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Black holes

I black holes generate extremely strong gravitational fields

I informations about strong gravitational fields can substantially

increase our knowledge about the nature of gravitation

I material accreting onto a compact object can probe deeply into the

strong gravity regime
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Accretion process

I material orbiting a gravitational object is gradually absorbed

I gravitational and frictional forces compress and raise the temperature

of the material

I causes the emission of electromagnetic radiation
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The accreted matter

I Cosmic matter mainly exists in the form of plasma

I Different plasma models: hot, cold, collisional, collisionless

→ from infinitely high to very low conductivity;

from fluid to ballistic descriptions
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Black holes
Einstein

I Rµν + 1
2Rgµν = 8πG

c4
Tµν

I d2xµ

dτ2
+ Γµνρ

dxν

dτ
dxρ

dτ = 0

Newton

I ∆φ = 4πGρ

I d2xi

dt2
+ ∂iφ = 0

Most simple solution: Schwarzschild

massm = GM/c2, spherically symmetric, static, asymptotically flat

g = −
(

1− 2m

r

)
c2dt2 +

1

1− 2m
r

dr2 + r2(sin2 θdϕ2 + dθ2)

I coordinate singularity at r = 2m

I curvature singularity ar r = 0

}
Black Holes
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Black holes
I No–hair theorem/conjecture:

isolated black holes are

described by mass, angular

momentum, and charge only

I In astrophysics charge is usually

neglected

I Gravitational force is much smaller than electromagnetic force

I selective accretion of oppositely charged particles from the

environment

I net electric charge will quickly decrease to tiny valuesQ . 10−18

I complete vacuum: pair productionQ . 10−5 Eardley+ 1975

(Geometrised units: Q = QSI√
4πε0GM

)

9 Astrophysical black holes



Black hole solution
Kerr-Newman metric & electromagnetic potential

g =
∆

ρ2
(dt− a sin2 θdφ)2 − ρ2

∆
dr2 − ρ2dθ2

− sin2 θ

ρ2
(adt− (r2 + a2)2dφ)2

A =
Qr

ρ2
(dt− a sin2 θdϕ)

I massm = GM
c2
, rotation a = J

Mc , electric chargeQ
2 =

Q2
SIG

4πε0c4

I ∆ = r2 − 2mr + a2 +Q2
, ρ2 = r2 + a2 cos2 θ.

I stationary, axially symmetric, asymptotically flat

10 Astrophysical black holes



Charged black holes?

I black holes are usually not

isolated

I rotation of a black hole interacts

with electromagnetic fields

I magnetic fields from accretion disk, galactic field, . . .

I interaction→ selective accretion of charged particles

I the resulting charge is proportional to the magnetic field strength

I example: asymptotically uniform magnetic fieldQ = 2aB Wald 1974
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Charged black holes?
Astrophysical black holes

I most likely have nonvanishing

but very tiny charge to mass

ratios

I many orders of magnitude

below unity

Estimate for charge of Sgr A* Zajacek+ 2018

I based on observation of bremsstrahlung

I results in: QSI . 3× 108C or Q . 4× 10−19
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Astrophysical charged black holes
I very tiny charge to mass ratio

→ influence on spacetime geometry negligible small

I electromagnetic interaction is much stronger than gravitational force

I is there an influence on charged particles?

Order of magnitude estimate

I Kerr-Newman black hole withQ = 10−19

I equations of motion contain product qQ

I for free electrons: q = qSI√
4πε0Gµe

≈ −2× 1021

I for free protons: q ≈ 1× 1018

I then qQ ≈ 10−1 − 102 → a priori not negligible
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Models of accretion
I General relativistic magneto-hydrodynamics (GRMHD) simulations

I Computationally expensive: range of scales, dimensions, turbulence,

radiation, . . .

I Analytical models to understand the general relevant physical

processes

I Also serve as test beds and initial conditions for simulations

Analytical relativistic models

I Spherical accretion models

I Accretion disks (thick, thin, slim, adaf)
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Thick accretion disks
Astrophysical motivation

I Active galactic nuclei have a very high

accretion rate (∼ critical Eddington rate)
I Close to the central black hole, disks with high

accretion rates have to be geometrically thick

Models of thick disks (Polish doughnuts)

I original model in the Kerr background Abramowicz+ 1978

I additional toroidal magnetic field attached to the fluid Komissarov 2006

I charged fluid in Reissner-Nordström background Kovar+ 2011

I charged fluid & em-field, static spacetimes Kovar+ 2014, 2016

→ charged fluids in Kerr background + em-fields?
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Original model
Geometrically thick accretion disks

I fluid in hydrostatic equilibrium close to a

black hole

I very low viscosity

Assumptions of the model

I The whole setup is stationary and axially symmetric

I reflection symmetry to equatorial plane

I matter described by perfect fluid, polytropic equation of state

I the fluid motion is purely circular (→ no accretion!)

