morphism ψ : Gr(dimVr, V ) →
Gr(dimWs,W ) such that the diagram

Fℓ(E, V ) Fℓ(E ′,W )

Gr(dimVr, V ) Gr(dimWs,W )

ϕ

pr ps

ψ

is commutative.
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Proof of theorem 4.3. We assume that F is not a Grassmannian. The case
of a Grassmannian was considered in theorem 4.1. An automorphism ϕ ∈
AutFℓ(F, V ) induces an automorphism ϕ∗ ∈ AutPicFℓ(F, V ). Consider
ϕ∗(Li) =

∑m
j=1 αi,jLj. Since Li is generated by its global sections, the same

must hold for ϕ∗(Li). Thus αi,j ≥ 0 for all i, j ∈ {1, . . . ,m}, and ϕ∗ acts
on PicFℓ(F, V ) as an invertible matrix whose coefficients are nonnegative
integers. Since the same holds for (ϕ∗)−1, it follows that the automorphism
ϕ must act by a permutation on {Li}.

For each i ∈ {1, . . . ,m} let ai ∈ {1, . . . ,m} be such that ϕ∗(Li) = Lai .
By corollary 4.4, the automorphism ϕ induces morphisms θi : Gr(dimCai , V )→

Gr(dimCi, V ). Similarly, by applying the corollary to the morphism ϕ−1

we get morphisms ψi : Gr(dimCi, V ) → Gr(dimCai , V ). Since the pro-
jection maps pi : Fℓ(E, V ) → Gr(dimCi, V ) are surjective, we must have
θi ◦ ψi = idGr(dimCi,V ). Hence ψi are isomorphisms, and either ai = i or
dimCi = codimCai .

Fix an i ∈ {1, . . . ,m}. There are three possibilities:

� ai = i, 2 dimCi ̸= dimV , and ψi ∈ Aut(Gr(dimCi, V )) is induced by
the action of a ψi ∈ PGL(V );

� ai = i, 2 dimCi = dimV , and ψi ∈ Aut(Gr(dimCi, V )) is induced by
the action of a ψi ∈ PGL(V ) ⊔ fl ◦ PGL(V );

� ai ̸= i,dimCi = codimCai (and thus 2 dimCi ̸= dimV ), aai = i, ψi is

induced by the action of a ψi ∈ fl ◦ PGL(V ); also ψai = ψi
−1
.

The next goal is to determine when do elements {ψi} ⊂ PGL(V ) ⊔ fl ◦
PGL(V ) induce well-defined automorphisms ϕ. We shall use the fact that
{ψi} must preserve the incidence relation ψi(Ci) ⊂ ψj(Cj).

If ψi ∈ PGL(V ) for every i ∈ {1, . . . ,m}, then by lemma 4.2 all ψi are
equal and induce an automorphism ϕ ∈ PGL(V ).

Similarly, if ψi ∈ fl ◦ PGL(V ) for every i ∈ {1, . . . ,m} then dimCi =
codimCm+1−i for every i ∈ {1, . . . ,m}. By the above argument, the elements
fl ◦ ψi ∈ PGL(V ) induce an automorphism fl ◦ ϕ ∈ PGL(V ) so that ϕ ∈
fl ◦ PGL(V ).

If ψi ∈ PGL(V ), ψj ∈ fl ◦ PGL(V ) and 2 dimCj ̸= dimV for some
i, j ∈ {1, . . . ,m}, then we have 5 cases:

� If Ci ⊂ Cj ⊂ Caj , by the definition of ϕ we have

Ci ⊂ Cj ⊂ Caj 7→ ψi(Ci) ⊂ (ψj)
−1(Caj) ⊂ ψj(Cj) =

ψi(Ci) ⊂ (ψj
−1
)(Caj) ⊂ (ψj)(Cj).
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Then considering the action of GL(V ) on the flag Ci ⊂ Caj , we obtain

ψi(Caj) =
∑

g∈GL(V ),g(Caj )=Caj

ψi(g(Ci)) ⊂ (ψj
−1
)(Caj),

which gives a contradiction since dimLHS = dimCaj > dimRHS =
codimCaj = dimCj.

