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Abstract. Let K be an algebraically closed field of characteristic 0, and let Tℵt be the category
of tensor representations of the Lie algebra glM (V∗, V ) of endomorphisms of a nondegenerate
pairing V∗ ⊗ V → K of ℵt-dimensional vector spaces V∗ and V , for some t ∈ N. It is shown in
[2] that for t = 0, the category Tℵ0

is Koszul self-dual, which yields an explicit formula for the
dimension of Ext-groups of simple objects in Tℵ0

. However, for t ≥ 1, Tℵt is not known to be
Koszul self-dual and the problem of computing the Ext groups of simple objects remains open.
In this work, as a first step towards solving this problem, we investigate the Ext-groups of
simple objects in the category Tℵ1

. These simple objects will be denoted by Vλ1,λ0,µ,ν as they
are parametrized by quadruples of Young diagrams. At the end of this paper, we manage to
calculate the Ext-groups ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ1,λ
′
0,µ

′,ν′) (where the first Young diagrams of

both simple objects are the same) and ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,ν′ ) (where the third Young

diagram of the second simple object is empty).
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CHAPTER 1

Introduction

There have been several advancements in the study of monoidal categories of representations
of infinite matrix algebras in the last two decades. In particular, the category Tsl(∞) has been
introduced and studied from different points of view. Notable papers in this direction are [3],
[13], and [15]. The category Tsl(∞) can be seen as the “limit as q → ∞” of the category of
finite-dimensional sl(q)-modules, however, a big difference with the finite-dimensional case is that
Tsl(∞) is not a semisimple category.

The development of the representation theory of the Lie algebra sl(∞) also motivated the
study of Mackey Lie algebras glM (V∗, V ) consisting of endomorphisms of a nondegenerate pairing
p : V∗ × V → K between two abstract vector spaces V and V∗. Tensor representations of Mackey
Lie algebras are introduced and studied in [12].

As a next step, in the work [1], A. Chirvasitu and I. Penkov have constructed and studied
universal monoidal categories whose objects are more general tensor representations of Mackey
Lie algebras. Throughout the paper, let K be an algebraically closed field of characteristic 0. Let
p : V∗ ×V → K be a nondegenerate pairing where V and V∗ are both α-dimensional vector spaces
over K for an arbitrary cardinal number α. If the pairing p is diagonalizable in the sense that
there are bases {v∗k} of V∗ and {vk′} of V such that p(v∗k, vk′) = δkk′ , then by definition Tα is the
minimal full monoidal subcategory of glM -mod (the category of modules over glM ) containing V ,
V ∗ and closed with respect to subquotients and arbitrary direct sums. Chirvasitu and Penkov
also characterized all simple objects and their injective hulls in Tα.

When α = ℵt for some nonnegative integer t, the simple objects in Tℵt
are parametrized by

t+ 3 Young diagrams λt, ..., λ0, µ, ν:

Vλt,...,λ0,µ,ν =

0⊗
s=t

(V ∗
ℵs+1

/V ∗
ℵs
)λs

⊗ Vµ,ν(1.1)

where •λ denotes the Schur functor associated with Young diagram λ and Vµ,ν is a simple object
in Tsl(∞). The injective hull of Vλt,...,λ0,µ,ν is denoted by Ṽλt,...,λ0,µ,ν and has the form

Ṽλt,...,λ0,µ,ν =

0⊗
s=t

(V ∗/V ∗
ℵs
)λs

⊗ (V ∗)µ ⊗ Vν .(1.2)

In [1], Chirvasitu and Penkov derive an explicit formula for the multiplicity of Vλt,...,λ0,µ,ν in
Ṽλ′

t,...,λ
′
0,µ

′,ν′ .
When t = 0, the category Tℵ0

coincides with the category T3
glM (V∗,V )

studied in [2]. In what
follows, we set W := V and Wλ,µ,ν := Vλ,µ,ν in the case when dimV = ℵ0. It is showed in [2] that
T3
glM (W∗,W )

has finite length and is a Koszul self-dual tensor category. The Koszul self-duality
yields the following concrete formula for the dimension of Ext-groups between simple objects in
T3
glM (W∗,W )

:

dimExtq(Wλ,µ,ν ,Wλ′,µ′,ν′) = multiplicity of Wλ,µ⊥,ν in socq+1(W̃λ′,µ′⊥,ν′),(1.3)

1



2 1. INTRODUCTION

where ⊥ indicates conjugating (transposing) a Young diagram.
However, as shown in [1, Remark 4.31], there is no immediate pattern involving conjugating

Young diagrams that would allow to compute the Ext-groups ExtqTℵt
(Vλt,...,λ0,µ,ν , Vλ′

t,...,λ
′
0,µ

′,ν′)

for t ≥ 1 by generalizing formula (1.2). In this paper, we will investigate the case t = 1,
taking the first step to solve the open problem of computing these Ext-groups. Our main
results calculate ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ1,λ′
0,µ

′,ν′), i.e. when the first Young diagrams parameterizing
two simple objects are the same, and ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ′
1,λ

′
0,∅,ν′), i.e. where the third Young

diagram parameterizing the second object is empty. We introduce certain torsion classes that
allow us to reduce the computation of these Ext-groups to the computation of Ext-groups
in Tℵ0 , where we know an explicit formula. Further work is needed to address the case of
ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ′
1,λ

′
0,µ

′,ν′) for λ′
1 ̸= λ1 and µ′ ̸= ∅.

This thesis is organized as follows. In Chapter 2, we introduce some relevant background
concepts. Chapter 3 contains some results of Ext-groups and socle filtrations adapted to the
category Tℵ1 . In particular, we construct a minimal injective resolution for a simple object
Vλ1,λ0,µ,ν and define the injective dimension to be the length of such resolution. We then prove
some lemmas regarding the socle filtration of indecomposable injectives in Tℵ0

and Tℵ1
. Most of

the proofs in this chapter are based on Lemma 4.28 bis, Lemma 4.29 bis and Proposition 4.30 in
[1], and on combinatorial properties of Littlewood-Richardson coefficients.

Chapter 4 contains our main results and is divided into four parts. First, we use torsion
theory to show that ExtiTℵ1

(V∅,λ0,µ,ν , V∅,λ′
0,µ

′,ν′) ∼= ExtiTℵ0
(Wλ0,µ,ν ,W∅,µ′,ν′), and then tensor

each term of the injective resolution of V∅,λ′
0,µ

′,ν′ with (V ∗/V ∗
ℵ1
)λ1

to obtain a more general result.
Analogously, ExtiTℵ1

(Vλ1,λ0,∅,∅, Vλ′
1,λ

′
0,∅,∅)

∼= ExtiTℵ0
(Wλ1,λ0,∅,Wλ′

1,λ
′
0,∅), and we tensor each term

of the injective resolution of Vλ′
1,λ

′
0,∅,∅ with Vν′ to compute ExtiTℵ1

(Vλ1,λ0,∅,ν′ , Vλ′
1,λ

′
0,∅,ν′).

Lastly, in Chapter 5, we collect two conjectures, one of them regarding the injective dimension
of simple objects in Tℵt

. We check that this conjecture is indeed true in the case of Tℵ0
. The

other conjecture addresses certain symmetry when we exchange the second and third Young
diagrams of simple objects in Tℵ1 , which might correspond to a certain algebraic duality. The
appendix contains various injective resolutions that are generated by a numerical software script
that we developed.



CHAPTER 2

Preliminaries

1. Some relevant category notions

Following [5], [8], [9] and [14], we first recall some relevant notions in category theory.

1.1. Tensor categories. Let C be a category equipped with a bifunctor
⊗

: C × C → C.
The category C is called monoidal if there is an identity/unit object I and three natural
isomorphisms α (associator) , λ (left unitor), ρ (right unitor) such that they statisfy the
following axioms for all objects A,B,C and D in C:

(1) The natural isomorphism associator α specifies the associativity of
⊗

:

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C.

(2) The two natural isomorphsims left and right unitor λ and ρ indicate that I is left and
right identity:

λA : A⊗ I ∼= A, ρA : I ⊗A ∼= A.

(3) The following pentagon diagram commutes:

A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D))

(A⊗ (B ⊗ C))⊗D ((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

1⊗α

α

α⊗1

α

α

(4) The triangle diagram commutes:

A⊗B

A⊗ (I ⊗B) (A⊗ I)⊗B

1A⊗λB

αA,I,B

ρA⊗1B

Note that the “tensor product”
⊗

is associative but need not be commutative. In particular, a
tensor/symmetric monoidal category is a monoidal category such that the tensor product is
symmetric, i.e. A⊗B is naturally isomorphic to B ⊗A for all objects A,B. More precisely, we
have: for every objects A,B ∈ C, there is an isomorphism sAB : A⊗B ∼= B ⊗A such that:

(1) The triangle diagram commutes (unit coherence):

3



4 2. PRELIMINARIES

A

A⊗ I I ⊗A

rA

sAI

lA

(2) The following hexagon diagram commutes (associativity coherence):

A⊗ (B ⊗ C)
sB⊗C,A// (B ⊗ C)⊗A

αBCA

((
(A⊗B)⊗ C

αABC

66

sAB⊗1C ((

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
αBAC

// B ⊗ (A⊗ C)

1B⊗sAC

66

(3) The triangle diagram commutes (inverse):

B ⊗A

A⊗B A⊗B

sBAsAB

1A⊗B

1A⊗B

1.2. Indecomposable Injective Objects. For a category C, a morphism f : X → Y is
called a monomorphism whenever:

f ◦ g1 = f ◦ g2 =⇒ g1 = g2.

Dually, f is called an epimorphism whenever:

g1 ◦ f = g2 ◦ f =⇒ g1 = g2.

An object P ∈ C is projective if every morphism h : P → X factors through every
epimorphism e : Y → X. Dually, an objective I ∈ C is injective if every morphism h : X → I
factors through every monomorphism m : X → Y .

Y

P X

eh̄

h

Figure 1. Projective objects.

X Y

I

m

h
h̄

Figure 2. Injective objects.

For two objects A,B ∈ C, their product is an object A
∏

B together with projections
p : A

∏
B → A and q : A

∏
B → B such that for every object C and morphisms f : C → A

and g : C → B, f and g factor through a unique h : C → A
∏

B. The concept of coproduct
is dual to that of product, i.e. an object A

∐
B together with monomorphisms i : A → A

∐
B

and j : B → A
∐

B such that for every object C and morphisms f : A → C and g : B → C, f
and g factor through a unique morphism h : A

∐
B → C. In other words, the following diagrams

commute.
An object S ∈ C is called initial if for for every object A there is exactly one morphism

S → A. An object T is called terminal if for every object A there is exactly one morphism
A → T . A null object is both terminal and initial object. X is called indecomposable if
whenever there is isomorphism X ∼= X1

∐
X2 then X1 or X2 is a null object.
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C

A A
∏

B B

f
h

g

p q

Figure 3. Product.

C

A A
∐

B B

f

i

h
g

j

Figure 4. Coproduct.

1.3. Exact functor.

Definition 2.1. For two categories C and D, a covariant additive functor F : C → D is
left-exact if whenever we have a short exact sequence 0 → A → B → C → 0 in C then the
sequence 0 → F (A) → F (B) → F (C) is exact in D. Likewise F : C → D is right-exact
if whenever we have a short exact sequence 0 → A → B → C → 0 in C then the sequence
F (A) → F (B) → F (C) → 0 is exact in D. And F is exact when it is both left-exact and
right-exact.

One of the most important left-exact functors is the Hom(X,_) functor, which is the functor
of our interest in calculating the Ext-groups between simple objects in Tℵ1

.

Proposition 2.2. The functor Hom(X,_) is a covariant left-exact functor. Given short
exact sequences

0 → A′ → A → A′′ → 0

we have the sequence

0 → Hom(X,A′) → Hom(X,A) → Hom(X,A)

is exact. Dually, the functor Hom(_, Y ) is contravariant right-exact functor, i.e.

0 → Hom(A′′, X) → Hom(A,X) → Hom(A′, X).

This proposition will be utilized later in the proof of the main result. The standard proof for
this proposition could be found in a category theory or homological algebra textbook.

2. Semi-simplicity and socle filtration

A module M over a ring R is said to be semisimple if it is the direct sum of simple
(irreducible) submodules. Semisimplicity of a module M can be shown [10] to be equivalent to:

(1) M is the sum of its irreducible submodules.
(2) Every submodule of M is a direct summand, i.e. for every submodule N of M , there is

a submodule P such that M = N ⊕ P .
For an abitrary ring, an abitrary module M need not be semisimple and hence we would

want to study the maximal (with respect to inclusion) semisimple submodule of M , which is
denoted by soc(M) and is called the socle of M . Equivalently, soc(M) is also the sum of all
simple submodules of M .

For an abelian category C, a chain of objects of C is a set of objects {Aω} such that: for
every pair Aω1

and Aω2
, exactly one noninvertible monomorphism Aω1

→ Aω2
or Aω2

→ Aω1

is fixed. We thus have a linear order: ω1 < ω2 if Aω1 → Aω2 . An object A of C is endowed
with a transfinite filtration if there is a well-ordered chain of subobjects {Aω} of A such that
∪ωAω = A.

In the categories introduced in Section 5 below, particularly Tℵt
, it is shown that every object

X has a transfinite socle filtration, which is built by letting soc1(X) = soc(X) and inductively
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taking the preimage of X/soci(X) in X. In general enough categories, the socle filtration need
not terminate and may have infinite length. More precisely, we have

0 ⊂ soc(X) ⊂ soc2(X) = π−1
1 (X/soc(X)) ⊂ ... ⊂ socℵ0(X) = π−1

ℵ0
( lim−−−→

q<ℵ0

(socq(X))) ⊂ ...

where πi : X → X/(soci(X)) and πℵ0 : X → X/( lim−−−→
q<ℵ0

(socq(X))) are the canonical projections

and we denote the q−th layer socq(X) = socq(X)/socq−1(X).
The socle filtration of an object M has finite length if M = ∪k∈Z>0soc

k(M) and for some
q ∈ N, the layer socq+1(M) is zero. Then the smallest such q is called the Loewy length of M .
If no such q exists, then the Loewy length is said to be infinite. In [1], the authors have shown
that the indecomposable injectives in Tℵt

have finite Loewy length. An explicit formula for the
Loewy length of those indecomposable injectives is derived in [17].