I test-fluid: does not influence the spacetime

Gravitation and pressure form equilibrium configurations
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Basic relations
Basic equation

I energy conservation: ∇µTµν = 0

→ Euler equation: (ε+ p)U̇α + hµα∂µp = 0

Circular motion

I angular velocity ω = Uϕ/U t , angular momentum l = −Uϕ/Ut
I then Uµ = U t(δµt + ωδµϕ)

I from gµνU
µUν = −1:

(U t)2 = −1/(gtt + 2ωgtϕ + ω2gϕϕ)

I this gives

U̇α = −∂α(lnU t) +
l∂αω

1− ωl
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Final equations
I insert in Euler equation:

∂µp

p+ ε
= ∂µ(lnU t)− l∂µω

1− ωl

I Von-Zeipel: integrable iff (l = const or ω = const or l = l(ω))

I usually l = const is used

I The effective potentialW is defined as

−W =

∫
x

∂µp

p+ ε
dxµ =

∫
p

dp

p+ ε(p)

I bound structures exist if pressure has local maximum

I extrema mark the center and the cusp
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Example: Schwarzschild equipressure surfaces
I l = const is assumed
I (bound fluid structures impossible for ω = const)

from Abramowicz et al 1977

I center and cusp on Keplerian/geodesic orbits

I center≈ rms, cusp≈ rmb
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Basic assumptions
I start with same assumptions as in original model

I add an em-field: (Aµ) = (At, Aϕ, 0, 0)

I matter is charged perfect fluid with FµνINT � FµνEXT

Maxwell’s equations

∇[µFνρ] = 0 , ∇µFµν = µ0j
ν = µ0(ρqU

ν + σF ναUα)

Ideal MHD

I σ →∞: F ναUα = 0 implies ∂µAt + ω∂µAϕ = 0

I implies ω = const or Aϕ = Aϕ(ω) Bonazzola+ 1993

I ω = const gives At = −ωAϕ
→ assume a finite conductivity
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Pressure equation
Energy-momentum conservation and Maxwell’s equations result in

∂µp

p+ ε
= ∂µ lnU t − l∂µω

1− ωl
+

ρq
p+ ε

FµαU
α +

1

p+ ε
σhνµFναF

αβUβ

stationarity and axial symmetry: ∂tp = 0, ∂ϕp = 0

I conductivity term has to vanish for µ = t, ϕ → σ = 0

integrability condition ∂µ∂νp = ∂ν∂µp:

I EOS and von Zeipel theorem

I find scalar function S such that
ρq
p+εFµαU

α = f(S)∂µS

Bound structures exist if pressure has local maximum
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Construction of bound fluid structures
Effective potential h =

∫ p
0

dp̃
p̃+ε(p̃)

I From h we can derive the physical characteristics p, ε, ρq
(given a specific equation of state)

I Necessary and sufficient conditions

0 = ∂µh(rc, θc) for µ = r, θ

0 > detH(rc, θc) and 0 > ∂2rrh(rc, θc)

I restrict to equatorial plane and axis of symmetry

I ∂rh(rc, θc) = 0 gives normalisation for charge distribution f(S)

I ∂2rrh(rc, θc) < 0 restricts choice of ω and/or l

I ∂2θθh(rc, θc) < 0 restricts form of f(S)
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Rigid rotation
I Rotating black hole→
determines gravitational field

I asymptotically uniform magnetic

test field, aligned with rotation

axis

→ induces test electric field of black

holeQ ∼ B

I assume rigid rotation ω = const→ impossible for uncharged case!

I scalar function S = At + ωAϕ, f(S) =
ρq
p+εU

t = kSn

I Found equilibrium configurations on the equator and the polar axis
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Main results
I charged equilibrium configurations can be in rigid rotation

I the rotation has a major impact on the domain of existence of bound

structures as compared to the non-rotating case

I equilibrium structures move away from black hole for increasing

rotation

I morphology changes: from prolate to oblate

I rotating black holes support rigidly rotating bound structures on the

axis of symmetry: polar clouds
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Example equilibrium configurations

Equipotential surfaces of the pressure.

Left: equatorial torus (f(S) ∼ S−2), right: polar cloud (f(S) ∼ S).
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Special cases
We also considered two special cases:

I Q = 0, B 6= 0

I Q 6= 0, B = 0

In both cases, we found polar cloud configurations:

this is impossible for non-rotating black holes

Kovar+ 2014
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Constant angular momentum

Slightly different scenario:

I non-rotating black hole

I assume l = const instead of
ω = const

I scalar function ∂µS = ∂µAt − lgϕϕ∂µAϕ, f(S) =
ρq
p+εUt = kSn

I found (double) tori on the equator
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Possible configurations

Assuming f(S) ∼ S:
I structures with a cusp only (no bound structures)

I bound tori without a cusp (no overflow→ no accretion)

I bound structures with inner and outer cusps (in- and outflow possible)

generally the cusps are on different equipotential surfaces

I two bound structures connected by a cusp
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Bound and double tori

Equipotential surfaces of the pressure
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Double cusp

Equipotential surfaces of the pressure
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Summary

Astrophysical black holes

I most likely have a very small electric chargeQ < 10−18

I influence on spacetimes geometry negligible

I influence on charged matter a priori non-negligible
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Summary
I general construction method for charged perfect fluids in axially

symmetric and stationary spacetimes and em-fields

I uniform magnetic field and electric charge of the black hole

I rigid rotation or constant angular momentum

Rigid rotation

I equilibrium configurations in equatorial plane and on polar axis

I pressure maxima shift to larger radii for increasing rotation

I polar clouds need at least two nonvanishing parameters in (a,Q,B)

Constant angular momentum

I double cusps and double tori possible
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Discussion and outlook
We discussed the influence of charge in (semi-)analytical toy models

I equilibrium configurations↔ dynamical flow

I vanishing conductivity↔ ideal MHD

→ these caveats could make the charge effects vanish!

→ simulations with small conductivity?

Open questions in the construction method

I stability analysis

I preferred charge distributions / zero net charge possible?

I off-equatorial / off-polar structures
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