� If Cj ⊂ Ci ⊂ Caj with dimCi < codimCi, by the definition of ϕ we
have

Cj ⊂ Ci ⊂ Caj 7→ (ψj)
−1(Caj) ⊂ ψi(Ci) ⊂ ψj(Cj) =

(ψj
−1
)(Caj) ⊂ ψi(Ci) ⊂ (ψj)(Cj).

Then considering the action of GL(V ) on the flag Ci ⊂ Caj , we obtain

(ψj
−1
)(Ci) =

∑
g∈GL(V ),g(Ci)=Ci

(ψj
−1
)(g(Caj)) ⊂ ψi(Ci),

which gives a contradiction since dimLHS = codimCi > dimRHS =
dimCi.

� If Cj ⊂ Ci ⊂ Caj with dimCi > codimCi, then by the definition of ϕ
we have

Cj ⊂ Ci ⊂ Caj 7→ (ψj)
−1(Caj) ⊂ ψi(Ci) ⊂ ψj(Cj) =

(ψj
−1
)(Cai) ⊂ ψi(Ci) ⊂ (ψj)(Cj).

Then considering the action of GL(V ) on the flag Cj ⊂ Ci, we obtain

ψi(Ci) ⊂
⋂

g∈GL(V ),g(Ci)=Ci

(ψj)(g(Cj)) = (ψj)(Ci),

which gives a contradiction since dimLHS = dimCi > dimRHS =
codimCi.

� If Cj ⊂ Ci ⊂ Caj with dimCi = codimCi, then we combine the identi-
ties in the two cases above to get

ψj
−1
(Ci) = ψi(Ci) = ψj(Ci),

so that ψj = ψi as elements of Aut(Gr(dimCi, V )). This is a contra-
diction since ψi ∈ PGL(V ) but ψj ∈ fl ◦ PGL(V ).
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� If Cj ⊂ Caj ⊂ Ci, then by the definition of ϕ we have

Cj ⊂ Caj ⊂ Ci 7→ (ψj)
−1(Caj) ⊂ ψj(Cj) ⊂ ψi(Ci) =

(ψj
−1
)(Caj) ⊂ (ψj)(Cj) ⊂ ψi(Ci).

Then considering the action of GL(V ) on the flag Cj ⊂ Ci, we obtain

(ψj)(Cj) ⊂
⋂

g∈GL(V ),g(Cj)=Cj

ψi(g(Ci)) = ψi(Cj)

which gives a contradiction since dimLHS = codimCj > dimRHS =
dimCj.

We are left with the case where ψi ∈ PGL(V ), ψj ∈ fl ◦ PGL(V ) and
2 dimCj = dimV for some i, j ∈ {1, . . . ,m}. Here we have 2 possibilities:

� If Ci ⊂ Cj then

ψi(Cj) =
∑

g∈GL(V ),g(Cj)=Cj

ψi(g(Ci)) ⊂ ψj(Cj)

By comparing dimensions we have ψi(Cj) = ψj(Cj), so that ψj = ψi as
elements of Aut(Gr(dimCj, V )) as above. Contradiction.

� If Cj ⊂ Ci then

ψi(Cj) =
⋂

g∈GL(V ),g(Cj)=Cj

ψi(g(Ci)) ⊃ ψj(Cj)

By comparing dimensions we have ψi(Cj) = ψj(Cj), so that ψj = ψi as
elements of Aut(Gr(dimCj, V )) as above. Contradiction.

The above analysis allows us to conclude that the automorphism group
AutFℓ(F, V ) is as claimed.

5 Infinite Version

In this section, V will be a countable-dimensional vector space. Recall that
E is a fixed basis of V . We will only consider generalized flags that are E-
compatible and consist of spaces of finite dimension or finite codimension.
We begin by first proving a stronger version of lemma 4.2.

10



Lemma 5.1. Let F = (0 ⊊ C ⊂ C ′ ⊊ V ) be a generalized flag of length 2.
Let f : Fℓ(F,E)→ Fℓ(F,E) be the automorphism

(0 ⊂ U ⊂ U ′ ⊂ V ) 7→ (0 ⊂ ϕ(U) ⊂ ψ(U ′) ⊂ V )

for some ϕ ∈ GL(V ) and ψ ∈ AutGr(C ′, E). Then ψ(U ′) = ϕ(U ′) and
thus f is determined by ϕ. Furthermore, the same holds if ψ ∈ GL(V ) and
ϕ ∈ AutGr(C,E).

