Advanced Calculus

Homework 3

Due on October 1, 2018

Problem 1 [3 points]

Prove that for $|x|<1$ and any natural number $m \geq 1$, we have

$$
(1-x)^{-m}=\sum_{k=0}^{\infty}\binom{m+k-1}{k} x^{k} .
$$

Hint: You could proceed by induction, using the Cauchy product formula and an identity from the first homework sheet.

Problem 2 [4 points]

Determine for each of the following series whether it converges conditionally, converges absolutely or diverges. In case of divergence, does it go to $\pm \infty$ or not?
(a)

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)},
$$

(b)

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k+5}
$$

(c)

$$
\sum_{k=0}^{\infty} \frac{e^{k}}{k}
$$

(d)

$$
\sum_{k=0}^{\infty} \frac{2^{k}+k}{k!+1} .
$$

Problem 3 [3 points]

For the following power series, determine the radius of convergence ρ and discuss the behavior at $\pm \rho$ (i.e., convergence or divergence (to $\pm \infty$ or not)).
(a)

$$
\sum_{k=0}^{\infty} x^{k}
$$

(b)

$$
\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}
$$

(c)

$$
\sum_{k=0}^{\infty} \frac{(2 k)!}{4^{k}(k!)^{2}(2 k+1)} x^{2 k+1} \quad \text { (here you do not need to discuss the endpoints!). }
$$

Problem 4 [2 points]

State whether the following functions are injective (one-to-one) or not, and whether they are surjective (onto) or not.
(a)

$$
f_{1}: \mathbb{R} \rightarrow[0,1], x \mapsto \sin (x)
$$

(b)

$$
f_{2}: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x},
$$

(c)

$$
f_{3}: \mathbb{R} \rightarrow[0, \infty), x \mapsto x^{2}
$$

(d)

$$
f_{4}:[0, \infty) \rightarrow[0, \infty), x \mapsto x^{2}
$$

Problem 5 [3 points]

The hyperbolic sine, hyperbolic cosine and hyperbolic tangent are defined as

$$
\begin{aligned}
\sinh (x) & =\frac{e^{x}-e^{-x}}{2} \\
\cosh (x) & =\frac{e^{x}+e^{-x}}{2} \\
\tanh (x) & =\frac{\sinh (x)}{\cosh (x)}
\end{aligned}
$$

For each of these functions, determine their domain, range and their inverse.

Problem 6 [5 points]

Using the fact that $\ln (x)$ is the inverse function of e^{x}, prove the following calculation rules for the logarithm:
(a)

$$
\ln (1)=0,
$$

(b)

$$
\ln (x y)=\ln (x)+\ln (y), \text { for } x, y>0,
$$

(c)

$$
\ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y), \text { for } x, y>0
$$

(d)

$$
\ln \left(x^{y}\right)=y \ln (x), \text { for } x>0, y \in \mathbb{R}
$$

(e)

$$
\log _{b}(x)=\frac{\log _{a}(x)}{\log _{a}(b)} \text { for } a, b, x>0
$$

Bonus Problem [2 extra points]

Note: The bonus problems go a bit beyond what is covered in class, and problems like that will not be posed in the exams.
In class we have learned how to expand $(x+y)^{n}$ when n is a positive integer (binomial theorem). In Problem 1 above, we have extended this result to negative powers, i.e., we have derived a series expansion for $(1-x)^{-n}$. Now one can do similar expansions for fractional powers, e.g., for $(1+x)^{1 / 2}$. On the one hand, we will learn soon how to do that in a very elegant way (Taylor expansion), but actually we can already guess the correct series with much simpler and rather heuristic means. Consider $(1+x)^{1 / 2}$ and make the ansatz

$$
(1+x)^{1 / 2}=1+\delta_{1} x+O\left(x^{2}\right)
$$

for some δ_{1}. Here we assume ad hoc that the $O\left(x^{2}\right)$ terms are in some sense small. How do we find out what δ_{1} is? We square both sides and get

$$
1+x=1+2 \delta_{1} x+O\left(x^{2}\right)
$$

where $O\left(x^{2}\right)$ now contains all terms of order x^{2} (those are here different terms than above). Neglecting the $O\left(x^{2}\right)$ terms gives

$$
\delta_{1}=\frac{1}{2}
$$

One continues with the new ansatz $(1+x)^{1 / 2}=1+\frac{x}{2}+\delta_{2} x^{2}+O\left(x^{3}\right)$, and repeats the steps above to find the third order term. If you like to calculate, do this trick to find out all terms up to x^{4}, and try to find a pattern. The results can be found in Hairer/Wanner Theorem 2.2 (for arbitrary rational exponents). Looks familiar, right?

Now the problem that is worth the 2 bonus points is to find in a similar way an expansion for $\ln (1+x)$ for $x<1$. What is the resulting series? What happens for $x=1$? (This will answer a question that came up in class.)