3. Resolution and the Ext functors

We now introduce one of the main concepts in homological algebra, the Ext functor. Let R
be a ring and R−mod be the category of left R-modules. Recall that Hom(A,_) is a covariant
left-exact functor, thus it has the right derived functor Ext•(A,_). We recall the definition of
the functor as follows.

Recall that a left resolution of a R-module M is an exact sequence of modules

...
dn+1−−−→ En

dn−→ ...
d2−→ E1

d1−→ E0
ϵ−→ M → 0,(2.1)

where dn and ϵ are called boundary maps and augmentation map respectively. Dually, a right
resolution is an exact sequence of R-modules

0 → M
ϵ−→ E0 d0

−→ E1 d1

−→ ...
dn−1

−−−→ En dn

−→ ...(2.2)

With additional conditions imposed on the modules En, we can have special types of
resolutions. Specifically, a projective (resp., free, flat) resolution is a left resolution such that all
Ei are projective (resp., free, flat) R-modules. Dually, injective resolutions are right resolutions
such that all Ei are injective.

A left resolution (resp., right resolution) is said to be finite if there are only finitely many
nonzero modules included in 2.1 (resp., 2.2). In that case, the maximal number n indexing a
nonzero module is called the length of the resolution. Homological dimensions are defined in
terms of length of resolution as well. In particular, the minimal length of a finite injective (resp.,
projective) resolution of a module M is its injective (resp., projective) dimension, and is
denoted id(M) (resp., pd(M)) . Note that id(M) = 0 (resp., pd(M) = 0) if and only if M is an
injective module (resp., projective module).

Given an injective resolution

0 → B → I0 → I1 → ...,

we have the corresponding complex for a module A

0
h0

−→ HomR(A, I0)
h1

−→ HomR(A, I1)
h2

−→ ....

For i ∈ N, ExtiR(A,B) := kerhi/ imhi−1 is the homology of the complex at position i. We are
usually concerned with only Ext-groups between simple objects since this functor takes coproducts
(direct sums) in the first variable and products in the second variable to products.

Proposition 2.3. The groups ExtiR(A,B) defined above are independent of the choice of
injective resolution of B.
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Proposition 2.4 ([18, Proposition 3.3.4]).

ExtiR(
⊕
α

Mα, N) ∼=
∏
α

ExtiR(Mα, N),(2.3)

ExtiR(M,
∏
α

Nα) ∼=
∏
α

ExtiR(M,Nα).(2.4)

4. Mackey Lie algebras

From now, all vector spaces and Lie algebras are defined over the fixed algebraically closed
field K of characteristic 0. For a vector space V , we let V ∗ = HomK(V,K) and End(V ) = EndK(V )
and abrreviate ⊗K to ⊗. Furthermore, all additive categories considered are linear over K and all
additive functors are assumed to preserve this structure.

Here, we will define the Mackey Lie algebra for two vector spaces of the same dimension equal
to ℵt, the t-th cardinal number after ℵ0. For more general definitions and considerations, we refer
the reader to [12] and [1]. Let V and V∗ be two ℵt-dimensional vector spaces, and p : V∗×V → K
be a nondegenerate pairing that is diagonalizable in the sense that there bases {v∗k} and {vk′} of
V∗ and V such that p(v∗k, vk′) = δkk′ . Picking the bases {v∗k} and {vk′} and an arbitrary total
order on the set of indices, we can think of elements of V (resp., V∗) as size-ℵt column vectors
(resp., row vectors) with finitely many nonzero entries.

For each infinite cardinal β ≤ ℵt+1, let V ∗
β ⊂ V ∗ the subspace of size-ℵt row vectors with

strictly fewer than β nonzero entries. We have V ∗
ℵt+1

= V ∗, V ∗
ℵ0

= V∗, and a transfinite filtration

0 ⊂ V∗ ⊂ ... ⊂ V ∗
ℵt

⊂ V ∗.(2.5)

The Mackey Lie algebra glM = glM (V∗, V ) associated to the pairing p is the Lie algebra of
endomorphisms of p, i.e.

glM (V∗, V ) = {x ∈ End(V∗)|x∗(V ) ⊂ V } ∼= {y ∈ End(V )|y∗(V∗) ⊂ V∗},(2.6)

where here ∗ denotes the dual operator. Using the bases {v∗k}, {v∗k} and the order as before, we
can think of elements of glM as ℵt × ℵt-matrices with the property that each row and column
has finitely many nonzero entries.

5. The categories Tℵt and Tℵt

First, we note that V and V ∗ are glM -modules with the following actions:

g · v = gv for g ∈ glM , v ∈ V,

g · v∗ = −v∗g for g ∈ glM , v∗ ∈ V∗.

Since we have glM · V ∗
β ⊂ V ∗

β , the filtration (2.5) is glM -stable.
We now introduce our main categories of interest Tℵt and Tℵt .

Definition 2.5. Let glM -mod denote the category of modules over glM . The category
Tℵt is defined as the smallest full monoidal subcategory of glM -mod containing V and V∗ and
being closed under finite direct sums and taking subquotients. The category Tℵt is then the full
subcategory of glM -mod whose objects are arbitrary direct sums of objects in Tℵt

.

Recall that for a Young diagram λ, we have a well-defined Schur functor •λ : Vect → Vect
between the category of vector spaces over K. For more detailed treatment, we refer the reader to
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[6] and [7]. For a GL(n,K)-module V , the GL(n,K)-module Vλ is a direct summand of the tensor
power V |λ| as a GL(n,K)-module. Note that the tensor product Vλ and Vµ has the decomposition

Vλ ⊗ Vµ ≃
⊕
ν

Nν
λ,µVν ,(2.7)

where Nν
λµ is the Littlewood-Richardson coefficient associated to a triple of partitions ν, λ, µ.

We also collect some results in [6], [7], and [17] about the Littlewood-Richardson coefficients
that are used later.

Lemma 2.6. Nλ
µ,ν = Nλ

ν,µ.

Lemma 2.7. If Nλ
µ,ν ̸= 0 then |λ| = |µ|+ |ν|.

Lemma 2.8. If Nλ
µ,ν ̸= 0 then µ ⊆ λ.

Lemma 2.9. If λi = µi + νi for all i, then Nλ
µ,ν = 1.

We now look at the classification of simple objects in the category Tℵt
. First, we introduce

the simple module Vµ,ν over the Mackey Lie algebra glM . For given partitions µ and ν, we
have (V∗)µ ⊆ (V∗)

⊗|µ| and Vν ⊆ V ⊗|ν| and thus (V∗)µ ⊗ Vν ⊆ (V∗)
⊗|µ| ⊗ V ⊗|ν|. By applying the

pairing p : V∗ × V → K over |µ| · |ν| possible positions in V
⊗|µ|
∗ ⊗ V ⊗|ν|, we get |µ||ν| different

compositions

(V∗)µ ⊗ Vν ⊆ (V∗)
⊗|µ| ⊗ V ⊗|ν| → (V∗)

⊗(|µ|−1) ⊗ V ⊗(|ν|−1).(2.8)

Let Vµ,ν be the space of traceless tensors in (V∗)µ ⊗ Vν , i.e. those annihilated by all
compositions (2.8).

We are now ready to state the classification of simple objects in Tℵt
.

Theorem 2.10 (Proposition 4.2 [1]). Given Young diagrams λt, ..., λ0, µ, ν, the object

Vλt,...,λ0,µ,ν :=

0⊗
s=t

(V ∗
ℵs+1

/V ∗
ℵs
)λs ⊗ Vµ,ν(2.9)

is simple over glM , and objects obtained for distinct choices of Young diagrams are mutually
non-isomorphic. Moreover, every simple object of Tℵt is isomorphic to Vλt,...,λ0,µ,ν for some t+ 3
partition λt, ..., λ0, µ, ν.

Next, the injective objects in Tℵt
are arbitrary direct sums of indecomposable injective

objects. Thus it suffices to study the indecomposable injectives in Tℵt . The following proposition
characterizes these objects.

Theorem 2.11 (Corollary 4.25(b) in [1]). The indecomposable injective objects in the category
Tℵt

are (up to isomorphism)

Ṽλt,...,λ0,µ,ν :=

0⊗
s=t

(V ∗/V ∗
ℵs
)λs

⊗ (V ∗)µ ⊗ Vν ,(2.10)

with respective socles Vλt,...,λ0,µ,ν as in 2.9 for arbitrary Young diagrams λt, ..., λ0, µ, ν.



CHAPTER 3

Ext-groups and socle filtrations of indecomposables in Tℵ1

1. Ext-groups in Tℵ1

In this chapter, we will explore the Ext-groups of simple objects in the category Tℵ1 more
carefully, and will motivate our research question. Recall that from Theorem 2.10 and 2.11 we
know that simple objects in Tℵ1

are characterized by 4 arbitrary Young diagrams λ1, λ0, µ, ν:

Vλ1,λ0,µ,ν = (V ∗/V ∗
ℵ1
)λ1

⊗ (V ∗
ℵ1
/V∗)λ0

⊗ Vµ,ν ,

and has injective hull

Ṽλ1,λ0,µ,ν = (V ∗/V ∗
ℵ1
)λ1

⊗ (V ∗/V∗)λ0
⊗ (V ∗)µ ⊗ Vν .

We will now explain the process of building the minimal injective resolution of Vλ1,λ0,µ,ν

0 → Vλ1,λ0,µ,ν → I0 → I1 → ....

First, we let I0 := Ṽλ1,λ0,µ,ν , the injective hull of Vλ1,λ0,µ,ν , and thus the sequence

0 → Vλ1,λ0,µ,ν
ϵ−→ I0

is exact. Next, we identify Vλ1,λ0,µ,ν with its image in I0 = Ṽλ1,λ0,µ,ν , and construct the quotient
module coker ϵ = I0/Vλ1,λ0,µ,ν . Choose I1 to be the injective hull of coker ϵ. Then we have an
injective homomorphism ϕ0 : coker ϵ → I1, which induces a homomorphism d0 : I0 → I1 whose
kernel is Vλ1,λ0,µ,ν . Thus, we have constructed an exact sequence:

0 → Vλ1,λ0,µ,ν → I0 → I1.

Inductively, suppose we have chosen I0, ..., Im along with d0, ..., dm−1. We consider the quotient
module coker dm−1 = Im/ im dm−1 and let Im+1 be the injective hull of coker dm−1. The injective
homomorphism ϕm : coker dm−1 → Im+1 induces a homomorphism dm : Im → Im+1 with kernel
equal to im dm−1. We thus have a following exact sequence (with possibly infinitely many nonzero
terms), denoted by I∗

0 → Vλ1,λ0,µ,ν
ϵ−→ I0

d0

−→ I1
d1

−→ ...
dn−1

−−−→ In
dn

−→ ....(3.1)

The injective resolution I∗ above is by definition the minimal injective resolution of Vλ1,λ0,µ,ν ,
and its length equals the injective dimension of Vλ1,λ0,µ,ν .

Proposition 3.1 (cf. [1]). The minimal injective resolution I∗ of a simple module Vλ1,λ0,µ,ν

has finite length, i.e. there exists n ∈ N such that Im = 0 for all m ≥ n. Thus, every simple
object in Tℵ1

has finite injective dimension.

From now on, we only speak of the injective resolution (3.1) when referring to an injective
resolution of Vλ1,λ0,µ,ν .

We now motivate the research question: In the paper [1], Chirvasitu and Penkov have
established the striking result that the category Tℵ0

is Koszul self-dual, in the sense that a certain
type of Koszul coalgebra C is isomorphic to the opposite of its Koszul dual. This yields a corollary
that helps us calculate the higher extension groups for simple objects of Tℵ0

.

9
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Corollary 3.2 ([1, Corollary 3.37]). For two simple objects in Tℵ0 and every i ≥ 0, we have

dimExtq(Wλ,µ,ν ,Wλ′,µ′,ν′) = multiplicity of Wλ,(µ)⊥,ν in socq+1(W̃λ′,(µ′)⊥,ν′).(3.2)

This corollary establishes a relation between socle filtrations and higher extension groups for
simple objects in Tℵ0

. However, it does not hold in general. Indeed, already in the category Tℵ1

this relation fails and there is no simple conjugating pattern, as explained in this example.

Example 3.3. Consider the socle filtration of the indecomposable object Ṽ∅,(1),(1),∅:

V(2), ∅, ∅, ∅ ⊕ V(1, 1), ∅, ∅, ∅
2V(1), (1), ∅, ∅

V(1), ∅, (1), ∅ ⊕ V∅, (2), ∅, ∅ ⊕ V∅, (1, 1), ∅, ∅
V∅, (1), (1), ∅

and the injective resolution of its socle

0 → V∅,(1),(1),∅ → Ṽ∅,(1),(1),∅ → Ṽ(1),∅,(1),∅ ⊕ Ṽ∅,(2),∅,∅ ⊕ Ṽ∅,(1, 1),∅,∅ → Ṽ(1),(1),∅,∅ → 0.

It shows that dimExt2(V(1),(1),∅,∅, V(1),(1),∅,∅) = 1. Note that by conjugating any Young diagrams
from the indices of V∅,(1),(1),∅ and V(1),(1),∅,∅ we obtain the same objects V∅,(1),(1),∅ and V(1),(1),∅,∅

again. On the other hand, the multiplicity of V(1),(1),∅,∅ in soc3(Ṽ∅,(1),(1),∅) is 2.

Therefore, we are motivated to study the open problem of computing Ext-groups of simple
objects in Tℵ1

.

2. Socle filtrations of indecomposable objects in Tℵ1
and Tℵ0

and supporting lemmas

In this chapter, we will prove some lemmas about the multiplicities of the socle filtrations
of indecomposable injective objects, which will be of much use in the next chapter. Note that
most proofs here are combinatorial and use properties of Littlewood Richardson coefficients. We
denote by [socq(X) : Y ] the multiplicity of Y in the q-th layer of the socle filtration of X.

