Advanced Calculus

Homework 5

Due on October 15, 2018

Problem 1 [7 points]

Calculate the derivatives of the following functions:

$$
\begin{gathered}
f_{1}(x)=x^{3}+5 x^{2}+3 x+5, \quad f_{2}(x)=e^{x} \sin (x), \quad f_{3}(x)=\frac{x^{3}}{\sqrt{1-x}}, \quad f_{4}(x)=\frac{\ln (x)}{x^{3}}, \\
f_{5}(x)=\ln \left(a^{x}+a^{-x}\right) \text { for any } a>0, \quad f_{6}(x)=\sum_{k=0}^{\infty} k^{3} \frac{x^{k}}{k!} \\
f_{7}(x)=\arccos (x),
\end{gathered}
$$

where arccos is the inverse of cos; for f_{7}, express the result without using trigonometric functions.

Problem 2 [2 points]

Prove that the function $f(x)=e^{|x|}$ is not differentiable at $x=0$.

Problem 3 [2 points]

In class we discussed the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Generalize this rule for the n-th derivative $(f g)^{(n)}$.

Problem 4 [2 points]

In class, we discussed a theorem by Lagrange: for continuous functions $f:[a, b] \rightarrow \mathbb{R}$, which are differentiable on (a, b), there is an $m \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(m)(b-a) .
$$

Now, consider the function

$$
f(x)=2 x^{2}+3 x+1,
$$

and $a=0, b=1$. Find an m such that the equation above holds.

Problem 5 [2 points]

An ellipse is described by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,
$$

for two fixed numbers a and b. Calculate the derivative $\frac{d y}{d x}$ by implicit differentiation.

Problem 6 [5 points]

Consider the curve parametrized by φ where $x=a \cos (3 \varphi)$ and $y=a \cos (\varphi)$ for some given $a \in \mathbb{R}$.
(a) Calculate $\frac{d y}{d x}$ using the given parametrization.
(b) Show that the curve satisfies $4 y^{3}=a^{2}(x+3 y)$.
(c) Calculate $\frac{d y}{d x}$ by implicit differentiation of the equation from (b). Does the result coincide with (a)?

