Advanced Calculus

Some extra exercises for part II (not homework, not graded)

Problem 1 (Taylor Series)

Compute the Taylor series around $x=0$ for $|x| \leq 1$ of

$$
f(x)=\arctan (x) .
$$

Problem 2 (Maxima/Minima)

Find all maxima, minima, and points of inflection of

$$
f(x)=x^{3}-3 x+3
$$

and determine where the function is concave and where it is convex. Based on your results, qualitatively sketch the graph of f.

Problem 3 (Integration by Substitution)

Compute for any $a<b$

$$
\int_{a}^{b}((x-a)(b-x))^{-1 / 2} d x \text { and } \int_{a}^{b}((x-a)(b-x))^{1 / 2} d x
$$

using the substitution $x=a \cos ^{2} y+b \sin ^{2} y$.

Problem 4 (Integration by Parts)

Compute the integrals

$$
\int x^{2} e^{2 x} d x, \quad \int(\ln (x))^{2} d x .
$$

Problem 5 (Improper Integrals)

Compute the following improper integrals, in case they exist.

$$
\int_{0}^{1} \frac{1}{x^{2}} d x, \quad \int_{1}^{\infty} \frac{1}{x^{2}} d x, \quad \int_{0}^{1} \frac{x}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

Problem 6 (Uniform Convergence and Exchange of Limits)

Consider the sequence of functions

$$
f_{n}(x)=\left\{\begin{array}{cl}
n & , \text { for } 0<x \leq \frac{1}{n} \\
0 & , \text { otherwise }
\end{array}\right.
$$

What is the pointwise limit $n \rightarrow \infty$? What is $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$? What is $\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x$?
Does f_{n} converge uniformly to some function f ?

Problem 7 (ODEs: Separation of Variables)

Solve the ODE

$$
\frac{d y}{d x}=x+x y
$$

by separation of variables.

Problem 8 (Linear ODEs)

Give the general solution to the linear homogeneous ODE

$$
y^{\prime \prime}+y^{\prime}-2 y=0 .
$$

Then give the solution for the initial condition $y(0)=2$ and $y^{\prime}(0)=5$. What is the behavior of the solution as $x \rightarrow \infty$? Also find one particular solution to the linear inhomogeneous ODE

$$
y^{\prime \prime}+y^{\prime}-2 y=e^{-x} .
$$

Finally, provide the general solution (i.e., involving two constants) to this inhomogeneous ODE.

Problem 9 (Fourier Series)

Consider the 2π-periodic function f which is $f(x)=\cosh (x-\pi)$ on the interval $[0,2 \pi]$. Does its Fourier series converge uniformly to f ? Compute the Fourier series of f. Then, by evaluating f and its Fourier series at π, compute the value of the series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+k^{2}}
$$