First, we describe the socle filtration of an indecomposable injective W̃λ0,µ,ν ∈ Tℵ0
. From

[1, Proposition 4.30 and Lemma 4.28 bis], we have

socq(W̃λ0,µ,ν)
∼=

∑
(W ∗/W∗)λ0

⊗ socq((W ∗)µ ⊗Wν).(3.3)

From [1, Lemma 4.29 bis], we have for q = 1 + (|ν| − |ξ|) + |η0|,

[socq((W ∗)µ ⊗ Vν) : Wη0,ξ,ζ ] =
∑
π0,δ

Nµ
π0,η0

Nπ0

ξ,δN
ν
ζ,δ.(3.4)

Similarly, for the indecomposable injectives Ṽλ1,λ0,µ,ν ∈ Tℵ1
, from [1, Proposition 4.30 and

Lemma 4.28 bis], we have for u0 + y = q + 1:

socq(Ṽλ1,λ0,µ,ν)
∼=

∑
(V ∗/V ∗

ℵ1
)λ1 ⊗ socu0((V ∗/V∗)λ0)⊗ socy((V ∗)µ ⊗ Vν).(3.5)

From [1, Lemma 4.28 bis], the only simples appearing as constituents of socu0((V ∗/V∗)λ0) are of
the form Vη1,η0,∅,∅ with |η1| = u0 − 1, and[

socu0((V ∗/V∗)λ0) : Vη1,η0,∅,∅
]
= Nλ0

η1,η0
.(3.6)

Furthermore, from [1, Lemma 4.29 bis], when y = 1 + (|ν| − |ξ|) + |η0|+ 2 |η1|

[socy((V ∗)µ ⊗ Vν) : Vη1,η0,ξ,ζ ] =
∑

π1,π0,δ

Nµ
π1,η1

Nπ1
π0,η0

Nπ0

ξ,δN
ν
ζ,δ.(3.7)

We now prove some useful lemmas for later chapters. We first show that the multiplicity of
Wη0,ξ,ζ in the socle filtration of W̃λ0,µ,ν is the same as the multiplicity of V∅,η0,ξ,ζ in Ṽ∅,λ0,µ,ν .
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Lemma 3.4. [
socy(Ṽ∅,λ0,µ,ν) : V∅,η0,ξ,ζ

]
=

[
socy(W̃λ0,µ,ν) : Wη0,ξ,ζ

]
.(3.8)

Proof. First, from (3.5), we have for u0 + y = q + 1,

socq(Ṽ∅,λ0,µ,ν)
∼=

∑
socu0((V ∗/V∗)λ0

)⊗ socy((V ∗)µ ⊗ Vν).(3.9)

When η1 = ∅, from (3.6) it follows that the simples V∅,η0,∅,∅ can only appear in soc1((V ∗/V∗)λ0
),

and [
soc1((V ∗/V∗)λ0) : V∅,η0,∅,∅

]
= Nλ0

∅,η0
=

{
1 if η0 = λ0,

0 if η0 ̸= λ0.
(3.10)

In that case, from (3.7), we have for y = 1 + (|ν| − |ξ|) + |η0|[
socy((V ∗)µ ⊗ Vν) : V∅,η0,ξ,ζ

]
=

∑
π1,π0,δ

Nµ
π1,∅N

π1
π0,η0

Nπ0

ξ,δN
ν
ζ,δ

=
∑
π0,δ

Nµ
π0,η0

Nπ0

ξ,δN
ν
ζ,δ,

since Nµ
π1,∅ ̸= 0 only when π1 = µ and Nµ

µ,∅ = 1. Note that this latter multiplicity is the same as
(3.4), the lemma thus follows.

□

The next lemma shows that no simple modules of the form Vη1,η0,ξ,ζ with |ξ|+ |ζ| > 0 appear
in the socle filtration of Ṽλ1,λ0,∅,∅.

Lemma 3.5. [
socq(Ṽλ1,λ0,∅,∅) : Vη1,η0,ξ,ζ

]
= 0 unless ξ = ζ = ∅.

Proof. This follows immediately from (3.5). Since socy((V ∗)∅ ⊗ V∅) will not contribute to
the tensor product, we have

socq(Vλ1,λ0,∅,∅)
∼=

∑
(V ∗/V ∗

ℵ1
)λ1

⊗ socu0((V ∗/V∗)λ0
).(3.11)

From (3.6), socu0((V ∗/V∗)λ0
) has only irreducible submodules of the form Vη1,η0,∅,∅. Since there

is no modules of the form Vλ1,λ0,µ,ν with |ξ|+ |ζ| > 0 in either of the tensorands, they will not
appear in the final result as well. □

Here is the analogous result for W̃λ0,µ,∅.

Lemma 3.6. [
socq(W̃λ0,µ,∅) : Wη0,ξ,ζ

]
= 0 if ζ ̸= ∅.

Proof. From (3.3), we note that the first tensorand is (W ∗/W∗)λ0
, thus we only need to

check that no modules of the form Wη0,ξ,ζ with ζ ̸= ∅ appear in socq((W∗)µ ⊗W∅). From (3.4),
we have

[socq((W ∗)µ ⊗ V∅) : Wη0,ξ,ζ ] =
∑
π0,δ

Nµ
π0,η0

Nπ0

ξ,δN
∅
ζ,δ = 0

since N∅
ζ,δ = 0 for all ζ ̸= ∅. □

The next lemma is an important ingredient in Proposition 4.30.
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Lemma 3.7. [
socy(Ṽλ1,λ0,∅,∅) : Vη1,η0,∅,∅

]
=

[
socy(W̃λ1,λ0,∅) : Wη1,η0,∅

]
.

Proof. When µ = ν = ∅, (3.5) becomes

(3.12) socq(Ṽλ1,λ0,∅,∅)
∼=

∑
(V ∗/V ∗

ℵ1
)λ1

⊗ socq((V ∗/V∗)λ0
),

whereas for W̃λ1,λ0,∅, (3.4) becomes[
socq((W ∗)λ0 ⊗ V∅) : Wη1,η0,∅

]
=

∑
π0,δ

Nλ0
π0,η1

Nπ0

η0,δ
N∅

∅,δ =
∑
π0

Nλ0
π0,η1

Nπ0

η0,∅ = Nλ0
η0,η1

.

Thus
[
socq((W ∗)λ0 ⊗ V∅) : Wη1,η0,∅

]
=

[
socu0(((V ∗/V∗)λ0)) : Vη1,η0,∅,∅

]
. From (3.12) and (3.3),

we have [
socy(Ṽλ1,λ0,∅,∅) : Vη1,η0,∅,∅

]
=

[
socy(W̃λ1,λ0,∅) : Wη1,η0,∅

]
.

□

Last, we prove a lemma that would help us obtain a new injective resolution when we tensor
with a factor.

Lemma 3.8. For an injective module I in Tℵ1
, the following modules are also injective:

(1) (V ∗/V ∗
ℵ1
)λ1 ⊗ I,

(2) (V ∗/V∗)λ0 ⊗ I,
(3) (V ∗)ν ⊗ I,
(4) Vµ ⊗ I.

Proof. We will prove the statement for (V ∗/V ∗
ℵ1
)λ1 ⊗ I, the rest of the Lemma follows a

similar argument. We can write each injective module I as finite direct sum of the indecomposable
injectives Ṽλ′

1,λ
′
0,µ

′,ν′ = (V ∗/V ∗
ℵ1
)λ′

1
⊗ (V ∗/V∗)λ′

0
⊗ (V ∗)µ′ ⊗ Vν′ . By the Schur functor, we have

(V ∗/V ∗
ℵ1
)λ′

1
⊗ (V ∗/V ∗

ℵ1
)λ1

≃
⊕
λ′′
1

N
λ′′
1

λ′
1,λ1

(V ∗/V ∗
ℵ1
)λ′′

1
,(3.13)

where the multiplicities Nλ′′
1

λ′
1,λ1

are Littlewood-Richardson coefficients given by Littlewood–Richardson
rule. Therefore, (V ∗/V ∗

ℵ1
)λ1 ⊗ I is again a finite direct sum of indecomposable injectives, thus an

injective module. □



CHAPTER 4

Results

1. First result

In this section, we compute Exti(V∅,λ0,µ,ν , V∅,λ′
0,µ

′,ν′) by reducing to a result in the category
Tℵ0 . As pointed out in the Introduction, we write Vλ1,λ0,µ,ν and Wλ0,µ,ν for the simple modules
in Tℵ1

and Tℵ0
respectively. We first look at an example.

Example 4.1. An injective resolution of V∅,∅,(1,1),(1) is

0 → V∅,∅,(1,1),(1) → Ṽ∅,∅,(1,1),(1) → Ṽ∅,∅,(1),∅ ⊕ Ṽ∅,(1),(1),(1) → Ṽ∅,(1),∅,∅ ⊕ Ṽ∅,(2),∅,(1) → 0.

Hence the nonzero Ext-groups Ext·(X,V∅,∅,(1,1),(1)) for simple modules X are

Ext0(V∅,∅,(1,1),(1), V∅,∅,(1,1),(1)) = K,

Ext1(V∅,∅,(1),∅, V∅,∅,(1,1),(1)) = K, Ext1(V∅,(1),(1),(1), V∅,∅,(1,1),(1)) = K,

Ext2(V∅,(1),∅,∅, V∅,∅,(1,1),(1)) = K, Ext2(V∅,(2),∅,(1), V∅,∅,(1,1),(1)) = K.

Motivated by this example, our goal of this section is to show the following Theorem.

Theorem 4.2.

ExtiTℵ1
(V∅,λ0,µ,ν , V∅,λ′

0,µ
′,ν′) ∼= ExtiTℵ0

(Wλ0,µ,ν ,Wλ′
0,µ

′,ν′).(4.1)

Our main strategy goes as follows: We will use a reduction process suggested by torsion theory.
In particular, we define a torsion class T1 that contains V∅,λ0,µ,ν , then reduce the Ext-groups for
simple objects in T1 to Ext-groups for simple objects in Tℵ0 . Following [4], we first recall the
notion of a torsion theory.

Definition 4.3. [4] A torsion theory for an abelian category C is a pair (T ,F) of strictly
full subcategories (i.e. full and closed under isomorphisms) T ,F of C satisfying:

(1) Extension Axiom: For each object X of C there is an exact sequence:

0 → T → X → F → 0,

with T ∈ T and F ∈ F .
(2) Orthogonality Axiom: Hom(T, F ) = 0 for each T ∈ T , F ∈ F .
T is then called a torsion class, and F is called a torsion-free class.

Let T1 be the strictly full subcategory of Tℵ1
whose objects Y admit filtrations with simple

subquotients of the form V∅,η0,ξ,ζ . For each object X, let Xt be the maximal subobject of X
which is an object in T1. On the other hand, let F1 be the strictly full subcategory whose objects
admit filtrations with simple subquotients of the form Vη1,η0,ξ,ζ for η1 ̸= ∅. We will show that
(T1,F1) is a torsion theory of Tℵ1

. First, we study the maximal subobjects in T1 of simple objects
and indecomposable injectives in Tℵ1

.
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Lemma 4.4. We have

(V∅,λ0,µ,ν)t = V∅,λ0,µ,ν ,(4.2)
(Vλ1,λ0,µ,ν)t = 0 if λ1 ̸= 0,(4.3)

(Ṽ∅,λ0,µ,ν)t = (V ∗
ℵ1
/V∗)λ0

⊗ (V ∗
ℵ1
)µ ⊗ Vν , and(4.4)

(Ṽλ1,λ0,µ,ν)t = 0 if λ1 ̸= 0.(4.5)

Proof. The first two equations are obvious since V∅,λ0,µ,ν ∈ T1 and Vλ1,λ0,µ,ν ∈ F1 for
λ1 ̸= ∅. For the last equation, note that soc1(Ṽλ1,λ0,µ,ν) = Vλ1,λ0,µ,ν is a simple module with
λ1 ̸= 0. Thus, all nonzero subobjects of Ṽλ1,λ0,µ,ν contain Vλ1,λ0,µ,ν , and (Ṽλ1,λ0,µ,ν)t = 0 in this
case.

Note that V∅,λ0,µ,ν is of dimension at most ℵ1 thus (Ṽ∅,λ0,µ,ν)t is the maximal subobject
of Ṽ∅,λ0,µ,ν with dimension at most ℵ1 (so that the subquotients of its filtration have the form
V∅,η0,ξ,ζ). Thus, the third equation follows

(Ṽ∅,λ0,µ,ν)t = (V ∗
ℵ1
/V∗)λ0

⊗ (V ∗
ℵ1
)µ ⊗ Vν .

□

Lemma 4.5. The quotients Ṽλ1,λ0,µ,ν/(Ṽλ1,λ0,µ,ν)t are objects in F1.

Proof. We note that for λ1 ̸= ∅, Ṽλ1,λ0,µ,ν/(Ṽλ1,λ0,µ,ν)t = Ṽλ1,λ0,µ,ν is an object of F1. For
the quotient Ṽ∅,λ0,µ,ν/(Ṽ∅,λ0,µ,ν)t, we have the filtration:

(V ∗
ℵ1
/V∗)λ0 ⊗ (V ∗

ℵ1
)µ ⊗ Vν ⊂ (V ∗

ℵ1
/V∗)λ0 ⊗ (V ∗)µ ⊗ Vν ⊂ (V ∗/V∗)λ0 ⊗ (V ∗)µ ⊗ Vν .(4.6)

The first quotient of the filtration (4.6) is of the form (V ∗
ℵ1
/V∗)λ0

⊗ (V ∗/V ∗
ℵ1
)µ ⊗ Vν and the

second quotient of the filtration (4.6) is of the form (V ∗/V ∗
ℵ1
)λ0

⊗ (V ∗)µ ⊗ Vν . Therefore, we
can see that all subquotients of the filtration of Ṽ∅,λ0,µ,ν/(Ṽ∅,λ0,µ,ν)t have the form Vη1,η0,ξ,ζ with
η1 ̸= ∅. Thus Ṽ∅,λ0,µ,ν/(Ṽ∅,λ0,µ,ν)t ∈ F1. □

Proposition 4.6. The category T1 defined above is a torsion class.

Proof. There is no nontrivial module homomorphism between two nonisomorphic simple
objects. Moreover, simple subquotients in the filtration of T ∈ T1 and F ∈ F1 are of different
forms V∅,η0,ξ,ζ and Vη1,η0,ξ,ζ with η1 ≠ ∅ respectively. Therefore, the Orthogonality Axiom follows.

