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HYPERCOMPLEX STRUCTURES

Three complex structures I , J and K on a smooth manifold form a
hypercomplex structure if

I 2 = J2 = K 2 = −Id , and IJ = K = −JI ,

where Id is the identity map. Then

I⃗a = a1I + a2J + a3K

defines a complex structure for any point a⃗ = (a1, a2, a3) in the
unit 2-sphere S2

The smooth manifold Z = X × S2 is called twistor space and is
endowed with an integrable almost complex structure I defined by
I(x ,⃗a) = I⃗a ⊕ JS2 .



Suppose that M has a Riemannian metric g such that
g(IX , IY ) = g(JX , JY ) = g(KX ,KY ). Then

ωI (X ,Y ) = g(IX ,Y ), ωJ(X ,Y ) = g(JX ,Y ), ωK (X ,Y ) = g(KX ,Y )

define non-degenerate 2-forms. When dωI = dωJ = dωK = 0,
(M, I , J,K , g) is called hyperkähler structure. The closed form
Ω = ωJ +

√
−1ωK defines a holomorphic symplectic structure on

(M, I ).
Definition (M, I , J,K , g) is called HKT (hyperkähler with torsion)
manifold, if

IdωI = JdωJ = KdωK (1)

or equivalently
∂Ω = 0 (2)

Here IdωI (X ,Y ,Z ) = −dωI (IX , IY , IZ ) and ∂ is the ∂-operator
for I .



The 3-form c(X ,Y ,Z ) = −Idω= − JdωJ = KdωK defines a
connection ∇ by

g(∇XY ,Z ) = g(∇LC
X Y ,Z ) +

1

2
c(X ,Y ,Z )

where ∇LC is the Levi-Civita connection of g . Then
g(T∇(X ,Y ),Z ) = c(X ,Y ,Z ) and ∇I = ∇J = ∇K = ∇g = 0.
Remarks
1. HKT manifolds first appeared as target spaces of (4,0)-SUSY
sigma models with Wess-Zumino term in string theory
(Howe-Papadopoulos(1992)).

2. From (1) follows the integrability of I , J,K. From
IdωI = JdωJ follows (1) for integrable structures.

3. There is a unique torsion-free connection preserving given
hypercomplex structure - the Obata connection.



Quaternionic plurisubharmonic functions
On (M, I , J,K ) there are operators additional to the exterior
derivatives for every a⃗ ∈ S2:

dc
a⃗ α = (−1)p I⃗ad(I⃗aα)

for p-form α where I⃗aα(X1, ...,Xp) = (−1)pα(I⃗aX1, ..., I⃗aXp).
Similarly ∂⃗a =

1
2(d +

√
−1dc

a⃗ ) and ∂⃗a =
1
2 (d −

√
−1dc

a⃗ ). For any

oriented orthonormal triple a⃗, b⃗, c⃗ ∈ S2 we have:

ddc
a⃗ + dc

a⃗ d = dc
a⃗ d

c
b⃗
+ dc

b⃗
dc
a⃗ = 0, (dc

a⃗ )
2 = 0

If Ωc⃗ = ωa⃗ +
√
−1ωb⃗ then (1) and (2) are equivalent to

c = dc
a⃗ ωa, ∂⃗cΩc⃗ = 0



Quaternionic plurisubharmonic functions
On (M, I , J,K ) there are operators additional to the exterior
derivatives for every a⃗ ∈ S2:

dc
a⃗ α = (−1)p I⃗ad(I⃗aα)

for p-form α where I⃗aα(X1, ...,Xp) = (−1)pα(I⃗aX1, ..., I⃗aXp).
Similarly ∂⃗a =

1
2(d +

√
−1dc

a⃗ ) and ∂⃗a =
1
2 (d −

√
−1dc

a⃗ ). For any

oriented orthonormal triple a⃗, b⃗, c⃗ ∈ S2 we have:

ddc
a⃗ + dc

a⃗ d = dc
a⃗ d

c
b⃗
+ dc

b⃗
dc
a⃗ = 0, (dc

a⃗ )
2 = 0

If Ωc⃗ = ωa⃗ +
√
−1ωb⃗ then (1) and (2) are equivalent to

c = dc
a⃗ ωa, ∂⃗cΩc⃗ = 0

Theorem(G.-Poon (2000)) Let Z = M × S2 be the twistor space
of (M, I , J,K ). A hyperhermitian metric on M is HKT if and only

if the (2, 0)-form on Z given by G⃗a = π∗(ωI )
(2,0)
a⃗ satisfies ∂G = 0.