Proof. Fix a point (0 ⊂ W ⊂ W ′ ⊂ V ) ∈ Fℓ(F,E), and note that∑
(U,U ′)∈Fℓ(F,E),U ′=W ′

ϕ(U) = ϕ(
∑

(U,U ′)∈Fℓ(F,E),U ′=W ′

U) = ϕ(W ′) ⊂ ψ(W ′)

If dimW ′ <∞, then since the LHS and RHS have the same dimension, we get
ϕ(W ′) = ψ(W ′). Analogously when codimW ′ < ∞ we get ϕ(W ′) = ψ(W ′).
For the second case of f = (ψ, ϕ) we have

ψ(W ) ⊂
⋂

(U,U ′)∈Fℓ(F,E),U=W

ϕ(U ′) = ϕ(
⋂

(U,U ′)∈Fℓ(F,E),U=W

U ′) = ϕ(W )

and the conclusion follows.

Definition 5.2. We define the Mackey group M(V, V∗) to be the group
consisting of {f ∈ GL(V ) | f ∗(V∗) = V∗} ⊂ GL(V )

Note that this definition implies thatM(V, V∗) is isomorphic toM(V∗, V )
canonically.

Lemma 5.3. Let F = (0 ⊂ C ⊂ V ) with codimC < ∞. Let ϕ ∈ GL(V ) be
such that it induces a well-defined automorphism

(0 ⊂ U ⊂ V ) ∈ Fℓ(F,E) 7→ (0 ⊂ ϕ(U) ⊂ V ) ∈ Fℓ(F,E). (⋆)

Then ϕ ∈ M(V, V∗). Consequently, M(V, V∗) is the maximal subgroup of
GL(V ) that acts on Fℓ(F,E) via (⋆).

Proof. We have (0 ⊂ U ⊂ V ) ∈ Fℓ(F,E) iff U = U ′ ⊕ Span{en+1, · · · } for
some U ′ ⊂ Vn with codimVn U

′ = codimV C. Equivalently U⊥ = {v ∈ V ∗ |
v(U) = 0} is contained in V∗ and dimV∗ U

⊥ = dimV∗ C
⊥. Denote ψ := ϕ−1.

Then ψ also satisfies the assumptions in the statement, furthermore we have

ψ(U)⊥ = {v ∈ V ∗ | v(ψ(U)) = (ψ∗(v))(U) = 0} = (ψ∗)−1(U⊥) = ϕ∗(U⊥) ⊂ V∗.
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By varying U we obtain

V∗ ⊃
∑

(0⊂U⊂V )∈Fℓ(F,E)

ϕ∗(U⊥) = ϕ∗(
∑

(0⊂U⊂V )∈Fℓ(F,E)

U⊥) = ϕ∗(V∗).

Hence ϕ ∈ M(V, V∗). For the converse, let ϕ ∈ M(V, V∗), then ϕ(U)⊥ =
(ϕ∗)−1(U⊥) ⊂ (ϕ∗)−1(V∗) = V∗. Using that (ϕ∗)−1 is invertible we have
dimV∗ ϕ(U)

⊥ = dimV∗(ϕ
∗)−1(U⊥) = dimV∗ U

⊥ = dimV∗ C
⊥. Thus ϕ induces a

well-defined automorphism of Fℓ(F,E).
Corollary 5.4. Let F = (0 ⊂ C ⊂ C ′ ⊂ V ) be a generalized flag of length
2 such that dimC, codimC ′ < ∞. Assume that the pair (ϕ, ψ) ∈ GL(V ) ×
GL(V∗) induces a well-defined automorphism of Fℓ(F,E)

(0 ⊂ U ⊂ U ′ ⊂ V ) 7→ (0 ⊂ ϕ(U) ⊂ fl ◦ ψ ◦ fl(U ′) ⊂ V ) ∈ Fℓ(F,E).

