Advanced Calculus (Element of Analysis)

Homework 5

Due on October 16, 2017

Problem 1 [4 points]

Calculate the derivatives of the following functions:
(a)

$$
f_{1}(x)=x \sin (x)
$$

(b)

$$
f_{2}(x)=\frac{x^{3}}{\sqrt{1-x}},
$$

(c)

$$
f_{3}(x)=\ln \left(a^{x}+a^{-x}\right) \text { for any } a>0,
$$

(d)

$$
f_{4}(x)=\arccos (x) \quad \text { (express the result without using trigonometric functions). }
$$

Problem 2 [2 points]

Prove that the function $f(x)=e^{|x|}$ is not differentiable at $x=0$.

Problem 3 [2 points]

In class we discussed the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Generalize this rule for the n-th derivative $(f g)^{(n)}$.

Problem 4 [6 points]

Consider the curve parametrized by φ where $x=a \cos (3 \varphi)$ and $y=a \cos (\varphi)$ for some given $a \in \mathbb{R}$.

1. Calculate $\frac{d y}{d x}$ using the given parametrization.
2. Show that the curve satisfies $4 y^{3}=a^{2}(x+3 y)$.
3. Calculate $\frac{d y}{d x}$ by implicit differentiation of the equation from (b). Does the result coincide with (a) ?

Problem 5 [2 points]

Evaluate the following limits, e.g., by using L'Hospital's rule.
(a)

$$
\lim _{x \rightarrow \infty}\left(1-\frac{a^{2}}{x^{2}}\right)^{x^{2}}
$$

(b)

$$
\lim _{x \rightarrow 0} \frac{\tan (x)-x}{\cos (x)-x} .
$$

Problem 6 [4 points]

Find the Taylor series around $x=0$ (i.e., the Maclaurin series) of the following functions for $0<x<1$. Show that the functions are actually equal to their infinite power series by showing that the remainder term $R_{n}(x)$ of the Taylor expansion vanishes in the limit $n \rightarrow \infty$.
(a)

$$
f_{1}(x)=\ln (1+x),
$$

(b)

$$
f_{2}(x)=(1+x)^{a} \quad \text { for any fixed } a \in \mathbb{R} .
$$