Denote by dc , ∂ and ∂ the corresponding operators for I(1,0,0) = I .
Define

∂Jα = (−1)pJ∂(Jα)

for a p-form α. Since J : Λ(p,q)
I → Λ(q,p)

I ,

∂, ∂J : Λ(p,q)
I (M) → Λ(p+1,q)

I (M)

and
∂∂J + ∂J∂ = (∂J)2 = 0

So ∂, ∂J play on Λ(∗,q)
I (M) similar role as d , dc on Λ∗(M).



Denote by dc , ∂ and ∂ the corresponding operators for I(1,0,0) = I .
Define

∂Jα = (−1)pJ∂(Jα)

for a p-form α. Since J : Λ(p,q)
I → Λ(q,p)

I ,

∂, ∂J : Λ(p,q)
I (M) → Λ(p+1,q)

I (M)

and
∂∂J + ∂J∂ = (∂J)2 = 0

So ∂, ∂J play on Λ(∗,q)
I (M) similar role as d , dc on Λ∗(M).

Definition

1. The form α ∈ Λ(p,q)
I (M) is called real if α = Jα.

2. A real form α ∈ Λ(2,0)
I (M) is called positive, if α(X , JX ) > 0

for any non-zero (1, 0)-vector field X ∈ T
(1,0)
I (M).



For example the form Ω is real and positive and ∂Ω = ∂JΩ = 0.

Definition
A real function ϕ on M is called quaternionic plurisubharmonic if
∂∂Jϕ is positive.

Subharmonic ⊂ Plurisubharmonic ⊂ Q-Plurisubharmonic.

If (locally) Ω = ∂∂Jµ , then µ is called (local) HKT potential of
the structure (g , I , J,K )

Lemma
A function µ is HKT potential iff ωa⃗ = (ddc

a⃗ + dc
b⃗
dc
c⃗ )µ for some

(and hence any) oriented orthonormal triple (⃗a, b⃗, c⃗) ∈ S2.

Local ∂∂J-Lemma(Banos-Swann(2004))
If Ω is real (2, 0)-form on hypercomplex manifold and ∂Ω = 0,
then locally Ω = ∂∂J f for a local real function f . In particular
every HKT structure locally arises from a HKT potential.



EXAMPLES
Quaternionic Hopf surface:
Consider Z action on C2 − {0} generated by
(z ,w) → (re iθz , re−iθw) for r > 0. Using the identification
H ∼= C2 we see that the left multiplication by i , j , k induces a
hypercomplex structure on the quotient C2 − {0}/Z ∼= S1 × S3.

The metric |dz |2+|dw |2
|z |2+|w |2 induces HKT metric on S1 × S3. Any

4-dimensional hyperhermitian structure is HKT. Also
S1 × S3 ∼= S1 × Sp(1) is a Lie group and the HKT structure is
left-invariant.

Compact Lie groups:(Joyce(1991))
Let G be a compact semi-simple Lie group and U a maximal torus.
Let g and u be their algebras. Choose a system of ordered roots
with respect to uC. Let α1 be a maximal positive root, and h1 the
dual space of α1. Let ∂1 be the sp(1)-subalgebra of g such that its
complexification is isomorphic to h1 ⊕ gα1 ⊕ g−α1 where gα1 and
g−α1 are the root spaces for α1 and −α1 respectively. Let b1 be
the centralizer of ∂1.