Then ϕ belongs to M(V, V∗).

Proof. Follows from lemma 5.1 and lemma 5.3.

In the rest of the thesis F stands for a generalized flag consisting of
subspaces {Cα}α∈I such that dimCα < ∞ or codimCα < ∞ for all α ∈ I.
We shall choose the linearly ordered index set I so that I ⊂ Z>0 ⊔ Z<0,
α < β whenever α ∈ Z>0, β ∈ Z<0, dimCα < ∞ for α ∈ I ∩ Z>0, and
codimCα <∞ for α ∈ I ∩ Z<0.

Consider the Picard groups of the finite-dimensional flag varieties
PicFℓ(Fn, Vn) ∼=

⊕
i Z[Lni ] where Lni = (pni )

∗(OGr(di,Vn)(1)) (as in section 4)
for each i ∈ I. Recall the closed embeddings ιn : Fℓ(Fn, Vn) ↪→ Fℓ(Fn+1, Vn+1)
(introduced in section 2). Note that ι∗nL

n+1
i = Lni and ι

∗
n : PicFℓ(Fn+1, Vn+1)→

PicFℓ(Fn, Vn) is surjective. This allows us to claim that the Picard group
of the ind-variety PicFℓ(F,E) is naturally isomorphic to the inverse limit
lim←−PicFℓ(Fn, Vn) ∼=

∏
Z[Li], where Li := lim←−L

n
i .

This point of view also corresponds to considering the morphism of ind-
varieties pi : Fℓ(F,E)→ Gr(Ci, E) and Li := p∗i (OGr(Ci,E)(1)).

Definition 5.5. We call a generalized flag F symmetric if it is of the form
(0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C−n ⊂ · · · ⊂ C−1 ⊂ V ) (possibly finite
length) with dimCi = codimC−i <∞.

Theorem 5.6. Let F be a generalized flag. Then the following statements
hold.

� If F is symmetric then AutFℓ(F,E) is the semi-direct product of a
group PAF ⊂ PM(V, V∗) and the group Z2 corresponding to the ’flip’
morphism

fl : Ui 7→ U⊥
i = {v ∈ V∗ | v(Ui) = 0} ⊂ V∗ ∼= V.

12



� If dimC <∞ for every C ∈ F then AutFℓ(F,E) ∼= PAF ⊂ PGL(V ).

� If codimC < ∞ for every C ∈ F then AutFℓ(F,E) ∼= PAF ⊂
PGL(V∗).

� In the remaining cases, AutFℓ(F,E) ∼= PAF ⊂ PM(V, V∗).

Proof. Let ϕ ∈ AutFℓ(F,E). Then ϕ induces an automorphism ϕ∗ on
PicFℓ(F,E). Fix L := Li and let L′ := ϕ∗L =

∏
αjLj. Since L is gen-

erated by its global sections we must have the same for L′, thus αj ≥ 0 for
all j ∈ I.

Consider the set S :=
⊕

i Z≥0[Li] ⊂ PicFℓ(F,E) consisting of elements
that are generated by their global sections. Note that S is closed under
addition, hence ϕ∗(S) = S. Consider S ′ := {x ∈ S|x = y + z for some y, z ∈
S =⇒ y = 0 or z = 0}, then we check that ϕ∗(S ′) = S ′ and S ′ = {0}∪{Li}.
Therefore ϕ∗ permutes the basis {Li}. Thus L′ = Lj for some j ∈ I.

Note that the automorphism ϕ : Fℓ(F,E) → Fℓ(F,E) of ind-varieties
is induced by closed immersions ϕn : Fℓ(Fn, Vn) → Fℓ(FN(n), VN(n)) of va-
rieties. By corollary 4.4 we get morphisms θnj : Gr(dim(Cj ∩ Vn), Vn) →
Gr(dim(Ci ∩ VN(n)), VN(n)).