We now check the Extension Axiom: for each object X of Tℵ1 , we embed X into an injective
module I. Let It be the maximal subobject of I such that It ∈ T1. Note that I/It can be written
as direct sum of corresponding quotients of indecomposable injectives Ṽλ1,λ0,µ,ν/(Ṽλ1,λ0,µ,ν)t.
Lemma 4.5 shows that Ṽλ1,λ0,µ,ν/(Ṽλ1,λ0,µ,ν)t (and hence I/It) has only subquotients of the form
Vη1,η0,ξ,ζ with η1 ̸= ∅. Thus I/It ∈ F1. Let Xt = X ∩ It, then X + It is a submodule of I and
the quotient module X/Xt

∼= (X + It)/It is a submodule of I/It. Hence X/Xt admits a filtration
with subquotients of the form Vη1,η0,ξ,ζ with η1 ̸= ∅. In other words, X/Xt ∈ F1 and we have the
short exact sequence:

0 → Xt → X → X/Xt → 0.

Therefore, the Extension Axiom is statisfied and T1 is a torsion class. □

We now collect some facts about torsion theory.

Proposition 4.7 ([4, Proposition 2.4]). Let (T ,F) be a torsion theory, and M be an arbitrary
object in C. Then there is a unique largest subobject Mt of M such that Mt ∈ T . Moreover,
M/Mt ∈ F .
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Corollary 4.8 ([4, Corollary 2.5]). The correspondence M → Mt defines a functor r : C → C:
(1) given f : A → B, then r(f) : At → Bt is the restriction of f ,
(2) r(A/r(A)) = 0,
(3) r2 = r.

Hence there is a functor r : Tℵ1 → Tℵ1 is defined by the correspondence X → Xt as above.
Lemma 4.4 can be reformulated in terms of this functor r.

We calculate the Ext-groups of a pair of simple objects by building an injective resolution of
the second object. This injective resolution is finite, as explained in Chapter 3. In particular, let

0 → V∅,λ′
0,µ

′,ν′ → I0 → I1 → ... → In → 0(4.7)

be an injective resolution for V∅,λ′
0,µ

′,ν′ . We have the corresponding cochain complex with
Vλ1,λ0,µ,ν :

0 → Hom(Vλ1,λ0,µ,ν , I
0) → Hom(Vλ1,λ0,µ,ν , I

1) → ... → Hom(Vλ1,λ0,µ,ν , I
n) → 0.(4.8)

Corollary 4.9. For the reduction functor r as defined above, we have

Hom(V∅,λ0,µ,ν , I
n) ∼= Hom(V∅,λ0,µ,ν , rI

n).

Proof. This follows immediately from the definition of Torsion theory. As Hom(V∅,λ0,µ,ν ,_)
is left-exact, the exact sequence from the Extension Axiom

0 −→ r(In) −→ In −→ In/r(In) −→ 0

gives rise to the exact sequence:

0 −→ Hom(V∅,λ0,µ,ν , r(I
n)) −→ Hom(V∅,λ0,µ,ν , I

n) −→ Hom(V∅,λ0,µ,ν , I
n/r(In)).

Since Hom(V∅,λ0,µ,ν , I
n/r(In)) = 0 due to the Orthogonality Axiom, we obtain

Hom(V∅,λ0,µ,ν , r(I
n)) ∼= Hom(V∅,λ0,µ,ν , I

n).

□

Hence, we have an immediate corollary that transfers the Ext-groups of simple objects of the
form V∅,λ0,µ,ν in Tℵ1 to those in T1.

Corollary 4.10.

ExtiTℵ1
(V∅,λ0,µ,ν , V∅,λ′

0,µ
′,ν′) ∼= ExtiT1

(V∅,λ0,µ,ν , V∅,λ′
0,µ

′,ν′).(4.9)

We are now equipped to reduce the Ext-groups ExtiT1
(V∅,λ0,µ,ν , V∅,λ′

0,µ
′,ν′) to the Ext-groups

ExtiTℵ0
(Wλ0,µ,ν ,Wλ′

0,µ
′,ν′). To do so, we utilize a result on ordered categories.

Proposition 4.11. Let C and C′ be two ordered finite length tensor categories of finite type
with the property that a bijection between their classes of simple objects

α : SC −→ SC′(4.10)

is given and is compatible with the socle filtrations of the injective hulls of simple modules in the
sense that α commutes with passing to each layer. Then

dimExtkC(A,B) = dimExtkC′(α(A), α(B)).(4.11)

Proof. Let B be an arbitrary object in C and let

(4.12) 0 → B → I1 → ... → In → 0

be a finite length minimal injective resolution of B and

(4.13) 0 → Hom(A, I0) → ... → Hom(A, In) → 0.
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Since α is compatible with socle filtrations, we have Hom(A, Ik) = Hom(α(A), α(Ik)). Thus

(4.14) 0 → Hom(α(A), α(I0)) → ... → Hom(α(A), α(In)) → 0

is the cochain complex for α(B), and dimExtkC(A,B) = dimExtkC′(α(A), α(B)). □

First and foremost, we note that all simple objects in the category T1 are (isomorphic to)
V∅,λ0,µ,ν , and hence we define the map α between simple objects:

α : ST1
−→ STℵ0

,

V∅,λ0,µ,ν 7−→ Wλ0,µ,ν .

Since each of these simple objects are mutually non-isomorphic for different choices of λ0, µ, ν,
we can see that α is a bijection. Next, we need to check its compatibility with the socle filtration
of the indecomposable injectives.

In [1], we recall the underlying set I of the poset indexing the objects Xi ∈ Tℵt consists of
all finite tuples

(nt, ..., n0, n,m)

of nonnegative integers where each ns = |λs|. A partial order on I is defined by setting

(4.15) (nt, ..., n0, n,m) ⪯ (n′
t, ..., n

′
0, n

′,m′)

if and only if the following conditions hold:
C.1 If k is the largest index with nk ̸= n′

k, then nk ≥ n′
k;

C.2 m ≤ m′ and n ≤ n′;
C.3 nt + ...+ n0 + n−m = n′

t + ...+ n′
0 + n′ −m′.

Proposition 4.12. The partial order in T1 induced by the order (4.15) in Tℵ1
is the same

as the order (4.15) in Tℵ0
.

Proof. We only need to check that the two sets of conditions in (4.15) for the two orders in
T1 and Tℵ0

are the same.
The conditions in (4.15) in T1 become
D.1 n0 ≥ n′

0 (as both n1 = n′
1 = 0),

D.2 m ≤ m′ and n ≤ n′,
D.3 n0 + n−m = n′

0 + n′ −m′,
which are identical to the conditions (4.15) of the order on the underlying poset of Tℵ0

. □

Lastly, we need to check the following

Proposition 4.13.[
socy(r(Ṽ∅,λ′

0,µ
′,ν′)) : V∅,λ0,µ,ν

]
=

[
socy(W̃λ′

0,µ
′,ν′) : Wλ0,µ,ν

]
.(4.16)

Proof. We prove that both sides of the equation above equal
[
socy(Ṽ∅,λ′

0,µ
′,ν′) : V∅,λ0,µ,ν

]
.

First, we need to show that[
socy(r(Ṽ∅,λ′

0,µ
′,ν′)) : V∅,λ0,µ,ν

]
=

[
socy(Ṽ∅,λ′

0,µ
′,ν′) : V∅,λ0,µ,ν

]
.(4.17)

To do so, we will show that r(Ṽ∅,λ′
0,µ

′,ν′) preserves all simple subquotients of the form V∅,η0,ξ,ζ .
Note that r(Ṽ∅,λ′

0,µ
′,ν′) = (V ∗

ℵ1
/V∗)λ0

⊗ (V ∗
ℵ1
)µ ⊗ Vν and consider the filtration

(V ∗
ℵ1
/V∗)λ′

0
⊗ (V ∗

ℵ1
)µ′ ⊗ Vν′ ⊂ (V ∗

ℵ1
/V∗)λ′

0
⊗ (V ∗)µ′ ⊗ Vν′ ⊂ (V ∗/V∗)λ′

0
⊗ (V ∗)µ′ ⊗ Vν′ .(4.18)

The first quotient defined by the filtration (4.18) is of the form (V ∗
ℵ1
/V∗)λ′

0
⊗ (V ∗/V ∗

ℵ1
)µ′ ⊗Vν′

and hence has no subquotients of the form V∅,η0,ξ,ζ . Likewise, the second quotient defined by
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(4.18) is of the form (V ∗/V ∗
ℵ1
)λ′

0
⊗ (V ∗)µ′ ⊗ Vν′ and has no subquotients of the form V∅,η0,ξ,ζ .

Therefore, all subquotients V∅,η0,ξ,ζ of Ṽ∅,λ′
0,µ

′,ν′ are preserved in r(Ṽ∅,λ′
0,µ

′,ν′), and Equation(4.17)
follows.

The equation [
socy(Ṽ∅,λ′

0,µ
′,ν′) : V∅,λ0,µ,ν

]
=

[
socy(W̃λ′

0,µ
′,ν′) : Wλ0,µ,ν

]
.(4.19)

was proven already in Lemma 3.4, which completes the proof. □

These propositions together with the Proposition 4.11 yield immediately a corollary, which
gives us the desired Theorem 4.2.

Corollary 4.14.

ExtiT1
(V∅,λ0,µ,ν , V∅,λ′

0,µ
′,ν′) = ExtiTℵ0

(Wλ0,µ,ν ,Wλ′
0,µ

′,ν′).(4.20)

□

Remark 4.15. Note that this result does not completely characterize all nonzero Ext-groups
between arbitrary simple objects Vλ1,λ0,µ,ν with V∅,λ′

0,µ
′,ν′ as it only indicates what happens when

λ1 = ∅. One might think that all the indecomposable injectives appearing in the injective resolution
4.7 have the Ṽ∅,η0,ξ,ζ . But this is not true in general, as shown in the following example.

Example 4.16.

0 → V∅,(1),(1),(1) → Ṽ∅,(1),(1),(1) → Ṽ(1),∅,(1),(1) ⊕ Ṽ∅,(1),∅,∅ ⊕ Ṽ∅,(2),∅,(1) ⊕ Ṽ∅,(1, 1),∅,(1)

→ Ṽ(1),∅,∅,∅ ⊕ Ṽ(1),(1),∅,(1) → 0.

Thus, we have Ext1Tℵ1
(V(1),∅,(1),(1), V∅,(1),(1),(1)) = K.

2. Second result

In this section, we will extend the first result from the case where the first two diagrams are
empty to the case where they are nonempty but equal, i.e. ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ1,λ′
0,µ

′,ν′). We
start by looking at an example to get some intuition.

Example 4.17. We have the resolution for V∅, (1), (1), ∅:

0 → V∅,(1),(1),∅ → Ṽ∅,(1),(1),∅ → Ṽ(1),∅,(1),∅ ⊕ Ṽ∅,(2),∅,∅ ⊕ Ṽ∅,(1, 1),∅,∅ → Ṽ(1),(1),∅,∅ → 0.

And the resolution for V(1, 1),(1),(1),∅:

0 → V(1, 1),(1),(1),∅ → Ṽ(1, 1),(1),(1),∅

→ Ṽ(2, 1),∅,(1),∅ ⊕ Ṽ(1, 1, 1),∅,(1),∅ ⊕ Ṽ(1, 1),(2),∅,∅ ⊕ Ṽ(1, 1),(1, 1),∅,∅

→ Ṽ(2, 1),(1),∅,∅ ⊕ Ṽ(1, 1, 1),(1),∅,∅ → 0.

Thus, we notice that

Ext0Tℵ1
(V(1, 1),(1),(1),∅, V(1, 1),(1),(1),∅) ∼= Ext0Tℵ1

(V∅,(1),(1),∅, V∅,(1),(1),∅)

∼= Ext0Tℵ0
(W(1),(1),∅,W(1),(1),∅),

Ext1Tℵ1
(V(1, 1),(2),∅,∅, V(1, 1),(1),(1),∅) ∼= Ext1Tℵ1

(V∅,(2),∅,∅, V∅,(1),(1),∅)

∼= Ext1Tℵ0
(W(2),∅,∅,W(1),(1),∅).

More precisely, we will show the following Theorem.
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Theorem 4.18.

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ1,λ′

0,µ
′,ν′) ∼= ExtiTℵ1

(V∅,λ0,µ,ν , V∅,λ′
0,µ

′,ν′)(4.21)
∼= ExtiTℵ0

(Wλ0,µ,ν ,W∅µ′,ν′).(4.22)

Proof. To this end, let I∗ be an injective resolution for V∅,λ′
0,µ

′,ν′ :

0 → V∅,λ′
0,µ

′,ν′ → I0 → I1 → ... → In → 0.

Tensor each term of I∗ with (V ∗/V ∗
ℵ1
)λ1 and note that since Ṽλ1,λ′

0,µ
′,ν′ = (V ∗/V ∗

ℵ1
)λ1 ⊗ Ṽ∅,λ′

0,µ
′,ν′ ,

we have an exact sequence

0 → V∅,λ′
0,µ

′,ν′ → (V ∗/V ∗
ℵ1
)λ1

⊗ I0 → (V ∗/V ∗
ℵ1
)λ1

⊗ I1 → ... → (V ∗/V ∗
ℵ1
)λ1

⊗ In → 0.

Lemma 3.8 in the previous chapter showed that each (V ∗/V ∗
ℵ1
)λ1

⊗ In is injective, and we
thus have an injective resolution of Vλ1,λ′

0,µ
′,ν′ . Since Ṽλ1,λ′

0,µ
′,ν′ = (V ∗/V ∗

ℵ1
)λ1

⊗ Ṽ∅,λ′
0,µ

′,ν′ , we
observe that if Ṽ∅,λ′

0,µ
′,ν′ is a submodule of Ik, then Ṽλ1,λ′

0,µ
′,ν′ is a submodule of (V ∗/V ∗

ℵ1
)λ1

⊗Ik.

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ1,λ′

0,µ
′,ν′) ∼= ExtiTℵ1

(V∅,λ0,µ,ν , V∅,λ′
0,µ

′,ν′).

□

3. Third result

Similarly to the first section, in this section, we will compute ExtiTℵ1
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅) by

reducing to results in the category Tℵ0 . We first look at an example.

Example 4.19. Consider the injective resolution for V(1), (1, 1), ∅,∅:

0 → V(1),(1, 1),∅,∅ → Ṽ(1),(1, 1),∅,∅ → Ṽ(2),(1),∅,∅ ⊕ Ṽ(1, 1),(1),∅,∅ → Ṽ(3),∅,∅,∅ ⊕ Ṽ(2, 1),∅,∅,∅ → 0.