Then there is a vector subspace f1 composed of root spaces such
that g = b1 ⊕ ∂1 ⊕ f1. If b1 is not Abelian, apply the same
decomposition to it. By inductively searching for sp(1) subalgebras
one obtains:
Lemma(Joyce(1991))
The Lie algebra g of a compact Lie group G decomposes as

g = b⊕n
j=1 ∂j ⊕n

j=1 fj , (3)

with the following properties. (1) b is Abelian and ∂j is isomorphic
to sp(1). (2) b⊕n

j=1 ∂j contains u. (3) Set b0 = g, bn = b and
bk = b⊕n

j=k+1 ∂j ⊕n
j=k+1 fj . Then [bk , ∂j ] = 0 for k ≥ j . (4)

[∂l , fl ] ⊂ fl . (5) The adjoint representation of ∂l on fl is reducible
to a direct sum of the irreducible 2-dimensional representations of
sp(1). (6)The decomposition is an orthogonal decomposition with
respect to the Killing-Cartan form.

Let G be a compact semi-simple Lie group with rank r . Then

(2n− r)u(1)⊕ g ∼= Rn ⊕n
j=1 ∂j ⊕n

j=1 fj . (4)



At the tangent space of the identity element of T 2n−r × G , i.e. the
Lie algebra (2n− r)u(1)⊕ g, a hypercomplex structure {I1, I2, I3}
is defined as follows:
First Rn ⊕n

j=1 ∂j ∼= ⊕n
j=1(u(1) + sp(1)) so it carries hypercomplex

structure. Then each fj is a representation of ∂j and has an
induced hypercomplex structure from the action of i , j , k ∈ sp(1).
The induced structures are integrable. Basic example of such
group is SU(3).

Higher dimensional Hopf manifolds
For any real number r , with 0 < r < 1, and θ1, . . . , θn modulo 2π,
we consider the integer group ⟨r⟩ generated by the following action
on(Cn ⊕Cn)\{0}.

(zα,wα) 7→ (re iθαzα, re
−iθαwα). (5)



One can check that the group ⟨r⟩ is a group of hypercomplex
transformations. The quotient space of (Cn ⊕Cn)\{0} with
respect to ⟨r⟩ is the manifold
S1 × S4n−1 = S1 × Sp(n)/Sp(n− 1). Since the group ⟨r⟩ is also
a group of isometries with respect to an HKT-metric ĝ determined
by a potential µ = ln(|z |2 + |w |2), the HKT-structure descends
from (Cn ⊕Cn)\{0} to a HKT-structure on S1 × S4n−1. The
deformation space of hypercomplex structures on S1 × S4n−1 is
parametrized by (r , θ1, . . . , θn) and a generic hypercomplex
structure in this family is inhomogeneous.
Theorem(G.-Poon(2000))
Every hypercomplex deformation of the homogeneous
hypercomplex structure on S1 × S4n−1 admits a HKT-metric.



REDUCTION
The reduction for HKT structures is modeled on the symplectic
reduction of Marsden-Weinstein and extends the hypercomplex
reduction of Joyce. Let G be a compact group of hypercomplex
automorphisms of M. Denote the algebra of hyper-holomorphic
vector fields by g. Suppose that ν = (ν1, ν2, ν3) : M −→ R3 ⊗ g is
a G -equivariant map satisfying the following the Cauchy-Riemann
condition, I1dν1 = I2dν2 = I3dν3, and the transversality condition,
Iadνa(X ) ̸= 0 for all X ∈ g. Any map satisfying these conditions is
called a G -moment map. Given a point ζ = (ζ1, ζ2, ζ3) in R3 ⊗ g,
denote the level set ν−1(ζ) by P . Assuming that the level set P is
invariant, and the action of G on P is free, then the quotient space
N = P/G is a smooth manifold.
The quotient space N = P/G inherits a natural hypercomplex
structure as follows. For each point m in the space P , its tangent
space is

TmP = {t ∈ TmM : dν1(t) = dν2(t) = dν3(t) = 0}.



