Advanced Calculus (Element of Analysis)

Homework 4

Due on October 09, 2017

Problem 1 [4 points]

Let $z_{1}=1+2 i$ and $z_{2}=3-2 i$. Calculate $z_{1} z_{2}, \frac{z_{1}}{z_{2}}$, and give the result in polar representation (pay attention to what the right angle is) and state the real and imaginary part. Draw z_{1}, $z_{2}, z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$ in the complex plane.

Problem 2 [3 points]

Calculate all solutions to the following equations:
(a)

$$
z^{2}=i
$$

(b)

$$
z^{3}=-1,
$$

(c)

$$
z^{i}=i
$$

Problem 3 [3 points]

Find the roots of

$$
x^{2}+4 x+13=0 .
$$

Problem 4 [4 points]
In the first lecture, we learned a recipe to find the zeros of polynomials of degree 3 due to
Vieta: For an equation of the type

$$
x^{3}+p x+q=0,
$$

set $x=z-\frac{p}{3 z}$, and then solve the resulting equation which is quadratic in z^{3}. Use this recipe to find the roots of

$$
x^{3}-3 \sqrt[3]{4} x-2=0
$$

Problem 5 [2 points]

Sum up the expression

$$
D_{n}(x)=\sum_{k=-n}^{n} e^{i k x} .
$$

What is the behavior of $D_{n}(x)$ for very small x as $n \rightarrow \infty$?
Problem 6 [4 points]
(a) Express $\sin (x)$ and $\cos (x)$ in terms of $e^{ \pm i x}$ by using the Euler formula.
(b) Find the relation between $\sin (i x), \cos (i x)$ and $\sinh (x)$ and $\cosh (x)$.
(c) Using (a), prove the identity

$$
\sin ^{2}\left(\frac{x}{2}\right)=\frac{1-\cos (x)}{2}
$$