Thus, the nonzero Ext-groups are:

Ext0(V(1),(1, 1),∅,∅, V(1),(1, 1),∅,∅) = K,

Ext1(V(2),(1),∅,∅, V(1),(1, 1),∅,∅) = K, Ext1(V(1, 1),(1),∅,∅, V(1),(1, 1),∅,∅) = K,

Ext2(V(3),∅,∅,∅, V(1),(1, 1),∅,∅) = K, Ext2(V(2, 1),∅,∅,∅, V(1),(1, 1),∅,∅) = K.

Our goal of this section is to establish the following theorem.

Theorem 4.20.

ExtiTℵ1
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅)

∼= ExtiTℵ0
(Wλ1,λ0,∅,Wλ′

1,λ
′
0,∅).(4.23)

Our main startegy goes as follows: We first define a torsion class T2 in Tℵ1 and then reduce
the Ext-groups of simple objects in Tℵ1

to those of T2. We then define another torsion class T3 in
Tℵ0

and reduce the Ext-groups of simple objects in Tℵ0
to those of T3. Lastly, we show that the

Ext-groups in T2 and T3 are isomorphic.
Let T2 be the strictly full subcategory of Tℵ1

whose objects Y have socle filtrations with
simple subquotients of the form Vη1,η0,∅,∅. For each object X, let Xt be the maximal subobject
of X which is an object of T2. We will show that T2 is a torsion class.

Lemma 4.21.

(Vλ1,λ0,∅,∅)t = Vλ1,λ0,∅,∅,(4.24)
(Vλ1,λ0,µ,ν)t = 0 if µ ̸= ∅ or ν ̸= ∅,(4.25)

(Ṽλ1,λ0,∅,∅)t = Ṽλ1,λ0,∅,∅, and(4.26)

(Ṽλ1,λ0,µ,ν)t = 0 if µ ̸= ∅ or ν ̸= ∅.(4.27)
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Proof. The first and second equations are obvious since Vλ1,λ0,∅,∅ ∈ T2 and Vλ1,λ0,µ,ν ∈ F2

for µ ̸= ∅ or ν ̸= ∅. The third equation follows from the assertion that all simple subquotients in
the socle filtration of the indecomposable injectives of Ṽλ1,λ0,∅,∅ are of the form Vη1,η0,∅,∅, which
was proven in Lemma 3.5 in the last chapter. For the last equation, note that soc(Ṽλ1,λ0,µ,ν) is
simple object Vλ1,λ0,µ,ν with µ ̸= ∅ or ν ̸= ∅. Thus, all subobjects of Ṽλ1,λ0,µ,ν have Vλ1,λ0,µ,ν as
a subobject, hence (Ṽλ1,λ0,µ,ν)t = 0 in this case. □

Proposition 4.22. The category T2 defined above is a torsion class.

Proof. Let F2 be the strictly full subcategory whose objects admit socle filtrations with
subquotients of the form Vη1,η0,ξ,ζ with ξ ̸= ∅ and ζ ̸= ∅. The simple subquotients in the
filtration of T ∈ T2 and F ∈ F2 are of different form: Vη1,η0,∅,∅ and Vη1,η0,ξ,ζ with ξ ̸= ∅ or ζ ̸= ∅
respectively. Therefore, the Orthogonality Axiom follows.

We now check the Extension axiom: for an object X of Tℵ1 , fix an embedding of X into an
injective module I. Let It be the maximal subobject of I such that It ∈ T2. It immediately follows
from Lemma 4.21 that Ṽλ1,λ0,µ,∅/(Ṽλ1,λ0,µ,∅)t ∈ F2. And since I/It can be written as direct sum
of quotients of indecomposable injective Ṽλ1,λ0,µ,∅/(Ṽλ1,λ0,µ,∅)t, I/It has only subquotients of the
form Vη1,η0,ξ,ζ with ξ ̸= ∅ and ζ ≠ ∅. Thus I/It ∈ T2. For Xt := X∩It, by the second isomorphism
theorem X + It is a submodule of I and X/Xt

∼= (X + It)/It. By the third isomorphism theorem
(X + It)/It is a submodule of I/It, hence we infer that all subquotients of X/Xt have the form
Vη1,η0,ξ,ζ with ξ ̸= ∅ and ζ ̸= ∅. In other words, X/Xt ∈ F1 and we have the short exact sequence:

0 → Xt → X → X/Xt → 0.

Thus, the Extension Axiom is satisfied and T2 is a torsion class. □

Analogously, following Proposition 4.7, we define the functor s : Tℵ1 → Tℵ1 by the corres-
pondence X → Xt as above. Lemma 4.21 can be reformulated in terms of s.

Remark 4.23. We note that the functor s is actually nicer than the previous functor r in the
previous section. The reason is that it sends simple objects and indecomposable injectives either
to themselves or to 0, depending on the last two diagrams.

Due to this nice property, we immediately get[
socq(Ṽλ1,λ0,∅,∅) : Vλ′

1,λ
′
0,∅,∅

]
=

[
socq(s(Ṽλ1,λ0,∅,∅)) : s(Vλ′

1,λ
′
0,∅,∅)

]
.

Following the same steps, we build a finite injective resolution of Vλ′
1,λ

′
0,∅,∅

0 → Vλ′
1,λ

′
0,∅,∅ → I0 → I1 → ... → In → 0(4.28)

with the corresponding cochain complex for Vλ1,λ0,∅,∅:

0 → Hom(Vλ1,λ0,∅,∅, I
0) → Hom(Vλ1,λ0,µ,∅, I

1) → ... → Hom(Vλ1,λ0,µ,∅, I
n).(4.29)

Similarly to Section 1, we note that the sequence obtained by the functor s is in fact the
same cochain complex (4.29) due to the following corollary.

Corollary 4.24. For the reduction functor s defined above, we have

Hom(Vλ1,λ0,∅,∅, I
n) ∼= Hom(Vλ1,λ0,∅,∅, sI

n).

Proof. The proof is analogous to the proof of Corollary 4.9 so we will not repeat it here. □

Therefore, we have also the following.
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Corollary 4.25.

ExtiTℵ1
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅′) ∼= ExtiT2

(Vλ1,λ0,∅,∅, Vλ′
1,λ

′
0,∅,∅′).(4.30)

□

Unlike Section 1, note that we have to define another torsion category T3 in Tℵ0
to apply the

Proposition 4.11 concerning ordered categories.
Let T3 be the strictly full subcategory of Tℵ0

whose objects Y admits the socle filtrations with
simple subquotients of the form Wλ0,µ,∅. For each object X, let Xt be the maximal subobject of
X which is an object of T3. We will show that T3 is a torsion class.

Proposition 4.26.

(Wλ0,µ,∅)t = Wλ0,µ,∅,(4.31)

(W̃λ0,µ,∅)t = W̃λ0,µ,∅,(4.32)
(Wλ0,µ,ν)t = 0 if ν ̸= ∅, and(4.33)

(W̃λ0,µ,∅)t = 0 if ν ̸= ∅.(4.34)

Proof. The proof again is analogous to the proof of Lemma 4.21, together with Lemma
3.6 showing that all simple subquotients in the socle filtration of the indecomposable injectives
W̃λ0,µ,∅ are of the form Wλ′

1,λ
′
0,∅. □

Proposition 4.27. The category T3 defined above is a torsion class.

Proof. Let F3 be the strictly full subcategory whose objects admit socle filtrations with
subquotients of the form Wλ0,µ,ν with ν ̸= ∅. The proof is then analogous to the case of T2.

□

The functor t : Tℵ0
→ Tℵ0

is defined by the correspondence X → Xt as above. Analogously,
we get

Corollary 4.28.

ExtiTℵ0
(Wλ0,µ,∅,Wλ′

0,µ
′,∅) ∼= ExtiT3

(Wλ0,µ,∅,Wλ′
0,µ

′,∅).(4.35)

□

To reduce the Ext-groups ExtiT2
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅′) to the Ext-groups ExtiT3

(Wλ1,λ0,∅,Wλ′
1,λ

′
0,∅′),

we can follow the same steps as above. To do so, we utilize again Proposition 4.11 with the
following map:

β : ST2
−→ ST3

,

Vλ1,λ0,∅,∅ 7−→ Wλ1,λ0,∅.

Since each of these simple objects are mutually non-isomorphic for different choices of λ1, λ0,
we easily see that β is a bijection. Next, we need to check its compatibility with the socle filtration
of the indecomposable injectives.

Proposition 4.29. The partial order in T2 induced by the partial order (4.15) in Tℵ1
is the

same as the partial order in T3 induced by the partial order (4.15) in Tℵ0
.

Proof. We only need to check that the two sets of conditions (4.15) for the two orders in T2
and T3 are the same. We use the same notatuon that n1 = |λ1|, n0 = |λ0|.

The set of inequalities (4.15) in T2 becomes:
E.1 If k is the largest index with nk ̸= n′

k, then nk ≥ n′
k;
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E.2 n1 + n0 = n′
1 + n′

0;
If k = 0, then n1 = n′

1, thus n0 = n′0. If k = 1, then n1 ≥ n′
1, then the second condition adds

another condition that n0 ≤ n′
0. Thus, we have

F.1 n1 ≥ n′
1;

F.2 n0 ≤ n′
0;

F.3 n1 + n0 = n′
1 + n′

0;
which is identical to the order of the underlying poset of T3 induced by Tℵ0

. □

Since s(Ṽλ′
1,λ

′
0,∅,∅) = Ṽλ′

1,λ
′
0,∅,∅ and t(W̃λ′

1,λ
′
0,∅) = W̃λ′

1,λ
′
0,∅, Lemma 3.6 gives us the final piece

from Proposition 4.11 on ordered categories.

Proposition 4.30.[
socy(s(Ṽλ′

1,λ
′
0,∅,∅)) : Vλ1,λ0,∅,∅

]
=

[
socy(t(W̃λ′

1,λ
′
0,∅)) : Wλ1,λ0,∅

]
.

These propositions, together with the Proposition 4.11, yield an immediate corollary, which
gives us the desired equation (4.20).

Corollary 4.31.

ExtiT2
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅)

∼= ExtiT3
(Wλ1,λ0,∅,Wλ′

1,λ
′
0,∅).(4.36)

□

With that, we have successfully shown the third result from Theorem 4.20:

ExtiTℵ1
(Vλ1,λ0,∅,∅, Vλ′

1,λ
′
0,∅,∅)

∼= ExtiTℵ0
(Wλ1,λ0,∅,Wλ′

1,λ
′
0,∅).

Remark 4.32. Note that unlike the first result, Theorem 4.20 completely characterizes all
the nonzero Ext-groups of simple objects of the form Vλ1,λ0,∅,∅ in Tℵ1

. This is because, as we can
see in Example 4.19, there are no indecomposable injectives of the form Ṽλ′

1,λ
′
0,µ,ν

with µ ̸= ∅ or
ν ̸= ∅ in the injective resolution of Vλ1,λ0,∅,∅.

Theorem 4.33.

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,∅) = 0 for µ ̸= ∅ or ν ̸= ∅.(4.37)

Proof. We will show that the indecomposable injectives that appear in the injective resolu-
tion of Vλ′

1,λ
′
0,∅,∅ all have the form Ṽλ1,λ0,∅,∅ by induction on the injective dimension.

Base case: k = 0. Since I0 = Ṽλ′
1,λ

′
0,∅,∅, the statement holds for k = 0.

Induction step: Suppose the statement is true for k. Let M = coker dk−1 where dk−1 :
Ik−1 → Ik. By induction hypothesis, the indecomposable injectives in Ik−1 and Ik are both of
the form Ṽλ1,λ0,∅,∅. Moreover, by Lemma 3.5, we note that all simple subquotients of Ṽλ1,λ0,∅,∅
(hence of M = coker dk−1 and of Ik+1) are of the form Vη1,η0,∅,∅. Thus, the statement holds for
k + 1.

Therefore, there are no indecomposable injectives of the form Ṽλ1,λ0,µ,ν with µ ̸= ∅ or ν ̸= ∅
in the injective resolution of Vλ′

1,λ
′
0,∅,∅. Since the Ext-groups of simple objects are independent of

the choice of the resolution, we have

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,∅) = 0 for µ ̸= ∅ or ν ̸= ∅.

□

Putting everything together, we have

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,∅)

∼=

{
ExtiTℵ0

(Wλ1,λ0,∅,Wλ′
1,λ

′
0,∅) if µ = ∅, ν = ∅,

0 otherwise .
(4.38)
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4. Fourth result

In this section, we will expand the previous result to the case where the last diagrams are the
same, i.e. we will show that:

Theorem 4.34.

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,ν′) ∼=

{
ExtiTℵ0

(Wλ1,λ0,∅,Wλ′
1,λ

′
0,∅) if µ = ∅, ν = ν′,

0 otherwise .
(4.39)

Proof. This proof follows the proof of 4.18. Namely, we take the injective resolution of
Vλ′

1,λ
′
0,∅,∅ and tensor each term with (V )µ′ (Lemma 3.8 then shows that each term is again

injective) to get the injective resolution of Ṽλ′
1,λ

′
0,∅,ν′ . Moreover, note that only indecomposable

injectives of the form Ṽλ1,λ0,∅,∅ appear in resolution of Vλ′
1,λ

′
0,∅,∅, thus only indecomposable

injectives of the form Ṽλ1,λ0,∅,µ′ appear in resolution of Vλ′
1,λ

′
0,∅,µ′ . Consequently,

ExtiTℵ1
(Vλ1,λ0,µ,ν , Vλ′

1,λ
′
0,∅,ν′) ∼=

{
ExtiTℵ0

(Wλ1,λ0,∅,Wλ′
1,λ

′
0,∅) if µ = ∅, ν = ν′,

0 otherwise .

□

Example 4.35.

0 → V∅,(1, 1),∅,(1, 1) → Ṽ∅,(1, 1),∅,(1, 1) → Ṽ(1),(1),∅,(1, 1) → Ṽ(2),∅,∅,(1, 1) → 0.

Thus, all the nonzero Ext-groups are:

Ext0(V∅,(1, 1),∅,(1, 1), V∅,(1, 1),∅,(1, 1)) ∼= K,

Ext1(V(1),(1),∅,(1, 1), V∅,(1, 1),∅,(1, 1)) ∼= K,

Ext2(V(2),∅,∅,(1, 1), V∅,(1, 1),∅,(1, 1)) ∼= K.