Consider the vector subspace

Um = {t ∈ TmP : I1dν1(t) = I2dν2(t) = I3dν3(t) = 0}. (6)

Due to the transversality condition, this space is transversal to the
vectors generated by elements in g. Due to the Cauchy-Riemann
condition, this space is a vector subspace of TmP with
co-dimension dim g, hence it is a vector subspace of TmM with
co-dimension 4 dim g.
The same condition implies that, as a subbundle of TM|P , U is
closed under Ia. Moreover there is a G-invariant splitting

TP = U ⊕ V (7)

where V is the tangent space to the orbits of G and coincides with
the bundle of kernels of dπ. Again, we use the terms “horizontal”
and “vertical” for U and V , although the two spaces are not
necessarily orthogonal. Then a hypercomplex structure on N is
defined by (Joyce(1992)):

IaÂ = dπ(IaA
u), i.e. (IaA)

u = IaA
u. (8)



Theorem(G.-Papadopoulos-Poon(2001))
Let (M, I , g) be a HKT-manifold. Suppose that G is a compact
group of hypercomplex isometries admitting a G-moment map ν.
Then hypercomplex reduced space N = M//G inherits an HKT
structure.

One consequence is that the instanton moduli space over the
quaternionic Hopf surace has HKT structure. Another example is
construction of HKT structures on all small deformations of the
left-invariant hypercomplex structure on SU(3), similar to the
higher dimensional Hopf manifolds above.



SL(n,H) MANIFOLDS
The Obata connection has holonomy in GL(n,H). An important
subgroup inside GL(n,H) is its commutator SL(n,H). When the
holonomy of the Obata connection is in SL(n,H), the manifold is
called an SL(n,H)-manifold. To characterize such space we recall
a notion form Hermitian geometry.
Let (M, I , g) be a complex Hermitian manifold, dim |CM = n, and
ω ∈ Λ1,1(M) its Hermitian form. One says that M is balanced if
d(ωn−1) = 0.



SL(n,H) MANIFOLDS
The Obata connection has holonomy in GL(n,H). An important
subgroup inside GL(n,H) is its commutator SL(n,H). When the
holonomy of the Obata connection is in SL(n,H), the manifold is
called an SL(n,H)-manifold. To characterize such space we recall
a notion form Hermitian geometry.
Let (M, I , g) be a complex Hermitian manifold, dim |CM = n, and
ω ∈ Λ1,1(M) its Hermitian form. One says that M is balanced if
d(ωn−1) = 0.
Theorem(Barberis-Dotti-Verbitsky(2009))
Let (M, I , J,K ,Ω) be an HKT-manifold, dimH M = n. Then the
following conditions are equivalent.

(i) ∂(Ωn) = 0

(ii) ∇(Ωn) = 0, where ∇ is the Obata connection

(iii) The manifold (M, I ) with the induced quaternionic
Hermitian metric is balanced as a Hermitian
manifold:

d(ω2n−1
I ) = 0.



Let ΦI be a nowhere degenerate holomorphic section of Λ2n,0
I (M).

Assume that ΦI is real, that is, J(ΦI ) = Φ̄I . Existence of such a
form on compact M is equivalent to Hol(M) ⊂ SL(n,H). The
above result shows that balanced HKT manifold is SL(n,H).
On balanced HKT manifold with a fixed form ΦI = Ωn one can
define operators LΩ(α) = Ω ∧ α and its Hermitian adjoint

ΛΩ = ∗LΩ∗ acting on Λ(∗,0)
I . The following identities hold

[LΩ, ∂∗] = −∂J , [ΛΩ, ∂] = ∂∗J , [LΩ, ∂] = 0

[LΩ, ∂∗J ] = −∂, [ΛΩ, ∂J ] = ∂∗, [LΩ,ΛΩ] = (n− p)Id

where n = dimHM. In combination with
∂J∂∗ + ∂∗∂J = ∂J∂ + ∂∂J = 0 follows that

∆ = ∂∗∂ + ∂∗∂ = ∂∗J∂J + ∂∗J∂J = ∆J



As a consequence one obtains Hodge-type decomposition as well
as:
Global ∂∂J-Lemma(G.-Lejmi-Verbitsky)
If Ω is ∂-exact (2, 0)-form on balanced HKT manifold and
∂JΩ = 0, then Ω = ∂∂J f for a real function f

For a compact balanced HKT-manifold, we denote by h the (finite
dimensional) Lie algebra of hyper-holomorphic vector fields and

h0 = {X ∈ h | Ω(X , ·) = ∂f + ∂Jh for some functions f and h}.

