Advanced Calculus

Some extra exercises for part I with solutions

Note: Here I sometimes just provide the final results. For your homeworks and exams you have to provide detailed steps and explanations for your solution.

Problem 1 (Binomial Coefficients)

Compute

$$
\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for any n and $0<p<1$.

Solution:

$$
\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p
$$

as discussed in class. This is the expectation value of the binomial distribution (e.g., it tells you how many heads you get on average for n coin tosses, given that the probability for heads in one coin toss in p).

Problem 2 (Induction)

Prove by induction that

$$
\sum_{k=0}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2} .
$$

Solution: Direct proof using induction.

Problem 3 (Polynomials)

Factorize the polynomial $p(x)=x^{3}-3 x^{2}-13 x+15$.

Solution:

$$
p(x)=(x-1)(x+3)(x-5) .
$$

The $(x-1)$ factor can be guessed; then figure out a and b in

$$
x^{3}-3 x^{2}-13 x+15=(x-1)\left(x^{2}+a x+b\right)
$$

and find the roots of $x^{2}+a x+b$.

Problem 4 (Sequences and Convergence)

Show and carefully explain why the sequence

$$
a_{n}=\frac{4 n^{3}+3 n}{(\sqrt{n+1}-\sqrt{n}) n^{7 / 2}}
$$

converges, and what its limit is.

Solution:

$$
\begin{aligned}
a_{n} & =\frac{4 n^{3}+3 n}{(\sqrt{n+1}-\sqrt{n}) n^{7 / 2}}=\frac{\left(4 n^{3}+3 n\right)(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n}) n^{7 / 2}} \\
& =\frac{\left(4 n^{3}+3 n\right)(\sqrt{n+1}+\sqrt{n})}{n^{7 / 2}} \\
& =\underbrace{\left(4+3 n^{-2}\right)}_{\rightarrow 4} \underbrace{\left(\sqrt{1+n^{-1}}+1\right)}_{\rightarrow 2} \\
& \rightarrow 8 .
\end{aligned}
$$

Problem 5 (Sequences and Convergence)

Determine $\lim \inf _{n \rightarrow \infty} a_{n}$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}$ of the sequence

$$
a_{n}=(-2)^{n}\left(2^{-n+1}+10^{-n}\right) .
$$

Does $\lim _{n \rightarrow \infty} a_{n}$ exist?

Solution:

$$
\liminf _{n \rightarrow \infty} a_{n}=-2, \quad \limsup _{n \rightarrow \infty} a_{n}=2,
$$

and since those two are different the limit $n \rightarrow \infty$ does not exist.

Problem 6 (Infinite Series)

Compute

$$
\sum_{k=1}^{\infty} \frac{1}{(2 k-1)(2 k+3)}
$$

or show that the limit does not exist.

Solution:

$$
\frac{1}{(2 k-1)(2 k+3)}=\frac{1}{4}\left(\frac{1}{2 k-1}+\frac{1}{2 k+3}\right) .
$$

So if we define $a_{n}=\frac{1}{2 k-1}$ we have

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+3)}=\frac{1}{4} \sum_{k=1}^{n}\left(a_{k}-a_{k+2}\right)=\frac{1}{4}\left(a_{1}+a_{2}-a_{n}-a_{n+2}\right) \\
& \rightarrow \frac{1}{4}\left(a_{1}+a_{2}\right)=\frac{1}{4}\left(1+\frac{1}{3}\right)=\frac{1}{3} .
\end{aligned}
$$

Problem 7 (Power Series)

Determine the radius of convergence ρ for the power series

$$
P(x)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} x^{k}
$$

and state whether it converges at $x= \pm \rho$ or not. What is the derivative $P^{\prime}(x)$? Does it converge at $x= \pm \rho$ or not?

Solution: By root or ratio test, the radius of convergence is $\rho=1$. Then

$$
\begin{gathered}
P(1)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \quad \text { converges absolutely } \\
P(-1)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \quad \text { converges absolutely }
\end{gathered}
$$

e.g., because as we showed in a previous homework, $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ converges; then we can use the comparison test appropriately (later when we have the integral test we will see directly that the series converges). Also,

$$
P^{\prime}(x)=\sum_{k=1}^{\infty} \frac{1}{k} x^{k-1},
$$

and

$$
\begin{gathered}
P^{\prime}(1)=\sum_{k=1}^{\infty} \frac{1}{k} \quad \text { diverges (comparison test) } \\
P^{\prime}(-1)=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k} \quad \text { converges conditionally (Leibniz test). }
\end{gathered}
$$

Problem 8 (Complex Numbers)

Find all roots of the equation

$$
z^{3}+2=0 .
$$

Solution:

$$
z=(-2)^{1 / 3}=\left(2 e^{i \pi+2 \pi i k}\right)=\sqrt[3]{2} e^{i \pi / 3+2 \pi i k / 3},
$$

so the three roots are

$$
z_{1}=\sqrt[3]{2} e^{i \pi / 3}, \quad z_{2}=\sqrt[3]{2} e^{i \pi}, \quad z_{3}=\sqrt[3]{2} e^{i 5 \pi / 3}
$$

Problem 9 (Complex Numbers)

Carefully derive the trigonometric identity

$$
\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)
$$

using Euler's formula.
Solution: Rewrite

$$
e^{i(x+y)}=e^{i x} e^{i y}
$$

using Euler's formula, and then take the imaginary part on both sides.

Problem 10 (Derivatives)

Consider the function

$$
f(x)=\frac{\ln (x)}{x-3}
$$

What are the domain, image and derivative of f ?
Solution: The domain is $(0, \infty) \backslash\{3\}$ and the image is \mathbb{R}. Also,

$$
f^{\prime}(x)=\frac{x^{-1}(x-3)-\ln (x)}{(x-3)^{2}}
$$

Problem 11 (Derivatives)

Compute the derivatives of

$$
f(x)=\sin (x) \cos (x), \quad \text { and } \quad g(x)=\arcsin (x) .
$$

Solution:

$$
f^{\prime}(x)=\cos ^{2}(x)-\sin ^{2}(x), \quad g^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