CHAPTER 5

Conjectures

During the course of this bachelor project/thesis, I have written a numerical Python program
that extends Abhik Pal’s program [11] to calculate the Ext-groups of simple objects in Tℵ1

.
The program outputs the injective resolution of an arbitrary simple object Vλ1,λ0,µ,ν as in the
Appendix. This allows to calculate any Ext-group ExtiTℵ1

(Vλ1,λ0,µ,ν , Vλ1,λ0,µ,ν). In this chapter,
we collect some conjectures (verified by that program).

1. Injective dimension conjecture

In this conjecture, we consider another aspect of the Ext-groups of simple objects, that is its
injective dimension. Recall that the injective dimension of a simple object Vλ1,λ0,µ,ν ∈ Tℵ1 is the
minimal length of a finite injective resolution of Vλ1,λ0,µ,ν . It is also characterized as the largest
integer n such that there exists a module A such that ExtnTℵ1

(A, Vλ1,λ0,µ,ν) is nonzero.

Conjecture 5.1. The injective dimension of Vλ1,λ0,µ,ν is the sum of the lengths of the
middle diagrams (leaving the first and last diagrams out), i.e. |λ0|+ |µ|.

Example 5.2. The injective resolution for V∅, (2), (1), ∅ is

0 → V∅, (2), (1), ∅ → Ṽ∅, (2), (1), ∅ → Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (3), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅

→ Ṽ(1, 1), ∅, (1), ∅ ⊕ Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅ → Ṽ(1, 1), (1), ∅, ∅ → 0.

It is of length 3, and thus the injective dimension id(V∅, (2), (1), ∅) equals |(2)|+ |(1)|.
We also have the injective resolution of V(1, 1, 1), (1), (1), (2):

0 → V(1, 1, 1),(1),(1),(2) → Ṽ(1, 1, 1),(1),(1),(2)

→ Ṽ(1, 1, 1, 1),∅,(1),(2) ⊕ Ṽ(2, 1, 1),∅,(1),(2) ⊕ Ṽ(1, 1, 1),(1),∅,(1) ⊕ Ṽ(1, 1, 1),(2),∅,(2) ⊕ Ṽ(1, 1, 1),(1, 1),∅,(2)

→ Ṽ(1, 1, 1, 1),∅,∅,(1) ⊕ Ṽ(1, 1, 1, 1),(1),∅,(2) ⊕ Ṽ(2, 1, 1),∅,∅,(1) ⊕ Ṽ(2, 1, 1),(1),∅,(2) → 0.

We notice that with the large first and last diagrams, the injective resolution becomes
complicated with several indecomposable injectives in each term. However, the length of the
resolution and thus the injective dimension is still 2 = |(1)|+ |(1)|.

We also expect that a generalization of this conjecture is true in all other categories Tℵt
.

Conjecture 5.3. The injective dimension of a simple module Vλt,λt−1,...,λ0,µ,ν in Tℵt
equals

the sum of lengths of the middle diagrams |λt−1|+ ...+ |λ0|+ |µ|.

Note that this conjecture indeed holds for the category Tℵ0 , as proven in the following
corollary. We first recall the following proposition about the Loewy length of an indecomposable
injective in Tℵ0

.

Proposition 5.4 ([16, Theorem 2, Section 5] ). The Loewy length of W̃λ,µ,ν in Tℵ0
equals

|µ|+ 1.

23
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Corollary 5.5. The injective dimension of Wλ,µ,ν in Tℵ0 equals the length of the middle
diagram |µ|.

Proof. Due to Corollary 3.2, we conclude that the injective dimension of Wλ,µ,ν equals the
Loewy length of Wλ,(µ)⊥,ν minus 1. By Theorem 5.4, this Loewy length is equal to (

∣∣(µ)⊥∣∣+1)−1 =∣∣(µ)⊥∣∣ = |µ|. □

2. Symmetry conjecture

.
For the case V∅,λ0,µ,∅, we noticed a symmetry relation with regards to interchanging the

permutations λ0 and µ. In particular, we have a conjecture that:

Conjecture 5.6. Let n = |λ0|+ |µ|. Then

Exti(Vλ1,λ0,µ,∅, V∅,λ′
0,µ

′,∅) = Extn−i(Vµ⊥,(λ0)⊥,(λ1)⊥,∅, V∅,µ′,λ′
0,∅).

Example 5.7. Here are the injective resolutions for V∅, (2), (1), ∅ and V∅, (1), (2), ∅:

0 → V∅, (2), (1), ∅ → Ṽ∅, (2), (1), ∅ → Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (3), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅

→ Ṽ(1, 1), ∅, (1), ∅ ⊕ Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅ → Ṽ(1, 1), (1), ∅, ∅ → 0

0 → V∅, (1), (2), ∅ → Ṽ∅, (1), (2), ∅ → Ṽ(1), ∅, (2), ∅ ⊕ Ṽ∅, (2), (1), ∅ ⊕ Ṽ∅, (1, 1), (1), ∅

→ Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1), ∅, ∅ → 0

We notice that both resolutions have length 3. Then we have the following symmetry relation:

Ext0(V∅, (2), (1), ∅, V∅, (2), (1), ∅) ∼= Ext3(V(1), (1, 1), ∅, ∅, V∅, (1), (2), ∅),

Ext1(V(1), (1), (1), ∅, V∅, (2), (1), ∅) ∼= Ext2(V(1), (1), (1), ∅, V∅, (1), (2), ∅),

Ext1(V∅, (3), ∅, ∅, V∅, (2), (1), ∅) ∼= Ext2(V∅, (1, 1, 1), ∅, ∅, V∅, (1), (2), ∅),

Ext1(V∅, (2, 1), ∅, ∅, V∅, (2), (1), ∅) ∼= Ext2(V∅, (2, 1), ∅, ∅, V∅, (1), (2), ∅),

Ext2(V(1, 1), ∅, (1), ∅, V∅, (2), (1), ∅) ∼= Ext1(V(1), ∅, (2), ∅, ∅, V∅, (1), (2), ∅),

Ext2(V(1), (2), ∅, ∅, V∅, (2), (1), ∅) ∼= Ext1(V∅, (1, 1), (1), ∅, V∅, (1), (2), ∅),

Ext2(V(1), (1, 1), ∅, ∅, V∅, (2), (1), ∅) ∼= Ext1(V∅, (2), (1), ∅, V∅, (1), (2), ∅),

Ext3(V(1, 1), (1), ∅, ∅, V∅, (2), (1), ∅) ∼= Ext0(V∅, (1), (2), ∅, V∅, (1), (2), ∅).



Appendix

1. |λ1|+ |λ0|+ |µ|+ |ν| = 2

0 → V(1), (1), ∅, ∅ → Ṽ(1), (1), ∅, ∅ → Ṽ(2), ∅, ∅, ∅ ⊕ Ṽ(1, 1), ∅, ∅, ∅ → 0.

0 → V(1), ∅, (1), ∅ → Ṽ(1), ∅, (1), ∅ → Ṽ(1), (1), ∅, ∅ → 0.

0 → V∅, (2), ∅, ∅ → Ṽ∅, (2), ∅, ∅ → Ṽ(1), (1), ∅, ∅ → Ṽ(1, 1), ∅, ∅, ∅ → 0.

0 → V∅, (1, 1), ∅, ∅ → Ṽ∅, (1, 1), ∅, ∅ → Ṽ(1), (1), ∅, ∅ → Ṽ(2), ∅, ∅, ∅ → 0.

0 → V∅, (1), (1), ∅ → Ṽ∅, (1), (1), ∅ → Ṽ(1), ∅, (1), ∅ ⊕ Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (1, 1), ∅, ∅ → Ṽ(1), (1), ∅, ∅ → 0.

0 → V∅, (1), ∅, (1) → Ṽ∅, (1), ∅, (1) → Ṽ(1), ∅, ∅, (1) → 0.

0 → V∅, ∅, (2), ∅ → Ṽ∅, ∅, (2), ∅ → Ṽ∅, (1), (1), ∅ → Ṽ∅, (1, 1), ∅, ∅ → 0.

0 → V∅, ∅, (1, 1), ∅ → Ṽ∅, ∅, (1, 1), ∅ → Ṽ∅, (1), (1), ∅ → Ṽ∅, (2), ∅, ∅ → 0.

0 → V∅, ∅, (1), (1) → Ṽ∅, ∅, (1), (1) → Ṽ∅, ∅, ∅, ∅ ⊕ Ṽ∅, (1), ∅, (1) → 0.

2. |λ1|+ |λ0|+ |µ|+ |ν| = 3

0 → V(2), (1), ∅, ∅ → Ṽ(2), (1), ∅, ∅ → Ṽ(3), ∅, ∅, ∅ ⊕ Ṽ(2, 1), ∅, ∅, ∅ → 0

0 → V(1, 1), (1), ∅, ∅ → Ṽ(1, 1), (1), ∅, ∅ → Ṽ(2, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1, 1), ∅, ∅, ∅ → 0.

0 → V(2), ∅, (1), ∅ → Ṽ(2), ∅, (1), ∅ → Ṽ(2), (1), ∅, ∅ → 0.

0 → V(1, 1), ∅, (1), ∅ → Ṽ(1, 1), ∅, (1), ∅ → Ṽ(1, 1), (1), ∅, ∅ → 0.

0 → V(1), (2), ∅, ∅ → Ṽ(1), (2), ∅, ∅ → Ṽ(2), (1), ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, ∅ → Ṽ(2, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1, 1), ∅, ∅, ∅ → 0.

0 → V(1), (1, 1), ∅, ∅ → Ṽ(1), (1, 1), ∅, ∅ → Ṽ(2), (1), ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, ∅ → Ṽ(3), ∅, ∅, ∅ ⊕ Ṽ(2, 1), ∅, ∅, ∅ → 0.

0 → V(1), (1), (1), ∅ → Ṽ(1), (1), (1), ∅ → Ṽ(2), ∅, (1), ∅ ⊕ Ṽ(1, 1), ∅, (1), ∅ ⊕ Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅

→ Ṽ(2), (1), ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, ∅ → 0.

0 → V(1), (1), ∅, (1) → Ṽ(1), (1), ∅, (1) → Ṽ(2), ∅, ∅, (1) ⊕ Ṽ(1, 1), ∅, ∅, (1) → 0.

0 → V(1), ∅, (2), ∅ → Ṽ(1), ∅, (2), ∅ → Ṽ(1), (1), (1), ∅ → Ṽ(1), (1, 1), ∅, ∅ → 0.

0 → V(1), ∅, (1, 1), ∅ → Ṽ(1), ∅, (1, 1), ∅ → Ṽ(1), (1), (1), ∅ → Ṽ(1), (2), ∅, ∅ → 0.

0 → V(1), ∅, (1), (1) → Ṽ(1), ∅, (1), (1) → Ṽ(1), ∅, ∅, ∅ ⊕ Ṽ(1), (1), ∅, (1) → 0.
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0 → V∅, (3), ∅, ∅ → Ṽ∅, (3), ∅, ∅ → Ṽ(1), (2), ∅, ∅ → Ṽ(1, 1), (1), ∅, ∅ → Ṽ(1, 1, 1), ∅, ∅, ∅ → 0.

0 → V∅, (2, 1), ∅, ∅ → Ṽ∅, (2, 1), ∅, ∅ → Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅ → Ṽ(2), (1), ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, ∅

→ Ṽ(2, 1), ∅, ∅, ∅ → 0.

0 → V∅, (1, 1, 1), ∅, ∅ → Ṽ∅, (1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1), ∅, ∅ → Ṽ(2), (1), ∅, ∅ → Ṽ(3), ∅, ∅, ∅ → 0.

0 → V∅, (2), (1), ∅ → Ṽ∅, (2), (1), ∅ → Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (3), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅

→ Ṽ(1, 1), ∅, (1), ∅ ⊕ Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅ → Ṽ(1, 1), (1), ∅, ∅ → 0.

0 → V∅, (1, 1), (1), ∅ → Ṽ∅, (1, 1), (1), ∅ → Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1), ∅, ∅

→ Ṽ(2), ∅, (1), ∅ ⊕ Ṽ(1), (2), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, ∅ → Ṽ(2), (1), ∅, ∅ → 0.

0 → V∅, (2), ∅, (1) → Ṽ∅, (2), ∅, (1) → Ṽ(1), (1), ∅, (1) → Ṽ(1, 1), ∅, ∅, (1) → 0.

0 → V∅, (1, 1), ∅, (1) → Ṽ∅, (1, 1), ∅, (1) → Ṽ(1), (1), ∅, (1) → Ṽ(2), ∅, ∅, (1) → 0.

0 → V∅, (1), (2), ∅ → Ṽ∅, (1), (2), ∅ → Ṽ(1), ∅, (2), ∅ ⊕ Ṽ∅, (2), (1), ∅ ⊕ Ṽ∅, (1, 1), (1), ∅

→ Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1), ∅, ∅ → 0.

0 → V∅, (1), (1, 1), ∅ → Ṽ∅, (1), (1, 1), ∅ → Ṽ(1), ∅, (1, 1), ∅ ⊕ Ṽ∅, (2), (1), ∅ ⊕ Ṽ∅, (1, 1), (1), ∅

→ Ṽ(1), (1), (1), ∅ ⊕ Ṽ∅, (3), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, ∅ → Ṽ(1), (2), ∅, ∅ → 0.

0 → V∅, (1), (1), (1) → Ṽ∅, (1), (1), (1) → Ṽ(1), ∅, (1), (1) ⊕ Ṽ∅, (1), ∅, ∅ ⊕ Ṽ∅, (2), ∅, (1) ⊕ Ṽ∅, (1, 1), ∅, (1)

→ Ṽ(1), ∅, ∅, ∅ ⊕ Ṽ(1), (1), ∅, (1) → 0.

0 → V∅, (1), ∅, (2) → Ṽ∅, (1), ∅, (2) → Ṽ(1), ∅, ∅, (2) → 0.

0 → V∅, (1), ∅, (1, 1) → Ṽ∅, (1), ∅, (1, 1) → Ṽ(1), ∅, ∅, (1, 1) → 0.