Corollary(G.-Lejmi-Verbitsky)
If X is a hyper-holomorphic vector field with non-empty zero set
then X ∈ h0. Moreover h0 is an ideal of h such that

[h, h] ⊂ h0.

For SL(nH) manifold with any HKT metric ΦI = ef (Ω)n for
some f and there is a quaternionic Monge-Ampere equation
(Alesker-Verbitsky(2010))

(Ω + ∂∂Jϕ)n = ef (Ω)n



Example of hypercomplex manifold without HKT metric
(Fino-G.(2004))
Consider the nilpotent Lie algebra R × h7 where h7 is the algebra
of the quaternionic Heisenberg group H7. It is defined by the
following relation on a basis of left-invariant 1-forms:

de i = 0, i = 1, . . . , 5
de6 = e1 ∧ e2 + e3 ∧ e4,
de7 = e1 ∧ e3 − e2 ∧ e4,
de8 = e1 ∧ e4 + e2 ∧ e3

On a compact quotient M = R ×H7/Γ consider the family of
complex structures defined via:

It(e1) =
t−1
t e2, It(e3) = e4, Jt(e5) =

1
t e

6, Jt(e7) = e8,
Jt(e1) =

t−1
t e3, Jt(e2) = −e4, Jt(e5) =

1
t e

7, Jt(e6) = −e8.

for t ∈ (0, 1). Then for each t, ItJt = −Jt It = Kt defines a
hypercomplex structure on M. Using averaging argument it was
shown that for t = 1

2 the structure is HKT and for t ̸= 1
2 there is

no HKT metric.



BOTT-CHERN TYPE COHOMOLOGY AND CURRENTS
Define Hp,0

∂,∂J
(M) to be the group (p > 1)

Hp,0
∂,∂J

(M) =
{ϕ ∈ Λp,0(M, I )|∂ϕ = ∂Jϕ = 0}

∂∂JΛp−2,0(M, I )
.

and Hp,0
∂∂J

(M) to be the group

Hp,0
∂∂J

=
{ϕ ∈ Λp,0(M, I )|∂∂Jϕ = 0}

(∂Λp−1,0(M, I ) + ∂JΛp−1,0(M, I ))
.

Theorem(G.-Lejmi-Verbitsky)
The groups Hp,0

∂,∂J
(M) and Hp,0

∂∂J
(M) are finite dimensional for any

hypercomplex manifold M. If M is also SL(n,H) manifold with
nondegenerate form ΦI , then the two groups are dual to each
other via the pairing

([α], [β]) 7→
∫
M

α ∧ β ∧ Φ̄I .



Global ∂∂J Lemma in dimension 8(G.-Lejmi-Verbitsky)
Every SL(n,H) compact manifold M admits a hyperhermitian
metric with ∂∂J(Ωn−1) = 0. If n = 2 and dimH1(O(M,I)) is even,

then for each ∂J -exact real (2, 0)-form η, η = ∂∂Jϕ.

Currents on SL(n,H) manifolds

Currents of type (p, q) on complex manifold are defined as the
continuous functionals on the space of (n− p, n− q) smooth forms
with compact support endowed with the Frechet topology. They
can be considered as (p, q) forms with distribution coefficients in
local patch. The operators ∂, J and ∂J are extended naturally to
act by duality on currents. Similarly a (2n− 2, 0)-current T is
called real if T = JT and positive, if it is real and T (α ∧ ΦI ) ≥ 0
for any real (2, 0) form α > 0. It is called a real component of a
boundary, if T = ∂α + ∂J(Jα) for some (2n− 1, 0)-current α.



