Advanced Calculus (Element of Analysis)

Homework 2

Due on September 25, 2017

Problem 1 [6 points]

What is the limit as $n \rightarrow \infty$ of the following sequences? Explain your reasoning.
(a) $a_{n}=x^{1 / n}$ for some $x>0$; (Hint: Bernoulli's inequality from the last homework sheet might be helpful.)
(b) $b_{n}=(\sqrt{n+1}-\sqrt{n}) \sqrt{n+\frac{1}{3}}$;
(c) $c_{n}=\frac{10^{n}}{n!}$.

Problem 2 [2 points]

Consider the sequence $\left(a_{n}\right)_{n \geq 0}$ with

$$
a_{n}=\left\{\begin{array}{cl}
\frac{n+6}{n+4} & , \text { for } n \text { even } \\
-\left(\frac{2}{n+3}\right) & , \text { for } n \text { odd. }
\end{array}\right.
$$

What are $\liminf \inf _{n \rightarrow \infty} a_{n}, \lim \sup _{n \rightarrow \infty} a_{n}, \inf \left\{a_{n}\right\}$ and $\sup \left\{a_{n}\right\}$?

Problem 3 [2 points]

Prove that the function

$$
f(x)=\left\{\begin{array}{cl}
0 & \text {, for } x=0 \\
\sin \left(\frac{1}{x}\right) & , \text { for } x \neq 0
\end{array}\right.
$$

is not continuous at $x=0$ by constructing a sequence $\left(x_{n}\right)_{n \geq 0}$ that converges to 0 , but for which $f\left(x_{n}\right)$ does not converge to $f(0)$.

Problem 4 [2 points]

Using the definition of limits of functions via converging sequences, prove that for

$$
f(x)=\left\{\begin{array}{cc}
0 & , \text { for } x=0 \\
\frac{x}{|x|} & , \text { for } x \neq 0
\end{array}\right.
$$

we have $\lim _{x \rightarrow 0^{+}} f(x)=1, \lim _{x \rightarrow 0^{-}} f(x)=-1$, and that $\lim _{x \rightarrow 0} f(x)$ does not exist.

Problem 5 [2 points]

Let

$$
f(x)=\frac{x^{2}+3 x-10}{x-2}
$$

What is the domain of f ? What is $\lim _{x \rightarrow 2} f(x)$?

Problem 6 [2 points]

Compute

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)},
$$

e.g., by using the difference method. Hint: Decompose the summands into partial fractions, i.e., find a, b such that

$$
\frac{1}{k(k+1)}=\frac{a}{k}+\frac{b}{k+1} .
$$

Problem 7 [4 points]

Prove that for $|x|<1$ and any natural number $m \geq 1$, we have

$$
(1-x)^{-m}=\sum_{k=0}^{\infty}\binom{m+k-1}{k} x^{k} .
$$

Hint: You could proceed by induction, using the Cauchy product formula and an identity from the last homework sheet.