0 → V∅, ∅, (3), ∅ → Ṽ∅, ∅, (3), ∅ → Ṽ∅, (1), (2), ∅ → Ṽ∅, (1, 1), (1), ∅ → Ṽ∅, (1, 1, 1), ∅, ∅ → 0.

0 → V∅, ∅, (2, 1), ∅ → Ṽ∅, ∅, (2, 1), ∅ → Ṽ∅, (1), (2), ∅ ⊕ Ṽ∅, (1), (1, 1), ∅

→ Ṽ∅, (2), (1), ∅ ⊕ Ṽ∅, (1, 1), (1), ∅ → Ṽ∅, (2, 1), ∅, ∅ → 0.

0 → V∅, ∅, (1, 1, 1), ∅ → Ṽ∅, ∅, (1, 1, 1), ∅ → Ṽ∅, (1), (1, 1), ∅ → Ṽ∅, (2), (1), ∅ → Ṽ∅, (3), ∅, ∅ → 0.

0 → V∅, ∅, (2), (1) → Ṽ∅, ∅, (2), (1) → Ṽ∅, ∅, (1), ∅ ⊕ Ṽ∅, (1), (1), (1)

→ Ṽ∅, (1), ∅, ∅ ⊕ Ṽ∅, (1, 1), ∅, (1) → 0.

0 → V∅, ∅, (1, 1), (1) → Ṽ∅, ∅, (1, 1), (1) → Ṽ∅, ∅, (1), ∅ ⊕ Ṽ∅, (1), (1), (1)

→ Ṽ∅, (1), ∅, ∅ ⊕ Ṽ∅, (2), ∅, (1) → 0.

0 → V∅, ∅, (1), (2) → Ṽ∅, ∅, (1), (2) → Ṽ∅, ∅, ∅, (1) ⊕ Ṽ∅, (1), ∅, (2) → 0.

0 → V∅, ∅, (1), (1, 1) → Ṽ∅, ∅, (1), (1, 1) → Ṽ∅, ∅, ∅, (1) ⊕ Ṽ∅, (1), ∅, (1, 1) → 0.
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3. |λ1|+ |λ0|+ |µ|+ |ν| = 4

0 → V(3), (1), ∅, ∅ → Ṽ(3), (1), ∅, ∅ → Ṽ(4), ∅, ∅, ∅ ⊕ Ṽ(3, 1), ∅, ∅, ∅ → 0.

0 → V(2, 1), (1), ∅, ∅ → Ṽ(2, 1), (1), ∅, ∅ → Ṽ(2, 2), ∅, ∅, ∅ ⊕ Ṽ(3, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V(1, 1, 1), (1), ∅, ∅ → Ṽ(1, 1, 1), (1), ∅, ∅ → Ṽ(1, 1, 1, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V(3), ∅, (1), ∅ → Ṽ(3), ∅, (1), ∅ → Ṽ(3), (1), ∅, ∅ → 0.

0 → V(2, 1), ∅, (1), ∅ → Ṽ(2, 1), ∅, (1), ∅ → Ṽ(2, 1), (1), ∅, ∅ → 0.

0 → V(1, 1, 1), ∅, (1), ∅ → Ṽ(1, 1, 1), ∅, (1), ∅ → Ṽ(1, 1, 1), (1), ∅, ∅ → 0.

0 → V(2), (2), ∅, ∅ → Ṽ(2), (2), ∅, ∅ → Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅ → Ṽ(3, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V(2), (1, 1), ∅, ∅ → Ṽ(2), (1, 1), ∅, ∅ → Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅

→ Ṽ(4), ∅, ∅, ∅ ⊕ Ṽ(3, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 2), ∅, ∅, ∅ → 0.

0 → V(1, 1), (2), ∅, ∅ → Ṽ(1, 1), (2), ∅, ∅ → Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅

→ Ṽ(2, 2), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1, 1, 1), ∅, ∅, ∅ → 0.

0 → V(1, 1), (1, 1), ∅, ∅ → Ṽ(1, 1), (1, 1), ∅, ∅ → Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅

→ Ṽ(3, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V(2), (1), (1), ∅ → Ṽ(2), (1), (1), ∅ → Ṽ(3), ∅, (1), ∅ ⊕ Ṽ(2, 1), ∅, (1), ∅ ⊕ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅

→ Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅ → 0.

0 → V(1, 1), (1), (1), ∅ → Ṽ(1, 1), (1), (1), ∅

→ Ṽ(2, 1), ∅, (1), ∅ ⊕ Ṽ(1, 1, 1), ∅, (1), ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅ → 0.

0 → V(2), (1), ∅, (1) → Ṽ(2), (1), ∅, (1) → Ṽ(3), ∅, ∅, (1) ⊕ Ṽ(2, 1), ∅, ∅, (1) → 0.

0 → V(1, 1), (1), ∅, (1) → Ṽ(1, 1), (1), ∅, (1) → Ṽ(2, 1), ∅, ∅, (1) ⊕ Ṽ(1, 1, 1), ∅, ∅, (1) → 0.

0 → V(2), ∅, (2), ∅ → Ṽ(2), ∅, (2), ∅ → Ṽ(2), (1), (1), ∅ → Ṽ(2), (1, 1), ∅, ∅ → 0.

0 → V(2), ∅, (1, 1), ∅ → Ṽ(2), ∅, (1, 1), ∅ → Ṽ(2), (1), (1), ∅ → Ṽ(2), (2), ∅, ∅ → 0.

0 → V(1, 1), ∅, (2), ∅ → Ṽ(1, 1), ∅, (2), ∅ → Ṽ(1, 1), (1), (1), ∅ → Ṽ(1, 1), (1, 1), ∅, ∅ → 0.

0 → V(1, 1), ∅, (1, 1), ∅ → Ṽ(1, 1), ∅, (1, 1), ∅ → Ṽ(1, 1), (1), (1), ∅ → Ṽ(1, 1), (2), ∅, ∅ → 0.

0 → V(2), ∅, (1), (1) → Ṽ(2), ∅, (1), (1) → Ṽ(2), ∅, ∅, ∅ ⊕ Ṽ(2), (1), ∅, (1) → 0.

0 → V(1, 1), ∅, (1), (1) → Ṽ(1, 1), ∅, (1), (1) → Ṽ(1, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, (1) → 0.

0 → V(1), (3), ∅, ∅ → Ṽ(1), (3), ∅, ∅ → Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅ → Ṽ(2, 1, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1, 1, 1), ∅, ∅, ∅ → 0.

0 → V(1), (2, 1), ∅, ∅ → Ṽ(1), (2, 1), ∅, ∅ → Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(3), (1), ∅, ∅ ⊕ 2Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅ → Ṽ(3, 1), ∅, ∅, ∅ ⊕ Ṽ(2, 2), ∅, ∅, ∅ ⊕ Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V(1), (1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1, 1), ∅, ∅ → Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅
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→ Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅ → Ṽ(4), ∅, ∅, ∅ ⊕ Ṽ(3, 1), ∅, ∅, ∅ → 0.

0 → V(1), (2), (1), ∅ → Ṽ(1), (2), (1), ∅ → Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅

→ Ṽ(2, 1), ∅, (1), ∅ ⊕ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1, 1), ∅, (1), ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅ → 0.

0 → V(1), (1, 1), (1), ∅ → Ṽ(1), (1, 1), (1), ∅ →

Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(3), ∅, (1), ∅ ⊕ Ṽ(2, 1), ∅, (1), ∅ ⊕ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅ → 0.

0 → V(1), (2), ∅, (1) → Ṽ(1), (2), ∅, (1) → Ṽ(2), (1), ∅, (1) ⊕ Ṽ(1, 1), (1), ∅, (1)

→ Ṽ(2, 1), ∅, ∅, (1) ⊕ Ṽ(1, 1, 1), ∅, ∅, (1) → 0.

0 → V(1), (1, 1), ∅, (1) → Ṽ(1), (1, 1), ∅, (1) → Ṽ(2), (1), ∅, (1) ⊕ Ṽ(1, 1), (1), ∅, (1)

→ Ṽ(3), ∅, ∅, (1) ⊕ Ṽ(2, 1), ∅, ∅, (1) → 0.

0 → V(1), (1), (2), ∅ → Ṽ(1), (1), (2), ∅ → Ṽ(2), ∅, (2), ∅ ⊕ Ṽ(1, 1), ∅, (2), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅ → 0.

0 → V(1), (1), (1, 1), ∅ → Ṽ(1), (1), (1, 1), ∅

→ Ṽ(2), ∅, (1, 1), ∅ ⊕ Ṽ(1, 1), ∅, (1, 1), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅

→ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ → 0.

0 → V(1), (1), (1), (1) → Ṽ(1), (1), (1), (1)

→ Ṽ(2), ∅, (1), (1) ⊕ Ṽ(1, 1), ∅, (1), (1) ⊕ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (2), ∅, (1) ⊕ Ṽ(1), (1, 1), ∅, (1)

→ Ṽ(2), ∅, ∅, ∅ ⊕ Ṽ(2), (1), ∅, (1) ⊕ Ṽ(1, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, (1) → 0.

0 → V(1), (1), ∅, (2) → Ṽ(1), (1), ∅, (2) → Ṽ(2), ∅, ∅, (2) ⊕ Ṽ(1, 1), ∅, ∅, (2) → 0.

0 → V(1), (1), ∅, (1, 1) → Ṽ(1), (1), ∅, (1, 1) → Ṽ(2), ∅, ∅, (1, 1) ⊕ Ṽ(1, 1), ∅, ∅, (1, 1) → 0.

0 → V(1), ∅, (3), ∅ → Ṽ(1), ∅, (3), ∅ → Ṽ(1), (1), (2), ∅ → Ṽ(1), (1, 1), (1), ∅ → Ṽ(1), (1, 1, 1), ∅, ∅ → 0.

0 → V(1), ∅, (2, 1), ∅ → Ṽ(1), ∅, (2, 1), ∅ → Ṽ(1), (1), (2), ∅ ⊕ Ṽ(1), (1), (1, 1), ∅

→ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ → Ṽ(1), (2, 1), ∅, ∅ → 0.

0 → V(1), ∅, (1, 1, 1), ∅ → Ṽ(1), ∅, (1, 1, 1), ∅ → Ṽ(1), (1), (1, 1), ∅ → Ṽ(1), (2), (1), ∅ → Ṽ(1), (3), ∅, ∅ → 0.

0 → V(1), ∅, (2), (1) → Ṽ(1), ∅, (2), (1) → Ṽ(1), ∅, (1), ∅ ⊕ Ṽ(1), (1), (1), (1)

→ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, (1) → 0.

0 → V(1), ∅, (1, 1), (1) → Ṽ(1), ∅, (1, 1), (1) → Ṽ(1), ∅, (1), ∅ ⊕ Ṽ(1), (1), (1), (1)

→ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (2), ∅, (1) → 0.

0 → V(1), ∅, (1), (2) → Ṽ(1), ∅, (1), (2) → Ṽ(1), ∅, ∅, (1) ⊕ Ṽ(1), (1), ∅, (2) → 0.

0 → V(1), ∅, (1), (1, 1) → Ṽ(1), ∅, (1), (1, 1) → Ṽ(1), ∅, ∅, (1) ⊕ Ṽ(1), (1), ∅, (1, 1) → 0.
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0 → V∅, (4), ∅, ∅ → Ṽ∅, (4), ∅, ∅ → Ṽ(1), (3), ∅, ∅ → Ṽ(1, 1), (2), ∅, ∅

→ Ṽ(1, 1, 1), (1), ∅, ∅ → Ṽ(1, 1, 1, 1), ∅, ∅, ∅ → 0.

0 → V∅, (3, 1), ∅, ∅ → Ṽ∅, (3, 1), ∅, ∅ → Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅

→ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ ⊕ Ṽ(1, 1, 1), (1), ∅, ∅ → Ṽ(2, 1, 1), ∅, ∅, ∅ → 0.

0 → V∅, (2, 2), ∅, ∅ → Ṽ∅, (2, 2), ∅, ∅ → Ṽ(1), (2, 1), ∅, ∅ → Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ → Ṽ(2, 2), ∅, ∅, ∅ → 0.

0 → V∅, (2, 1, 1), ∅, ∅ → Ṽ∅, (2, 1, 1), ∅, ∅ → Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(3), (1), ∅, ∅ ⊕ Ṽ(2, 1), (1), ∅, ∅ → Ṽ(3, 1), ∅, ∅, ∅ → 0.

0 → V∅, (1, 1, 1, 1), ∅, ∅ → Ṽ∅, (1, 1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(2), (1, 1), ∅, ∅ → Ṽ(3), (1), ∅, ∅ → Ṽ(4), ∅, ∅, ∅ → 0.

0 → V∅, (3), (1), ∅ → Ṽ∅, (3), (1), ∅ → Ṽ(1), (2), (1), ∅ ⊕ Ṽ∅, (4), ∅, ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅

→ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅

→ Ṽ(1, 1, 1), ∅, (1), ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅ → Ṽ(1, 1, 1), (1), ∅, ∅ → 0.

0 → V∅, (2, 1), (1), ∅ → Ṽ∅, (2, 1), (1), ∅

→ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (2, 2), ∅, ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ 2Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(2, 1), ∅, (1), ∅ ⊕ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ ⊕ Ṽ(1, 1), (2), ∅, ∅ ⊕ Ṽ(1, 1), (1, 1), ∅, ∅

→ Ṽ(2, 1), (1), ∅, ∅ → 0.

0 → V∅, (1, 1, 1), (1), ∅ → Ṽ∅, (1, 1, 1), (1), ∅ → Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅

→ Ṽ(3), ∅, (1), ∅ ⊕ Ṽ(2), (2), ∅, ∅ ⊕ Ṽ(2), (1, 1), ∅, ∅ → Ṽ(3), (1), ∅, ∅ → 0.

0 → V∅, (3), ∅, (1) → Ṽ∅, (3), ∅, (1) → Ṽ(1), (2), ∅, (1) → Ṽ(1, 1), (1), ∅, (1) → Ṽ(1, 1, 1), ∅, ∅, (1) → 0.

0 → V∅, (2, 1), ∅, (1) → Ṽ∅, (2, 1), ∅, (1) → Ṽ(1), (2), ∅, (1) ⊕ Ṽ(1), (1, 1), ∅, (1)

→ Ṽ(2), (1), ∅, (1) ⊕ Ṽ(1, 1), (1), ∅, (1) → Ṽ(2, 1), ∅, ∅, (1) → 0.