Analogously, considering ϕ−1 we obtain morphisms ψni : Gr(dim(Ci ∩
Vn), Vn)→ Gr(dim(Cj∩VM(n)), VM(n)). The morphism θ

N(n)
j ◦ψni : Gr(dim(Ci∩

Vn), Vn) → Gr(dim(Ci ∩ VN(M(n))), VN(M(n))) induces the ind-variety mor-
phism θj ◦ ψi : Gr(Ci, E) → Gr(Ci, E). Since ϕ is an isomorphism, we con-

clude that θj◦ψi = lim−→ θ
N(n)
j ◦ψni = idGr(Ci,E), and ψi := lim−→ψni : Gr(Ci, E)→

Gr(Cj, E) is an isomorphism of ind-varieties. By example 2.5 we have either
i = j or dimCi = codimCj and codimCi = dimCj.

If ϕ∗(Li) = Lj with dimCi = codimCj < ∞ then ψ̃i := fl ◦ ψi ∈
AutGr(Ci, E) ∼= PGL(V ), and thus ψi is induced by fl ◦ ψ̃i.

If ϕ∗(Li) = Li then i = j, ψi ∈ AutGr(Ci, E), and we get two cases:

� dimCi <∞, and ψi is induced by ψ̃i ∈ PGL(V );

� codimCi <∞, and ψi is induced by fl ◦ ψ̃i ◦ fl with ψ̃i ∈ PGL(V∗).

If ϕ∗(Li) = Li for every i ∈ I then by lemma 5.1 the automorphism ϕ
is induced globally by the action of an element in GL(V ) (or GL(V∗)). In
particular, considering all such elements, we obtain a subgroup AF ⊂ GL(V )
(respectively, AF ⊂ GL(V∗)).

If however F is of the form (C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C−n ⊂ · · · ⊂
C−1) with dimCi = codimC−i and ϕ

∗(Li) = L−i for all i then (ϕ◦fl)∗(Li) =
Li for all i ∈ I, thus ϕ ◦ fl ∈ AF by the above.
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We are left with the ’mixed’ case when ϕ∗(Lj) = Lj and ϕ
∗(Li) = L−i for

some j, i,−i ∈ I with dimCi = codimC−i <∞. We have four possibilities:

� If Cj ⊂ Ci ⊂ C−i, then by the definition of ϕ we have

Cj ⊂ Ci ⊂ C−i 7→ ψj(Cj) ⊂ (ψi)
−1(C−i) ⊂ ψi(Ci) =

ψ̃j(Cj) ⊂ (ψ̃i
−1
◦ fl)(C−i) ⊂ (fl ◦ ψ̃i)(Ci).

By considering the action of GL(E, V ) on the flag Cj ⊂ C−i, we obtain

ψ̃j(C−i) =
∑

g∈GL(E,V ),g(C−i)=C−i

ψ̃j(g(Cj)) ⊂ (ψ̃i
−1
◦ fl)(C−i),

which gives a contradiction since dimLHS =∞ > dimRHS = codimC−i.

� If Ci ⊂ Cj ⊂ C−i with dimCj <∞, then by the definition of ϕ we have

Ci ⊂ Cj ⊂ C−i 7→ (ψi)
−1(C−i) ⊂ ψj(Cj) ⊂ ψi(Ci) =

(ψ̃i
−1
◦ fl)(C−i) ⊂ ψ̃j(Cj) ⊂ (fl ◦ ψ̃i)(Ci).

By considering the action of GL(E, V ) on the flag Cj ⊂ C−i, we obtain

(ψ̃i
−1
◦ fl)(Cj) =

∑
g∈GL(E,V ),g(Cj)=Cj

(ψ̃i
−1
◦ fl)(g(C−i)) ⊂ ψ̃j(Cj),

which gives a contradiction since dimLHS =∞ > dimRHS = dimCj.

� If Ci ⊂ Cj ⊂ C−i with codimCj < ∞, then by the definition of ϕ we
have

Ci ⊂ Cj ⊂ C−i 7→ (ψi)
−1(C−i) ⊂ ψj(Cj) ⊂ ψi(Ci) =

(ψ̃i
−1
◦ fl)(C−i) ⊂ ψ̃j(Cj) ⊂ (fl ◦ ψ̃i)(Ci).

