Advanced Calculus (Element of Analysis)

Homework 5

Due on October 16, 2017

Problem 1 [4 points]

Calculate the derivatives of the following functions:

(a) $f_1(x) = x\sin(x),$

$$f_2(x) = \frac{x^3}{\sqrt{1-x}},$$

(c)

 $f_3(x) = \ln(a^x + a^{-x})$ for any a > 0,

(d)

 $f_4(x) = \arccos(x)$ (express the result without using trigonometric functions).

Problem 2 [2 points]

Prove that the function $f(x) = e^{|x|}$ is not differentiable at x = 0.

Problem 3 [2 points]

In class we discussed the product rule (fg)' = f'g + fg'. Generalize this rule for the *n*-th derivative $(fg)^{(n)}$.

Problem 4 [6 points]

Consider the curve parametrized by φ where $x = a\cos(3\varphi)$ and $y = a\cos(\varphi)$ for some given $a \in \mathbb{R}$.

- 1. Calculate $\frac{dy}{dx}$ using the given parametrization.
- 2. Show that the curve satisfies $4y^3 = a^2(x+3y)$.
- 3. Calculate $\frac{dy}{dx}$ by implicit differentiation of the equation from (b). Does the result coincide with (a)?

Problem 5 [2 points]

Evaluate the following limits, e.g., by using L'Hospital's rule.

(a)

$$\lim_{x \to \infty} \left(1 - \frac{a^2}{x^2} \right)^{x^2},$$

(b)

$$\lim_{x \to 0} \frac{\tan(x) - x}{\cos(x) - x}.$$

Problem 6 [4 points]

Find the Taylor series around x = 0 (i.e., the Maclaurin series) of the following functions for 0 < x < 1. Show that the functions are actually equal to their infinite power series by showing that the remainder term $R_n(x)$ of the Taylor expansion vanishes in the limit $n \to \infty$.

(a)
$$f_1(x) = \ln(1+x),$$

(b)

$$f_2(x) = (1+x)^a$$
 for any fixed $a \in \mathbb{R}$.