Theorem(G.-Lejmi-Verbitsky)
Let (M, I , J,K ) be a compact SL(n,H)-manifold. Then M admits
no HKT metrics if and only if M admits a positive
(2n− 2, 0)-current which is real component of a boundary.



Theorem(G.-Lejmi-Verbitsky)
Let (M, I , J,K ) be a compact SL(n,H)-manifold. Then M admits
no HKT metrics if and only if M admits a positive
(2n− 2, 0)-current which is real component of a boundary.

Now we provide an example of simply connected SL(n,H)
manifold without HKT structure(Swann(2010)).

Let (X , I , J,K , g) be a K3 surface equipped with a hyperkähler
structure and large enough Picard group such that there are 4
independent integral classes defining a principal T 4-bundle M over
X = K3 which is simply-connected up to a finite covering The
bundle M admits a connection A given by 1-forms θi s.t.
dθi = π∗(αi ), where α1, ..., α4 are the characteristic classes of M.
Assume α2

i ̸= 0 and define structures I ,J ,K on M by their action
on T ∗M given as:

I(θ1) = θ2, I(θ3) = θ4,J (θ1) = θ3,J (θ2) = −θ4,

I(π∗α) = π∗(Iα),J (π∗α) = π∗(Jα)

for any 1-form α on X .



The structure I is integrable if α1 +
√
−1α2, α3 +

√
−1α4 are of

type (2, 0) + (1, 1) with respect to I on X . Similarly J is
integrable if α1 +

√
−1α3, α2 −

√
−1α4 are of type (2, 0) + (1, 1)

with respect to J.
Similarly one can define a hyperhermitian metric on M from g and
a fixed hyper-Kähler metric on T 4 using the splitting of TM in
horizontal and vertical subspaces. As A. Swann has shown the
structure has a holonomy in SL(n,H) and is HKT when the forms
above have no (2, 0)-components respectively. If one chooses
α1 +

√
−1α2 to be (2, 0)-form for I , but (1, 1) for J and K and

the almost hypercomplex structure I ,J ,K is still integrable. Then
M does not admit HKT structure. By a spectral sequence
argument, one can see that all second cohomology classes of M are
pull-backs from classes on the base K3-surface. Then
π∗(α1 +

√
−1α2) will define positive (2, 0)-current which

obstructs the existence of HKT structure.



CALIBRATIONS AND SL(n,H) MANIFOLDS

Let W ⊂ V be a p-dimensional subspace in a Euclidean space, and
Vol(W ) denote the Riemannian volume form of W ⊂ V , defined
up to a sign. For any p-form η ∈ ΛpV , let comass(η) be the

maximum of
η(v1,v2,...,vp)
|v1||v2|...|vp | , for all p-tuples (v1, ..., vp) of vectors in V

and face be the set of planes W ⊂ V where
η

Vol(W )
= comass(η).

A calibration on a Riemannian manifold is a closed differential form
η with comass ≤ 1 everywhere.Let X ⊂ M be a k-dimensional
subvariety. We say that X is calibrated by η if at any smooth point
x ∈ X , the space TxX is a face of the calibration η.



Theorem(G.-Verbitsky(preprint(2010), to appear))
Let (M, I , J,K ,ΦI ) be an SL(n,H)-manifold, and (ΦI )

n,n
J the

(n, n)-part of ΦI taken with respect to J. Pick a hyperhermitian
metric on M such that |ΦI |g = 2n (such metric always exists).
Then Re((ΦI )

n,n
J ) is a calibration, and it calibrates complex

subvarieties of (M, J) which are Lagrangian with respect to the
(2, 0)-form ωK +

√
−1ωI .

Theorem (A.Soldatenkov, M.Verbitky (preprint(2013))
Let M be a compact SL(n,H)-manifold, and ϕ : M → X a
smooth holomorphic Lagrangian fibration. If M admits
HKT-structure, then X is Kähler.