0 → V∅, (1, 1, 1), ∅, (1) → Ṽ∅, (1, 1, 1), ∅, (1) → Ṽ(1), (1, 1), ∅, (1) → Ṽ(2), (1), ∅, (1) → Ṽ(3), ∅, ∅, (1) → 0.

0 → V∅, (2), (2), ∅ → Ṽ∅, (2), (2), ∅ → Ṽ(1), (1), (2), ∅ ⊕ Ṽ∅, (3), (1), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅

→ Ṽ(1, 1), ∅, (2), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅

→ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅ → Ṽ(1, 1), (1, 1), ∅, ∅ → 0.

0 → V∅, (2), (1, 1), ∅ → Ṽ∅, (2), (1, 1), ∅ → Ṽ(1), (1), (1, 1), ∅ ⊕ Ṽ∅, (3), (1), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅

→ Ṽ(1, 1), ∅, (1, 1), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (4), ∅, ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ ⊕ Ṽ∅, (2, 2), ∅, ∅

→ Ṽ(1, 1), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ → Ṽ(1, 1), (2), ∅, ∅ → 0.

0 → V∅, (1, 1), (2), ∅ → Ṽ∅, (1, 1), (2), ∅ → Ṽ(1), (1), (2), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1), (1), ∅
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→ Ṽ(2), ∅, (2), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (2, 2), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1, 1), ∅, ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ ⊕ Ṽ(1), (1, 1, 1), ∅, ∅ → Ṽ(2), (1, 1), ∅, ∅ → 0.

0 → V∅, (1, 1), (1, 1), ∅ → Ṽ∅, (1, 1), (1, 1), ∅ → Ṽ(1), (1), (1, 1), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1), (1), ∅

→ Ṽ(2), ∅, (1, 1), ∅ ⊕ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅

→ Ṽ(2), (1), (1), ∅ ⊕ Ṽ(1), (3), ∅, ∅ ⊕ Ṽ(1), (2, 1), ∅, ∅ → Ṽ(2), (2), ∅, ∅ → 0.

0 → V∅, (2), (1), (1) → Ṽ∅, (2), (1), (1) → Ṽ(1), (1), (1), (1) ⊕ Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (3), ∅, (1) ⊕ Ṽ∅, (2, 1), ∅, (1)

→ Ṽ(1, 1), ∅, (1), (1) ⊕ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (2), ∅, (1) ⊕ Ṽ(1), (1, 1), ∅, (1)

→ Ṽ(1, 1), ∅, ∅, ∅ ⊕ Ṽ(1, 1), (1), ∅, (1) → 0.

0 → V∅, (1, 1), (1), (1) → Ṽ∅, (1, 1), (1), (1) → Ṽ(1), (1), (1), (1) ⊕ Ṽ∅, (1, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, (1) ⊕ Ṽ∅, (1, 1, 1), ∅, (1)

→ Ṽ(2), ∅, (1), (1) ⊕ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (2), ∅, (1) ⊕ Ṽ(1), (1, 1), ∅, (1) → Ṽ(2), ∅, ∅, ∅ ⊕ Ṽ(2), (1), ∅, (1) → 0.

0 → V∅, (2), ∅, (2) → Ṽ∅, (2), ∅, (2) → Ṽ(1), (1), ∅, (2) → Ṽ(1, 1), ∅, ∅, (2) → 0.

0 → V∅, (2), ∅, (1, 1) → Ṽ∅, (2), ∅, (1, 1) → Ṽ(1), (1), ∅, (1, 1) → Ṽ(1, 1), ∅, ∅, (1, 1) → 0.

0 → V∅, (1, 1), ∅, (2) → Ṽ∅, (1, 1), ∅, (2) → Ṽ(1), (1), ∅, (2) → Ṽ(2), ∅, ∅, (2) → 0.

0 → V∅, (1, 1), ∅, (1, 1) → Ṽ∅, (1, 1), ∅, (1, 1) → Ṽ(1), (1), ∅, (1, 1) → Ṽ(2), ∅, ∅, (1, 1) → 0.

0 → V∅, (1), (3), ∅ → Ṽ∅, (1), (3), ∅ → Ṽ(1), ∅, (3), ∅ ⊕ Ṽ∅, (2), (2), ∅ ⊕ Ṽ∅, (1, 1), (2), ∅

→ Ṽ(1), (1), (2), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1), (1), ∅

→ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1, 1), ∅, ∅ → Ṽ(1), (1, 1, 1), ∅, ∅ → 0.

0 → V∅, (1), (2, 1), ∅ → Ṽ∅, (1), (2, 1), ∅

→ Ṽ(1), ∅, (2, 1), ∅ ⊕ Ṽ∅, (2), (2), ∅ ⊕ Ṽ∅, (1, 1), (2), ∅ ⊕ Ṽ∅, (2), (1, 1), ∅ ⊕ Ṽ∅, (1, 1), (1, 1), ∅

→ Ṽ(1), (1), (2), ∅ ⊕ Ṽ(1), (1), (1, 1), ∅ ⊕ Ṽ∅, (3), (1), ∅ ⊕ 2Ṽ∅, (2, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1), (1), ∅

→ Ṽ(1), (2), (1), ∅ ⊕ Ṽ(1), (1, 1), (1), ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ ⊕ Ṽ∅, (2, 2), ∅, ∅ ⊕ Ṽ∅, (2, 1, 1), ∅, ∅ → Ṽ(1), (2, 1), ∅, ∅ → 0.

0 → V∅, (1), (1, 1, 1), ∅ → Ṽ∅, (1), (1, 1, 1), ∅ → Ṽ(1), ∅, (1, 1, 1), ∅ ⊕ Ṽ∅, (2), (1, 1), ∅ ⊕ Ṽ∅, (1, 1), (1, 1), ∅

→ Ṽ(1), (1), (1, 1), ∅ ⊕ Ṽ∅, (3), (1), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅

→ Ṽ(1), (2), (1), ∅ ⊕ Ṽ∅, (4), ∅, ∅ ⊕ Ṽ∅, (3, 1), ∅, ∅ → Ṽ(1), (3), ∅, ∅ → 0.

0 → V∅, (1), (2), (1) → Ṽ∅, (1), (2), (1) → Ṽ(1), ∅, (2), (1) ⊕ Ṽ∅, (1), (1), ∅ ⊕ Ṽ∅, (2), (1), (1) ⊕ Ṽ∅, (1, 1), (1), (1)

→ Ṽ(1), ∅, (1), ∅ ⊕ Ṽ(1), (1), (1), (1) ⊕ Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (1, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, (1) ⊕ Ṽ∅, (1, 1, 1), ∅, (1)

→ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (1, 1), ∅, (1) → 0.

0 → V∅, (1), (1, 1), (1) → Ṽ∅, (1), (1, 1), (1) → Ṽ(1), ∅, (1, 1), (1) ⊕ Ṽ∅, (1), (1), ∅ ⊕ Ṽ∅, (2), (1), (1) ⊕ Ṽ∅, (1, 1), (1), (1)

→ Ṽ(1), ∅, (1), ∅ ⊕ Ṽ(1), (1), (1), (1) ⊕ Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (1, 1), ∅, ∅ ⊕ Ṽ∅, (3), ∅, (1) ⊕ Ṽ∅, (2, 1), ∅, (1)

→ Ṽ(1), (1), ∅, ∅ ⊕ Ṽ(1), (2), ∅, (1) → 0.

0 → V∅, (1), (1), (2) → Ṽ∅, (1), (1), (2) → Ṽ(1), ∅, (1), (2) ⊕ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (2), ∅, (2) ⊕ Ṽ∅, (1, 1), ∅, (2)

→ Ṽ(1), ∅, ∅, (1) ⊕ Ṽ(1), (1), ∅, (2) → 0.

0 → V∅, (1), (1), (1, 1) → Ṽ∅, (1), (1), (1, 1) → Ṽ(1), ∅, (1), (1, 1) ⊕ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (2), ∅, (1, 1) ⊕ Ṽ∅, (1, 1), ∅, (1, 1)

→ Ṽ(1), ∅, ∅, (1) ⊕ Ṽ(1), (1), ∅, (1, 1) → 0.
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0 → V∅, (1), ∅, (3) → Ṽ∅, (1), ∅, (3) → Ṽ(1), ∅, ∅, (3) → 0.

0 → V∅, (1), ∅, (2, 1) → Ṽ∅, (1), ∅, (2, 1) → Ṽ(1), ∅, ∅, (2, 1) → 0.

0 → V∅, (1), ∅, (1, 1, 1) → Ṽ∅, (1), ∅, (1, 1, 1) → Ṽ(1), ∅, ∅, (1, 1, 1) → 0.

0 → V∅, ∅, (4), ∅ → Ṽ∅, ∅, (4), ∅ → Ṽ∅, (1), (3), ∅ → Ṽ∅, (1, 1), (2), ∅

→ Ṽ∅, (1, 1, 1), (1), ∅ → Ṽ∅, (1, 1, 1, 1), ∅, ∅ → 0.

0 → V∅, ∅, (3, 1), ∅ → Ṽ∅, ∅, (3, 1), ∅ → Ṽ∅, (1), (3), ∅ ⊕ Ṽ∅, (1), (2, 1), ∅

→ Ṽ∅, (2), (2), ∅ ⊕ Ṽ∅, (1, 1), (2), ∅ ⊕ Ṽ∅, (1, 1), (1, 1), ∅

→ Ṽ∅, (2, 1), (1), ∅ ⊕ Ṽ∅, (1, 1, 1), (1), ∅ → Ṽ∅, (2, 1, 1), ∅, ∅ → 0.

0 → V∅, ∅, (2, 2), ∅ → Ṽ∅, ∅, (2, 2), ∅ → Ṽ∅, (1), (2, 1), ∅ → Ṽ∅, (1, 1), (2), ∅ ⊕ Ṽ∅, (2), (1, 1), ∅

→ Ṽ∅, (2, 1), (1), ∅ → Ṽ∅, (2, 2), ∅, ∅ → 0.

0 → V∅, ∅, (2, 1, 1), ∅ → Ṽ∅, ∅, (2, 1, 1), ∅ → Ṽ∅, (1), (2, 1), ∅ ⊕ Ṽ∅, (1), (1, 1, 1), ∅

→ Ṽ∅, (2), (2), ∅ ⊕ Ṽ∅, (2), (1, 1), ∅ ⊕ Ṽ∅, (1, 1), (1, 1), ∅

→ Ṽ∅, (3), (1), ∅ ⊕ Ṽ∅, (2, 1), (1), ∅ → Ṽ∅, (3, 1), ∅, ∅ → 0.

0 → V∅, ∅, (1, 1, 1, 1), ∅ → Ṽ∅, ∅, (1, 1, 1, 1), ∅ → Ṽ∅, (1), (1, 1, 1), ∅ → Ṽ∅, (2), (1, 1), ∅

→ Ṽ∅, (3), (1), ∅ → Ṽ∅, (4), ∅, ∅ → 0.

0 → V∅, ∅, (3), (1) → Ṽ∅, ∅, (3), (1) → Ṽ∅, ∅, (2), ∅ ⊕ Ṽ∅, (1), (2), (1)

→ Ṽ∅, (1), (1), ∅ ⊕ Ṽ∅, (1, 1), (1), (1) → Ṽ∅, (1, 1), ∅, ∅ ⊕ Ṽ∅, (1, 1, 1), ∅, (1) → 0.

0 → V∅, ∅, (2, 1), (1) → Ṽ∅, ∅, (2, 1), (1) → Ṽ∅, ∅, (2), ∅ ⊕ Ṽ∅, ∅, (1, 1), ∅ ⊕ Ṽ∅, (1), (2), (1) ⊕ Ṽ∅, (1), (1, 1), (1)

→ 2Ṽ∅, (1), (1), ∅ ⊕ Ṽ∅, (2), (1), (1) ⊕ Ṽ∅, (1, 1), (1), (1) → Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (1, 1), ∅, ∅ ⊕ Ṽ∅, (2, 1), ∅, (1) → 0.

0 → V∅, ∅, (1, 1, 1), (1) → Ṽ∅, ∅, (1, 1, 1), (1) → Ṽ∅, ∅, (1, 1), ∅ ⊕ Ṽ∅, (1), (1, 1), (1)

→ Ṽ∅, (1), (1), ∅ ⊕ Ṽ∅, (2), (1), (1) → Ṽ∅, (2), ∅, ∅ ⊕ Ṽ∅, (3), ∅, (1) → 0.

0 → V∅, ∅, (2), (2) → Ṽ∅, ∅, (2), (2) → Ṽ∅, ∅, (1), (1) ⊕ Ṽ∅, (1), (1), (2)

→ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (1, 1), ∅, (2) → 0.

0 → V∅, ∅, (2), (1, 1) → Ṽ∅, ∅, (2), (1, 1) → Ṽ∅, ∅, (1), (1) ⊕ Ṽ∅, (1), (1), (1, 1)

→ Ṽ∅, ∅, ∅, ∅ ⊕ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (1, 1), ∅, (1, 1) → 0.

0 → V∅, ∅, (1, 1), (2) → Ṽ∅, ∅, (1, 1), (2) → Ṽ∅, ∅, (1), (1) ⊕ Ṽ∅, (1), (1), (2)

→ Ṽ∅, ∅, ∅, ∅ ⊕ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (2), ∅, (2) → 0.

0 → V∅, ∅, (1, 1), (1, 1) → Ṽ∅, ∅, (1, 1), (1, 1) → Ṽ∅, ∅, (1), (1) ⊕ Ṽ∅, (1), (1), (1, 1)

→ Ṽ∅, (1), ∅, (1) ⊕ Ṽ∅, (2), ∅, (1, 1) → 0.

0 → V∅, ∅, (1), (3) → Ṽ∅, ∅, (1), (3) → Ṽ∅, ∅, ∅, (2) ⊕ Ṽ∅, (1), ∅, (3) → 0.

0 → V∅, ∅, (1), (2, 1) → Ṽ∅, ∅, (1), (2, 1) → Ṽ∅, ∅, ∅, (2) ⊕ Ṽ∅, ∅, ∅, (1, 1) ⊕ Ṽ∅, (1), ∅, (2, 1) → 0.

0 → V∅, ∅, (1), (1, 1, 1) → Ṽ∅, ∅, (1), (1, 1, 1) → Ṽ∅, ∅, ∅, (1, 1) ⊕ Ṽ∅, (1), ∅, (1, 1, 1) → 0.
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