Jacobs University Fall 2018

Advanced Calculus

Some extra exercises for part II with solutions

Note: Here I sometimes just provide the final results. In exams you have to provide detailed steps and explanations for your solution.

Problem 1 (Taylor Series)

Compute the Taylor series around x = 0 for $|x| \le 1$ of

$$f(x) = \arctan(x).$$

Solution:

$$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}.$$

Problem 2 (Maxima/Minima)

Find all maxima, minima, and points of inflection of

$$f(x) = x^3 - 3x + 3$$

and determine where the function is concave and where it is convex. Based on your results, qualitatively sketch the graph of f.

Solution: Maximum at -1, minimum at +1, point of inflection at 0. For x < 0 the function is concave, for x > 0 it is convex.

Problem 3 (Integration by Substitution)

Compute for any a < b

$$\int_{a}^{b} \left((x-a)(b-x) \right)^{-1/2} dx \text{ and } \int_{a}^{b} \left((x-a)(b-x) \right)^{1/2} dx$$

using the substitution $x = a\cos^2 y + b\sin^2 y$.

Solution:

$$\int_{a}^{b} \left((x-a)(b-x) \right)^{-1/2} dx = \pi,$$
$$\int_{a}^{b} \left((x-a)(b-x) \right)^{1/2} dx = \frac{\pi(b-a)^{2}}{8}.$$

Problem 4 (Integration by Parts)

Compute the integrals

$$\int x^2 e^{2x} \, dx, \qquad \int (\ln(x))^2 \, dx.$$

Solution:

$$\int x^2 e^{2x} dx = \frac{e^{2x}(2x^2 - 2x + 1)}{4} + C,$$
$$\int (\ln(x))^2 dx = x \ln(x)^2 - 2x \ln(x) + 2x + C.$$

Problem 5 (Improper Integrals)

Compute the following improper integrals, in case they exist.

$$\int_0^1 \frac{1}{x^2} \, dx, \qquad \qquad \int_1^\infty \frac{1}{x^2} \, dx, \qquad \qquad \int_0^1 \frac{x}{(1-x^2)^{1/2}} \, dx.$$

Solution:

$$\int_{0}^{1} \frac{1}{x^{2}} dx \quad \text{does not exist,}$$
$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = 1,$$
$$\int_{0}^{1} \frac{x}{(1-x^{2})^{1/2}} dx = 1.$$

Problem 6 (Uniform Convergence and Exchange of Limits)

Consider the sequence of functions

$$f_n(x) = \begin{cases} n & \text{, for } 0 < x \le \frac{1}{n} \\ 0 & \text{, otherwise.} \end{cases}$$

What is the pointwise limit $n \to \infty$? What is $\lim_{n\to\infty} \int_0^1 f_n(x) dx$? What is $\int_0^1 \lim_{n\to\infty} f_n(x) dx$? Does f_n converge uniformly to some function f?

Solution: $f_n(x)$ converges to 0 for each fixed x. Furthermore, $\lim_{n\to\infty} \int_0^1 f_n(x) dx = 1$, but $\int_0^1 \lim_{n\to\infty} f_n(x) dx = 0$. But, according to the theorem from class, if f_n converges to f = 0 uniformly, then both integrals give the same result. So f_n does not converge uniformly to f = 0 (and of course not to any other f).

Problem 7 (ODEs: Separation of Variables)

Solve the ODE

$$\frac{dy}{dx} = x + xy$$

by separation of variables.

Solution:

$$y(x) = Ce^{x^2/2} - 1.$$

Problem 8 (Linear ODEs)

Give the general solution to the linear homogeneous ODE

$$y'' + y' - 2y = 0.$$

Then give the solution for the initial condition y(0) = 2 and y'(0) = 5. What is the behavior of the solution as $x \to \infty$? Also find one particular solution to the linear inhomogeneous ODE

$$y'' + y' - 2y = e^{-x}.$$

Finally, provide the general solution (i.e., involving two constants) to this inhomogeneous ODE.

Solution: The general solution to the homogeneous ODE is $y(x) = ae^x + be^{-2x}$, where a, b are two constants. With the above initial conditions we find a = 3, b = -1, so the solution for the given initial conditions is $y(x) = 3e^x - e^{-2x}$. This solution diverges to $+\infty$ as $x \to \infty$.

One solution to the inhomogeneous ODE can be found by using Ae^{-x} as ansatz. Then we find that $y_{\text{part}}(x) = -\frac{1}{2}e^{-x}$ is one particular solution (it does not involve any constants). So the general solution to the inhomogeneous ODE is

$$y_{\text{gen}}(x) = ae^x + be^{-2x} - \frac{1}{2}e^{-x}.$$

Problem 9 (Fourier Series)

Consider the 2π -periodic function f which is $f(x) = \cosh(x - \pi)$ on the interval $[0, 2\pi]$. Does its Fourier series converge uniformly to f? Compute the Fourier series of f. Then, by evaluating f and its Fourier series at π , compute the value of the series

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{1+k^2}.$$

Solution: The function is continuous and piecewise continuously differentiable, so the Fourier series converges to f uniformly. The Fourier coefficients are

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} \cosh(x-\pi) e^{-ikx} \, dx = \frac{\sinh(\pi)}{\pi(1+k^2)},$$

for all k (also k = 0). Then the Fourier series is

$$\mathcal{F}[f](x) = \sum_{k=-\infty}^{\infty} \frac{\sinh(\pi)}{\pi(1+k^2)} e^{ikx}.$$

Since we have uniform convergence, we have that $\mathcal{F}[f](\pi) = f(\pi)$. We find

$$1 = f(\pi) = \cosh(\pi - \pi) = \mathcal{F}[f](\pi) = \sum_{k=-\infty}^{\infty} \frac{\sinh(\pi)}{\pi(1+k^2)} (-1)^k.$$

Solving for the desired sum, we get

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{1+k^2} = \frac{\pi}{2\sinh(\pi)} - \frac{1}{2}.$$