Advanced Calculus

Some extra exercises for part II with solutions

Note: Here I sometimes just provide the final results. In exams you have to provide detailed steps and explanations for your solution.

Problem 1 (Taylor Series)

Compute the Taylor series around $x=0$ for $|x| \leq 1$ of

$$
f(x)=\arctan (x) .
$$

Solution:

$$
\arctan (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1} .
$$

Problem 2 (Maxima/Minima)

Find all maxima, minima, and points of inflection of

$$
f(x)=x^{3}-3 x+3
$$

and determine where the function is concave and where it is convex. Based on your results, qualitatively sketch the graph of f.

Solution: Maximum at -1 , minimum at +1 , point of inflection at 0 . For $x<0$ the function is concave, for $x>0$ it is convex.

Problem 3 (Integration by Substitution)

Compute for any $a<b$

$$
\int_{a}^{b}((x-a)(b-x))^{-1 / 2} d x \quad \text { and } \quad \int_{a}^{b}((x-a)(b-x))^{1 / 2} d x
$$

using the substitution $x=a \cos ^{2} y+b \sin ^{2} y$.

Solution:

$$
\begin{gathered}
\int_{a}^{b}((x-a)(b-x))^{-1 / 2} d x=\pi \\
\int_{a}^{b}((x-a)(b-x))^{1 / 2} d x=\frac{\pi(b-a)^{2}}{8} .
\end{gathered}
$$

Problem 4 (Integration by Parts)

Compute the integrals

$$
\int x^{2} e^{2 x} d x, \quad \int(\ln (x))^{2} d x
$$

Solution:

$$
\begin{gathered}
\int x^{2} e^{2 x} d x=\frac{e^{2 x}\left(2 x^{2}-2 x+1\right)}{4}+C, \\
\int(\ln (x))^{2} d x=x \ln (x)^{2}-2 x \ln (x)+2 x+C .
\end{gathered}
$$

Problem 5 (Improper Integrals)

Compute the following improper integrals, in case they exist.

$$
\int_{0}^{1} \frac{1}{x^{2}} d x, \quad \int_{1}^{\infty} \frac{1}{x^{2}} d x, \quad \int_{0}^{1} \frac{x}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

Solution:

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{x^{2}} d x \quad \text { does not exist, } \\
\int_{1}^{\infty} \frac{1}{x^{2}} d x=1 \\
\int_{0}^{1} \frac{x}{\left(1-x^{2}\right)^{1 / 2}} d x=1
\end{gathered}
$$

Problem 6 (Uniform Convergence and Exchange of Limits)

Consider the sequence of functions

$$
f_{n}(x)= \begin{cases}n & , \text { for } 0<x \leq \frac{1}{n} \\ 0 & , \text { otherwise } .\end{cases}
$$

What is the pointwise limit $n \rightarrow \infty$? What is $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$? What is $\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x$? Does f_{n} converge uniformly to some function f ?
Solution: $f_{n}(x)$ converges to 0 for each fixed x. Furthermore, $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=1$, but $\int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=0$. But, according to the theorem from class, if f_{n} converges to $f=0$ uniformly, then both integrals give the same result. So f_{n} does not converge uniformly to $f=0$ (and of course not to any other f).

Problem 7 (ODEs: Separation of Variables)

Solve the ODE

$$
\frac{d y}{d x}=x+x y
$$

by separation of variables.

Solution:

$$
y(x)=C e^{x^{2} / 2}-1 .
$$

Problem 8 (Linear ODEs)

Give the general solution to the linear homogeneous ODE

$$
y^{\prime \prime}+y^{\prime}-2 y=0 .
$$

Then give the solution for the initial condition $y(0)=2$ and $y^{\prime}(0)=5$. What is the behavior of the solution as $x \rightarrow \infty$? Also find one particular solution to the linear inhomogeneous ODE

$$
y^{\prime \prime}+y^{\prime}-2 y=e^{-x} .
$$

Finally, provide the general solution (i.e., involving two constants) to this inhomogeneous ODE.

Solution: The general solution to the homogeneous ODE is $y(x)=a e^{x}+b e^{-2 x}$, where a, b are two constants. With the above initial conditions we find $a=3, b=-1$, so the solution for the given initial conditions is $y(x)=3 e^{x}-e^{-2 x}$. This solution diverges to $+\infty$ as $x \rightarrow \infty$.

One solution to the inhomogeneous ODE can be found by using $A e^{-x}$ as ansatz. Then we find that $y_{\text {part }}(x)=-\frac{1}{2} e^{-x}$ is one particular solution (it does not involve any constants). So the general solution to the inhomogeneous ODE is

$$
y_{\mathrm{gen}}(x)=a e^{x}+b e^{-2 x}-\frac{1}{2} e^{-x} .
$$

Problem 9 (Fourier Series)

Consider the 2π-periodic function f which is $f(x)=\cosh (x-\pi)$ on the interval $[0,2 \pi]$. Does its Fourier series converge uniformly to f ? Compute the Fourier series of f. Then, by evaluating f and its Fourier series at π, compute the value of the series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+k^{2}}
$$

Solution: The function is continuous and piecewise continuously differentiable, so the Fourier series converges to f uniformly. The Fourier coefficients are

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (x-\pi) e^{-i k x} d x=\frac{\sinh (\pi)}{\pi\left(1+k^{2}\right)},
$$

for all k (also $k=0$). Then the Fourier series is

$$
\mathcal{F}[f](x)=\sum_{k=-\infty}^{\infty} \frac{\sinh (\pi)}{\pi\left(1+k^{2}\right)} e^{i k x}
$$

Since we have uniform convergence, we have that $\mathcal{F}[f](\pi)=f(\pi)$. We find

$$
1=f(\pi)=\cosh (\pi-\pi)=\mathcal{F}[f](\pi)=\sum_{k=-\infty}^{\infty} \frac{\sinh (\pi)}{\pi\left(1+k^{2}\right)}(-1)^{k} .
$$

Solving for the desired sum, we get

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{1+k^{2}}=\frac{\pi}{2 \sinh (\pi)}-\frac{1}{2}
$$

