Advanced Calculus

Some extra exercises for part I (not homework, not graded)

Problem 1 (Binomial Coefficients)

Compute

$$
\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for any n and $0<p<1$.

Problem 2 (Induction)

Prove by induction that

$$
\sum_{k=0}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2} .
$$

Problem 3 (Polynomials)

Factorize the polynomial $p(x)=x^{3}-3 x^{2}-13 x+15$.

Problem 4 (Sequences and Convergence)

Show and carefully explain why the sequence

$$
a_{n}=\frac{4 n^{3}+3 n}{(\sqrt{n+1}-\sqrt{n}) n^{7 / 2}}
$$

converges, and what its limit is.

Problem 5 (Sequences and Convergence)

Determine $\lim \inf _{n \rightarrow \infty} a_{n}$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}$ of the sequence

$$
a_{n}=(-2)^{n}\left(2^{-n+1}+10^{-n}\right) .
$$

Does $\lim _{n \rightarrow \infty} a_{n}$ exist?

Problem 6 (Infinite Series)

Compute

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+3)}
$$

or show that the limit does not exist.

Problem 7 (Power Series)

Determine the radius of convergence ρ for the power series

$$
P(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} x^{k}
$$

and state whether it converges at $x= \pm \rho$ or not. What is the derivative $P^{\prime}(x)$? Does it converge at $x= \pm \rho$ or not?

Problem 8 (Complex Numbers)

Find all roots of the equation

$$
z^{3}+2=0
$$

Problem 9 (Complex Numbers)

Carefully derive the trigonometric identity

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

using Euler's formula.

Problem 10 (Derivatives)

Consider the function

$$
f(x)=\frac{\ln (x)}{x-3} .
$$

What are the domain, image and derivative of f ?

Problem 11 (Derivatives)

Compute the derivatives of

$$
f(x)=\sin (x) \cos (x), \quad \text { and } \quad g(x)=\arcsin (x) .
$$