By considering the action of GL(E, V ) on the flag Ci ⊂ Cj, we obtain

ψ̃j(Cj) ⊂
⋂

g∈GL(E,V ),g(Cj)=Cj

(fl ◦ ψ̃i)(g(Ci)) = (fl ◦ ψ̃i)(Cj),

which gives a contradiction since dimLHS =∞ > dimRHS = codimCj.
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� If Ci ⊂ C−i ⊂ Cj, then by the definition of ϕ we have

Ci ⊂ C−i ⊂ Cj 7→ (ψi)
−1(C−i) ⊂ ψi(Ci) ⊂ ψj(Cj) =

(ψ̃i
−1
◦ fl)(C−i) ⊂ (fl ◦ ψ̃i)(Ci) ⊂ ψ̃j(Cj).

By considering the action of GL(E, V ) on the flag Ci ⊂ Cj, we obtain

(fl ◦ ψ̃i)(Ci) ⊂
⋂

g∈GL(E,V ),g(Ci)=Ci

ψ̃j(g(Cj)) = ψ̃j(Ci),

which gives a contradiction since dimLHS =∞ > dimRHS = dimCi.

Thus we get a contradiction to the ’mixed’ case and we are done.

Since the action of AF ⊂ GL(V ) (or AF ⊂ GL(V∗)) is effective, it consists
of all maps ϕ ∈ GL(V ) (or GL(V∗)) whose usual action on Fℓ(F,E) is well-
defined (i.e. ϕ(G) ∈ Fℓ(F,E) for any G ∈ Fℓ(F,E)).

Similarly to example 2.5, we denote by P(F,E) ⊂ GL(V ) the subgroup of
linear maps that fix F .

For a subgroup H ⊂ GL(V∗) we set

H∗ := {h∗ : (V∗)∗ → (V∗)
∗ | h ∈ H} ⊂ End((V∗)

∗).

We shall use the following result:

Proposition 5.7. Let ϕ ∈ GL(V ) be such that ϕ(G) ∈ Fℓ(F,E) for any
G ∈ Fℓ(F,E). Then ϕ ∈ GL(E, V ) · P(F,E).

Proof. Since ϕ(F ) ∈ Fℓ(F,E), there is ψ ∈ GL(E, V ) such that ψ ◦ ϕ(F ) =
F , i.e. ψ ◦ ϕ ∈ P(F,E). Hence ϕ ∈ GL(E, V ) · P(F,E).

The following is a summary of our results.

Theorem 5.8. Let F be a generalized flag, denote F+ := {C ∈ F | dimC <
∞} ∪ {V } and F− := {C ∈ F | codimC < ∞} ∪ {0} to be the generalized
sub-flags of the finite dimension and cofinite dimension components respec-
tively. Then the following table describes the group AF :

F+ = (0 ⊂ V ) |F+| <∞ |F+| =∞
F− = (0 ⊂ V ) 0 GL(V ) GL(E, V ) · P(F+,E)

|F−| <∞ GL(V∗) M(V, V∗) GL(E, V ) · P(F+,E) ∩M(V, V∗)
|F−| =∞ GL(E∗, V∗) · P(F−,E∗) GL(E∗, V∗) · P(F−,E∗) ∩M(V∗, V ) (GL(E∗, V∗) · P(F−,E∗))

∗ ∩GL(E, V ) · P(F+,E) ∩M(V, V∗)

The automorphism group AutFℓ(F,E) is then isomorphic to P(⟨AF , f l⟩)
when F is symmetric and PAF otherwise.
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6 Conclusion and further questions

We have described in this thesis the automorphism groups of ind-varieties
of generalized flags under the condition that the generalized flags consist
of subspaces of finite dimension and finite codimension. Describing the au-
tomorphism group of a general ind-variety of generalized flags is an open
problem.

A starting question would be to consider a general ind-grassmannian and
calculate its automorphism group.

Another question of interest is to describe the isomorphism classes of the
automorphism groups described here. As we have seen, the connected com-
ponents of unity of the automorphism groups of the Grassmannian and of
the flag ind-variety Fℓ(F,E) for F = (0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ . . . ) are
not isomorphic. This is drastically different from the classical case where all
automorphism groups of the flag varieties have isomorphic connected com-
ponents of unity.
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