Jacobs University Fall 2018

Advanced Calculus

Some extra exercises for part I (not homework, not graded)

Problem 1 (Binomial Coefficients)

Compute

$$\sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

for any n and 0 .

Problem 2 (Induction)

Prove by induction that

$$\sum_{k=0}^{n} k^{3} = \frac{1}{4}n^{2}(n+1)^{2}.$$

Problem 3 (Polynomials)

Factorize the polynomial $p(x) = x^3 - 3x^2 - 13x + 15$.

Problem 4 (Sequences and Convergence)

Show and carefully explain why the sequence

$$a_n = \frac{4n^3 + 3n}{(\sqrt{n+1} - \sqrt{n})n^{7/2}}$$

converges, and what its limit is.

Problem 5 (Sequences and Convergence)

Determine $\liminf_{n\to\infty} a_n$ and $\limsup_{n\to\infty} a_n$ of the sequence

$$a_n = (-2)^n \left(2^{-n+1} + 10^{-n} \right).$$

Does $\lim_{n\to\infty} a_n$ exist?

Problem 6 (Infinite Series)

Compute

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+3)}$$

or show that the limit does not exist.

Problem 7 (Power Series)

Determine the radius of convergence ρ for the power series

$$P(x) = \sum_{k=1}^{\infty} \frac{1}{k^2} x^k$$

and state whether it converges at $x = \pm \rho$ or not. What is the derivative P'(x)? Does it converge at $x = \pm \rho$ or not?

Problem 8 (Complex Numbers)

Find all roots of the equation

 $z^3 + 2 = 0.$

Problem 9 (Complex Numbers)

Carefully derive the trigonometric identity

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

using Euler's formula.

Problem 10 (Derivatives)

Consider the function

$$f(x) = \frac{\ln(x)}{x - 3}.$$

What are the domain, image and derivative of f?

Problem 11 (Derivatives)

Compute the derivatives of

$$f(x) = \sin(x)\cos(x)$$
, and $g(x) = \arcsin(x)$.